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Associate Professor Alberto Aliseda

Mechanical Engineering

This thesis studies the physics of the turbulent round jet. In particular, it focuses on three

different problems that have the turbulent round jet as their base flow.

The first part of this thesis examines a compressible turbulent round jet at its sonic con-

dition. We investigate the shearing effect such a jet has when impinging on a solid surface

that is perpendicular to the flow direction. We report on experiments to evaluate the jet’s

ability to remove different types of explosive particles from a glass surface. Theoretical anal-

ysis revealed trends and enabled modeling to improve the predictability of particle removal

for various jet conditions.

The second part of thesis aims at developing a non-intrusive measurement technique

for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature,

both in the laboratory and in the field, required specialized intrusive instrumentation and/or

complex optical setups. There are many situations in naturally-occurring flows where the

environment may prove too hostile or remote for existing instrumentation. We have devel-

oped a methodology for analyzing video of the exterior of a naturally-occurring flow and

calculating the flow velocity. We found that the presence of viscosity gradients affects the

velocity analysis. While these effects produce consistent, predictable changes, we became

interested in the mechanism by which the viscosity gradients affect the mixing and develop-

ment of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet

when a viscosity gradient is present.





Finally, the third problem addressed in this thesis is the growth of liquid droplets by

condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold,

dry environment. The resulting mixing produces highly inhomogeneous regions of supersat-

uration, where droplets grow and evaporate. Non-linear interactions between the droplet

growth rate and the supersaturation field make analysis computationally taxing. A Prob-

ability Density Function (PDF) model for the concentration of scalars, as well as for the

droplet number in different diameter-size bins, is developed. The distribution of droplets as

they evolve along the jet, for different downstream and radial positions, compared favorably

with experimental measurements in the literature. We utilized a graphical processing unit

with the PDF method to more efficiently compute the statistics of the droplet diameter in

the non-uniform supersaturation field.
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Chapter 1

INTRODUCTION

The true logic of this world is in the calculus of probabilities.

– James Clerk Maxwell

The single component, single phase, turbulent round free jet has been studied for many

years by a number of researchers. It has been examined successfully by use of computational

fluid dynamics (CFD), experimentation, and analytic analysis using first principles. The

simplicity of its description (as few as two parameters: initial velocity and nozzle diameter),

combined with the complexity inherent to any turbulent flow makes it a tempting target of

investigation. It may also serve as a fluid dynamicist’s “spherical cow”: a simple, well-studied

surrogate used as a foundation to help understand more complex flows that share some of

the same features.

Despite its apparent simplicity, the turbulent round jet still offers a rich field to study.

Even the basic momentum-dominated turbulent round jet still has unanswered questions

concerning, for instance, the effect of initial conditions, or the cause of the mixing transition

(Dimotakis, 2005). Deviations from the simplest case add layers of complexity that still

await investigation.

The nature of turbulence is sufficiently chaotic that when quantitative predictions are

made about its behavior, they are only made in a statistical sense; that self-similarity emerges

and applies to many aspects of the flow (e.g. mean and standard deviations of velocity) is

of great utility. Because turbulence is so complex, much of the useful modeling cannot be

derived from first principles, and understanding must rely on empirical data.

The behavior of the turbulent round jet in most applications emanates from the simplest,

canonical behavior. In order to extend specific experimental findings to other scenarios that

are either too numerous or exotic for the laboratory, modeling (either analytical or com-

putational) must be applied. Detailed modeling can be used to help understand observed
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phenomena; on the other hand, experimental observations can be used to support the ap-

propriateness of certain physics-based models. In this way, sufficient understanding of such

flows can only be achieved by leveraging all of the tools in the engineer’s arsenal: modeling,

simulation, and experimentation.

The first part of our investigation (Chapter 2) examines a sonic turbulent round jet.

It does not satisfy the typical assumption of incompressibility because it emerges under-

expanded from the nozzle, with a higher than ambient density. Given enough time/space,

such jets eventually expand sufficiently to assume the self-similar behavior associated with

the canonical, incompressible jet. We investigate the shearing effect such a jet has when

impinging on a solid surface that is perpendicular to the flow direction. We conducted

experiments to evaluate the jet’s ability to remove different types of explosive particles from

a glass surface. Analysis revealed trends that improve the predictability of particle removal

for various jet conditions. The results of this research were published in Keedy et al. (2012).

In previous jet investigations, numerous methods have been employed to analyze the jet

velocity profile and its associated statistics. Most if not all of these analyses require special-

ized equipment either in the form of in-situ instrumentation (e.g. hot wire) or illumination

(e.g. lasers for particle image velocimetry). There are many situations where environments

may prove too hostile or remote for the desired instrumentation. In Chapter 3, we develop

a methodology for analyzing video of the exterior of such a naturally-occurring flow.

As part of the remote-sensing velocity measurements methodology, we found that the

presence of viscosity gradients affects the velocity analysis. While these effects produce

consistent, predictable changes, we are interested in the mechanism by which the viscosity

gradients affect the mixing and development of the turbulent round jet. Since our velocity

analysis methodology relies on the visualization of the turbulent/non-turbulent interface, we

suspect that the viscosity gradient is influencing the interface behavior. To further explore

this possibility, in Chapter 4 we conduct a stability analysis of the axisymmetric jet when a

viscosity gradient is present.

Finally, we investigate another rich area of turbulence research: multi-phase flow. Specif-

ically, in Chapter 5 we look at how droplet growth rates and turbulent convection affect the

diameter distribution of condensing water droplets in a supersaturated turbulent jet. Non-
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linear interactions between the droplet growth rate and the supersaturation field make anal-

ysis computationally taxing. Our investigation is entirely numerical, although we validate

our results against experiments from the literature. We utilize a graphical processing unit

to more efficiently make statistical predictions of the spatially-varying diameter distribution

of the condensing droplets.
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Chapter 2

PARTICLE REMOVAL WITH A SONIC, TURBULENT JET

2.1 Nomenclature

𝑑𝑝 Particle diameter

𝑧 Nozzle stand-off distance

𝑧0 Downstream distance of virtual origin

𝑧* Virtual downstream distance (𝑧 − 𝑧0)

𝑑 Nozzle diameter

𝑃0 Reservoir (supply) pressure for jet

𝑈0 Jet exit velocity, eq. (2.5)

𝑑𝑒 Effective nozzle diameter, eq. (2.4)

𝑈𝑒 Effective jet exit velocity, eq. (2.5)

𝜀𝑟𝑒𝑚 particle removal efficiency (by area)

𝑧 Dimensionless downstream distance (𝑧/𝑑)

𝜁 Effective virtual downstream dist, eq. (2.3)

𝜁50 Value of 𝜁 corresponding to 50% removal

2.2 Background

The removal of small solid particles from solid surfaces is a ubiquitous problem in material

processing. While most of these applications rely on liquid solvents to extract the solid

residue from a process surface, there are many cases in which a non-intrusive clean up

process is preferable to reduce cost and limit the possible damage or contamination of the

surface.

In addition, there is a need for non-invasive sampling and inspection of contaminating

residues that may indicate chemical, radiological, or biological hazards. Fine particulates of

explosives may be dislodged during the bomb making or handling process and may adhere
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to available surfaces. Bender et al. (1992) observed that low volatility explosive vapors tend

to adsorb onto surfaces or dust particles which may settle on the surface. Davidson & Scott

(2002) noted that this presents an opportunity for several explosive detection schemes based

on particulate sampling. A recommendation of the recently released report of the National

Research Council on Existing and Potential Standoff Explosives Detection Techniques calls

for “the use of convective streams with or without airborne adsorbing particles to gather

chemical samples” (NRC 2004). This advocates the approach of dislodging molecular vapors

and particles containing traces of explosives from the surface and near-surface boundary

layer by increasing convective mass transfer, which would allow them to be captured and

analyzed.

Particle removal depends on particle, surface, and jet properties. A high-speed gas jet

impinging on a solid surface sets up a tangential flow with a thin boundary layer, thereby

producing high shear stresses on the surface. This exerts a force on the particles that can

potentially overcome the adhesive forces binding the particles to the surface as well as their

own weight, and suspend them in the gas stream. The gas stream can then be sampled by

a detector designed to collect and analyze the suspended particles.

Ranade (1987) noted that particle-surface interactions are determined by a wide variety of

particle and surface properties, in addition to the particles’ shape, size, and distribution. He

listed molecular interactions, electrostatic interactions, liquid bridges, double-layer repulsion

and chemical bonds among the influences that conspire to attach a particle to a surface.

There is a paucity of data relating these properties or specific molecular traits of the surface

to measurements of particle adhesion. The aim of this investigation was to take a more

holistic approach; we seek to evaluate removal rates of three types of explosives, and compare

their removal efficiency to that of benchmark ceramic microspheres. Because various types

of microspheres are easy to obtain in a range of sizes and their regularity is conducive to

modeling, they can be useful surrogates for explosive particles.

Several researchers have used microspheres as surrogates for explosive particles to study

non-invasive removal. Fletcher et al. (2008) examined particle removal by air jets from fil-

ter and cloth surfaces. Polycarbonate spheres of several sizes were used as surrogates for

explosive particles; the smallest microspheres were shown to be significantly more resistant
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to resuspension than larger ones. In another removal study, Phares et al. (2000c) simu-

lated explosives by creating spherical mono-disperse polystyrene particles laced with TNT.

They observed the smaller particles to be more resistant to resuspension, however, once

resuspended, they were easier to collect than their larger counterparts.

There are a number of theories on particle detachment. Wang (1990) suggested three

mechanisms of removal of a single particle: lift-off, sliding, and rolling (see Figure 2.1).

Ibrahim et al. (2003) concluded that rolling is likely the primary driver of detachment caused

by forced air. However, they cited particle-particle interactions to be a potentially important

secondary cause of particle detachment. For the purposes of this analysis, we will assume in

our analysis and quantitative model that rolling is the dominant mechanism for resuspen-

sion. This is a conservative estimate of particle removal, and secondary mechanisms such as

particle-particle collisions can be added later.

(a) (b)

(c)

Figure 2.1: Cartoons of the three different removal mechanisms identified by Wang (1990):
(a) lift-off, (b) sliding, and (c) rolling
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Figure 2.2: Diagram of the air jet interrogation experimental setup

2.3 Experimental Procedure

Both ceramic microspheres and explosive particles were interrogated with the same air jet

experimental setup. Figure 2.2 shows a sketch of the experimental layout. The experiments

involving the ceramic microspheres were all conducted with a jet issuing from a convergent

nozzle of diameter 2.5 𝑚𝑚. However, in order to remove explosive particles at reasonable

rates, we found it necessary to increase the nozzle diameter, testing nozzles up to 4.75 𝑚𝑚

in diameter. Analyses described in section 2.4 allow for quantitative comparisons to be made

across a range of nozzle diameters.

All particles were deposited onto a VWR VistaVision
TM

glass slide prior to being interro-

gated with the air jet. Before deposition, the glass slides were cleaned in an ultrasonic bath

and dried. Each prepared glass slide was subjected to a single air pulse. Most tests involved

a pulse of approximately 20 ms in duration, although some tests involved longer duration

pulses in order to evaluate the effect of pulse duration. Masuda et al. (1994) observed that

the duration of the jet, as well as the number of jet pulses used are both known to affect

removal rates. All of our experiments, however, used a single jet burst; we did not notice
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Figure 2.3: Volume of air ejected from a 4.5 𝑚𝑚 nozzle as a function of reservoir pressure
and pulse duration

a strong effect due to varying the jet duration from 25 − 100 𝑚𝑠 (see Figure 2.4). For the

eventual purpose of collecting the removed particles for analysis, a shorter pulse length re-

duces the dilution of the air to be sampled; therefore, the interrogation of explosive particles

was done with air jets on the order of 20 𝑚𝑠 (significantly smaller pulses being challenging

in practice due to solenoid valve limitations). Figure 2.3 illustrates the resulting volume of

air ejected from a 4.5 𝑚𝑚 nozzle, as a function of reservoir pressure and pulse duration.

An ASCO R○ Red-Hat II fast-acting solenoid valve controlled the length of the pulse.

Supply pressures ranged from 138 to 965 𝑘𝑃𝑎 above atmospheric; a reservoir was used

upstream of the solenoid to help maintain a constant jet back-pressure for the duration of

the pulse.

For the values of reservoir pressure tested, the air jet emerges sonically from the nozzle as

an under-expanded jet. Humidity was controlled in the lab, maintaining a value of 30-50%.

This is an important consideration, as previous experiments, notably Corn & Stein (1965),

have noted that removal efficiency drops significantly at high humidity levels.
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Figure 2.4: Ceramic microsphere removal for jet bursts of different duration (2.5 𝑚𝑚 nozzle
diameter, 276 𝑘𝑃𝑎 reservoir pressure, 152 𝑚𝑚 stand-off distance)

2.3.1 Ceramic Micropheres

We tested removal of polydisperse ceramic spheres, as a benchmark against which to com-

pare the explosive particles. The particles were Zeeosphere
TM

ceramic microspheres G-850

(Zeeospheres Ceramics, LLC, Lockport, LA). According to the documentation, the mean

particle diameter ranges in size between 35 and 60 microns, with a 50 micron mean being

reported as typical. Verkouteren (2007) suggests this is within the range of explosive particle

sizes that should be targeted for sampling.

The particles were gravity-deposited directly onto the glass slides (dry transfer via

Bytac R○ strip was not used in these experiments) and interrogated at least 24 hours later.

We expect this method of deposition yield approximately equivalent removal results to our

experiments using explosives (where particles were forcibly applied). Otani et al. (1995) per-

formed experiments showing that a single jet pulse removed particles at comparable rates

whether they were deposited by inertial impaction or gravitational settling followed by a

waiting period.
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For these experiments with ceramic spheres, air supply pressure ranged from 138 to 483

kPa above atmospheric. Stand-off distance was varied from 25 to 229 𝑚𝑚 (𝑧 = 10 to 92)

(a) Ceramic microspheres before air jet interroga-
tion

(b) Ceramic microspheres after air jet interrogation

Figure 2.5: Microscope images of ceramic microspheres on glass, both before and after
interrogation by an air jet pulse (2.5 𝑚𝑚 diameter nozzle, 207 𝑘𝑃𝑎 reservoir pressure,
152 𝑚𝑚 stand-off distance)

Pictures of the slides were taken under microscopic magnification both before and after

interrogation (see Figure 2.5). ImageJ (NIH, Rasband 1997–2011) was used to analyze the

microscopy images before and after interrogation in two different ways. If only the the

coverage area was necessary, the a converted binary image was examined, and the number of

dark and light pixels were recorded. The number of black pixels in both the before and after

the air jet interrogation were recorded as coverage areas. In this manner, removal efficiency

was calculated simply as

𝜀𝑟𝑒𝑚 =
𝐴𝑏𝑒𝑓𝑜𝑟𝑒 −𝐴𝑎𝑓𝑡𝑒𝑟

𝐴𝑏𝑒𝑓𝑜𝑟𝑒
. (2.1)

Notice that this surface area removal metric assumes that the mass of explosive is deposited

in a single layer with uniform thickness. This is an approximation that, by being used con-

sistently across the experiments described in this study, allows for quantitative comparisons

to be made.

In addition to making a coverage area measurement, the processed, binary image can
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be used to determine the size distribution of the particles. An ImageJ macro is used to

distinguish individual particles that may be close enough to touch after thresholding, but

are separate physically. This histogram procedure is most effective when analyzing ceramic

spheres. In addition to the ceramic spheres being more clearly distinct than the explosive

particles, because the ceramic particles are spherical, a histogram of particles, binned by

diameter can be determined from the images.

The particle size which experienced 50% removal was determined by analysis of various

particle size bins both before and after interrogation by the air jet. The ratio of the particle

count before and after removal was converted to a percentage removal for each particle

diameter range. Plotting the data as a function of diameter, we expect the curves of removal

(one curve for each experiment) to cross the 50% removal level at the relevant particle

diameter.

One drawback of this approach is that if multiple particles are deposited adjacent to

each other, the software may incorrectly account for them as a single large particle instead

of several small particles. Additionally, the number of particles necessary for reliable analysis

may challenge the approximation we are making that particle-to-particle interactions are not

a main driver of particle removal.

Figure 2.6 shows removal efficiency data as a function of particle diameter for several

experiments varying the supply pressure. The data tend to become noisier at larger particle

diameters because they occur with less frequency than the smaller particles; the relatively

small number of particles before interrogation leads to removal rates calculated using rela-

tively small sample sizes. Despite challenges with the sample sizes, there is a clear trend

that particle removal efficiency depends strongly on the jet reservoir pressure.

2.3.2 Explosives

Chamberlain (2002) has outlined a procedure for preparing explosives for sampling, which we

used in these experiments. C-4, TNT and RDX were obtained as solutions in acetonitrile at

known concentrations. In order to prepare a sample, a volume of the solution, proportional

to the mass of explosive desired (typically 5 𝜇𝑔), was deposited onto a 1"x 1" Bytac R○
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Figure 2.6: Ceramic microsphere removal for jet bursts with varying reservoir pressures (2.5
mm diameter nozzle, 152 mm stand-off distance)
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(a) (b)

Figure 2.7: Microscopic images of TNT before and after transfer. (a) Solid TNT nugget
(5 𝜇𝑚) resulting from desiccation. (b) TNT particles after transfer

coupon. A drying chamber was used to speed up evaporation of the acetonitrile, resulting

in the formation of crystal structures of trace explosive. The relatively low volatility of the

explosive (𝒪 0.01 Pa versus 𝒪 10 Pa for acetonitrile) allowed us to predict that the mass of

the explosive was conserved during the drying process.

The explosives were then applied to glass slides by rubbing the coupon back and forth

several times against the surface. This transfer was performed (as opposed to directly

depositing the explosive solution onto the slide) in order to ensure repeatability and to

remain consistent with the procedure outlines by Chamberlain (2002). Had the explosive

particles been wet-deposited onto the glass surface, work from Bhattacharya & Mittal (1978)

suggests that the particles would adhere much more strongly than in these experiments that

use dry deposition. Furthermore, the transfer allowed the homogenous, condensed explosive

to be broken up into smaller particles upon transfer. TNT was particularly prone to form

a single solid structure upon evaporation of the acetone; applying the transfer technique

described by Chamberlain allowed it to break up into many smaller particles (Figure 2.7).

The glass slides were interrogated shortly (less than 5 minutes) after application. The

experimental setup for trace explosives removal was identical to the one used for ceramic

spheres, shown in Figure 2.2. The pressure regulator was varied to establish the supply
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(a) TNT before air jet interrogation (b) TNT after air jet interrogation

Figure 2.8: Microscope images of TNT on glass, both before and after interrogation by an air
jet pulse (4.75 𝑚𝑚 diameter nozzle, 655 𝑘𝑃𝑎 reservoir pressure, 47 𝑚𝑚 stand-off distance)

pressure to between 172 and 965 𝑘𝑃𝑎. We measured the pressure and pulse duration just

upstream of the nozzle using an SSI MediaSensorTMP51 pressure transducer. The nozzle

diameters tested were 2.5, 4.0, 4.5 and 4.75 𝑚𝑚. Vertical stand-off from the nozzle to the

glass slide spanned 25 to 152 𝑚𝑚.

Because the explosive particles’ shape and size distribution are irregular, options for

evaluating removal are limited. The masses involved are too small to be weighed reliably

(≤ 5 𝜇𝑔). Also, individual particles sometimes cannot be optically resolved due to their

proximity to each other. Even if the individual particles could be resolved, their irregular

shapes would make the determination of their volume (and therefore their mass) subjective.

Instead, we chose to measure the area covered by particles before and after interrogation,

and compare them to determine removal efficiency (neglecting thickness of deposition).

Photographs were taken while examining the slides under a microscope both before and

after the test (see Figure 2.8). ImageJ was used to analyze the images, calculating the area

covered before and after the air jet interrogation, and removal efficiency was computed as

defined in equation 2.1.

In addition, particle size analysis was conducted in the same manner as it was done

for the Zeeospheres, though the uncertainty is higher due to the inability to identify inter-
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Figure 2.9: Histograms of particle size for the four types of particles in our study

nal boundaries of large explosive deposits. Figure 2.9 compares the results of histograms

compiled from microscope images of the various particle types. Note that the three types

of explosives exhibit the most similarity in particle size distributions, all of them having a

wider distribution of particle sizes than the ceramic microspheres. However, Table 2.1 shows

that for various particle distribution metrics, the four particles are quantitatively similar.

2.4 Modeling

For a choked, under-expanded gas jet, Birch et al. (1987) established that in the developed

region,
1

𝑈𝑐
∝ 𝜁, (2.2)
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Zeeospheres TNT C-4 RDX

Median 𝑑𝑝 (𝜇m) 16 12 13 12

𝐷10 (𝜇m) 18 16 18 15

𝜎𝑑 (𝜇m) 9 13 16 11

𝐷20 (𝜇m) 20 21 24 18

Table 2.1: Particle size distribution properties

where the value 𝜁 is a non-dimensional downstream distance that incorporates the effect of

the jet reservoir pressure, stand-off distance and nozzle diameter. Due to the different exper-

imental conditions used, 𝜁 is an important non-dimensional variable that enables the com-

parison of different results across experiments. Birch determined the non-dimensionalized

axial downstream distance of an under-expanded air jet by defining an effective jet diameter

(𝑑𝑒) and virtual origin (𝑧0) that are functions of the jet reservoir pressure. Plotted against

this non-dimensional distance, the inverse of the jet velocity along the centerline collapses

to a single, linear profile (outside of the development region).

The non-dimensional distance, 𝜁, is defined as

𝜁 =
𝑧*

𝑑𝑒
(2.3)

where 𝑑𝑒 is the effective diameter and 𝑧* is the adjusted downstream distance, accounting

for the virtual origin. Specifically,

𝑑𝑒 = 𝑑

√︃
𝑃0

𝑃𝑎

(︂
2

𝛾 + 1

)︂ 1
𝛾−1 𝑈0

𝑈𝑒
. (2.4)

where 𝑃0 is the jet reservoir pressure (absolute), 𝑃𝑎 is the ambient pressure, 𝛾 is the heat

capacity ratio, and

𝑈𝑒 =
𝑈0

𝛾

[︃
1 + 𝛾 − 𝑃𝑎

𝑃0

(︂
2

𝛾 + 1

)︂− 𝛾
𝛾−1

]︃
. (2.5)

The coordinate for downstream distance, 𝑧*, is defined simply as 𝑧* = 𝑧− 𝑧0 where 𝑧0 is the

virtual origin. Birch provides an empirical relationship for 𝑧0 versus reservoir pressure.

Hence, 𝜁 is a function of 𝑧, 𝑑, 𝑃𝑎, and 𝑃0. Figure 2.10 provides an illustration of the
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Figure 2.10: Diagram of dimensions used for analysis

various geometrical parameters used.

Figure 2.11 displays the resulting non-dimensional velocity (Mach number) contours on

a pressure– 𝑧
𝑑 plot. Note that the black line shows the boundary along which 𝜁 equals 25.

From Birch’s consolidated plot of experimental data, 𝜁 = 25 appears to be the limit below

which the developmental region applies and the model is not effective; therefore, we will

trust predictions to the right of the line significantly more than those to the left of the line.

There are reports for the development region being as small as 𝑧
𝑑 = 5, so we also included

a contour of 𝜁 = 5. Alternatively, because Birch does not explicitly define the extent of the

development region (and it may not correspond to one value of 𝜁), one may also choose an

incompressibility criteria (such as 𝑀𝑎 < 0.3) in order to define a region over which to apply

the velocity model.
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Figure 2.11: Contours of 𝑈
𝑈0

versus back-pressure and 𝑧
𝑑

2.4.1 Removal Modeling

In order to remove a spherical particle from the surface by rolling, Phares et al. (2000a)

proposed that the tangential drag force, applied at the particle center, must satisfy

𝐹𝑑𝑟𝑎𝑔 =
2𝑎𝐹𝑎

𝑑𝑝
(2.6)

where 𝐹𝑎 is the attachment force and 𝑎 is the contact radius. Rimai et al. (1990) showed

that 𝑎 is proportional to the square root of the particle diameter:

𝑎 ∝
√︀
𝑑𝑝. (2.7)

and that the attachment force is proportional to 𝑎2, which implies it is proportional to 𝑑𝑝:

𝐹𝑎 ∝ 𝑑𝑝 (2.8)
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That leaves the drag force to be determined. Phares also made use of the Galileo number

(𝐺𝑎 = 𝐶𝐷𝑅𝑒2𝑝), from which we can find a relationship between 𝐹𝑑𝑟𝑎𝑔 and 𝑑𝑝:

𝐹𝑑𝑟𝑎𝑔 =
𝜋𝜇2𝐶𝐷𝑅𝑒2𝑝

8𝜌
= 1

8𝜋𝜌𝐶𝐷𝑑
2
𝑝𝑈

2 (2.9)

𝐹𝑑𝑟𝑎𝑔 ∝ 𝑑2𝑝𝑈
2 (2.10)

assuming 𝐶𝐷 and 𝜌 are constant. With the particle residing in the viscous sublayer, for a

given flow intensity, we expect the velocity at the particle’s centerline to be proportional to

its height, 𝑑𝑝, and to the shear stress, 𝜏 , (𝑈 ∝ 𝑑𝑝𝜏) leading to

𝐹𝑑𝑟𝑎𝑔 ∝ 𝑑4𝑝𝜏
2. (2.11)

Thus, the condition for removal, (2.6), can be rewritten

𝑑7/2𝑝 =
𝐶1

𝜏2
(2.12)

where 𝐶1 is a product of constants (and thus, a constant itself). Alternatively, and perhaps

more usefully, we can determine the critical shear stress required as it relates to the particle

diameter:

𝜏 =
𝐶2

𝑑
7/4
𝑝

. (2.13)

The shear stress at the surface can be estimated based on analytical derivations presented

in the literature. For a self-similar free jet, Phares et al. (2000b) derived a relationship

indicating surface shear is proportional to 𝑈1.5. Consolidating the constants to 𝐶3, we can

find a criterion for the removal of an individual particle using air jet velocity instead of shear

stress:

𝑈3/2𝑑7/4𝑝 = 𝐶3. (2.14)

Equation (2.2) can be used to derive a formula for 𝜁 utilizing a new constant, 𝐾:

𝜁 = 𝐾𝑑7/6𝑝 . (2.15)
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2.5 Experimental Data

2.5.1 Microsphere Particles

Considering equation 2.15, 𝐾 is best determined experimentally because it incorporates a

number of undetermined constants. Taking into account the variability of ceramic sphere

diameters, it is best to use a statistical interpretation of the deterministic model. Instead

of focusing on the removal of a single particle, we will define the constant 𝐾 that results in

50% removal of particles of a given diameter.

We first plot data collected from the ceramic microsphere removal tests over a range of

supply pressures and stand-off distances. Figure 2.12 plots the ceramic particle diameter

exhibiting 50% removal rates as a function of 𝜁. Because 𝜁 is a function of the jet reservoir

pressure and stand-off distance (and nozzle diameter), this allows us to overlay the results

from many different experiments. A best-fit least-squares curve is also plotted, based on

equation 2.15, where 𝐾 was determined to be 1.35 𝜇𝑚6/7. The data for removal of ceramic

microspheres under a wide variety of experimental conditions are reasonably well described

by the theoretical model.

2.5.2 Explosive Particles

After experimentally determining the 𝜁 value corresponding to 50% removal of a particu-

lar explosive, an appropriately sized ceramic microsphere surrogate can be selected using

equation 2.15. We expect such a mono-disperse surrogate to experience 50% removal under

similar conditions as the explosive. However, the explosives tested all exhibited 50% removal

at negative values of 𝜁 (upstream of the virtual origin 𝑧0). Being upstream of the self-similar

region of the jet, the relationships outlined by Birch are not quantitatively accurate, and

equation 2.15 does not adequately describe the relationship between downstream distance

and removal. While we can no longer assume that removal will depend on 𝜁 according to

(2.15), it is reasonable to expect there will still be a similar qualitative dependency.

Quantifying explosive particle removal as a function of diameter was difficult, due to the

variability in explosive particle shapes. Despite the fact that the deposition procedure was

consistently followed, the explosive material was often deposited in irregular patterns with
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Figure 2.12: Plot of experimental data for ceramic microsphere particle diameter experienc-
ing 50% removal at various 𝜁; data is fit with the curve from equation 2.15, 𝐾 = 1.35 𝜇𝑚6/7
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ill-defined internal boundaries. Because of the lack of certainty in size and shape of the

particles, we chose instead to measure the explosive area removed against 𝜁. Figure 2.13

shows results for the three explosives tested as well as the ceramic particle tests. Although

we cannot quantify the the maximum shear stress as a function of negative values of 𝜁, it is

possible to report the value 𝜁50 that elicits 50% removal. In an effort to represent the data

in a straight-forward manner with a clearly defined demarcation for 50% removal, we fitted

each set of particle removal data with a sigmoid curve. The curves each had the following

form

𝜀𝑟𝑒𝑚(𝜁) =
1

1 + 𝑒0.12(𝜁−𝜁50)
(2.16)

where 𝜁 is the independent variable and 𝜁50 uniquely defines the horizontal location of each

curve. The coefficient 0.12 was chosen to best match the behavior of all particle types. By

applying a least-squares fit criterion, 𝜁50 can be determined for each type of particle. It

can be reasonably expected that under marginally different conditions the values of 𝜁50 may

change, but we expect relative removal rates of the explosives to remain unchanged as long

as the mechanism of particle removal from the surface remains the same.

It appears that the fit the data may be worse at higher values of 𝜁. We observed

that occasionally the explosive transfer was not efficient in breaking up some of the larger

particles. These large particles were removed at relatively high values of 𝜁, resulting in

disproportionate coverage reduction and a high value of 𝜀𝑟𝑒𝑚.

C-4 proved the most difficult to remove, with a 𝜁50 value of -29. RDX was slightly easier

at -23, and TNT was the easiest of the three explosives to remove at 𝜁50 = −11. The ceramic

microspheres on the other hand, were removed at a stand-off of 𝜁50 = 51.

2.6 Summary

Explosive particles were found to be much more difficult to remove than their ceramic

counterparts, despite the apparent similarity in particle size distributions. In order to achieve

50% removal, it was necessary to subject the explosives to the under-expanded, undeveloped

region of the jet. This makes it difficult to quantify the shear stress needed for removal, but

the non-dimensional downstream distance, 𝜁, may be used instead.
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Figure 2.13: Plot of removal versus 𝜁 for three explosives and ceramic microspheres (exper-
imental results as points; curve fits from eq. 2.16 as lines)
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The removal rate was observed to depend strongly on the type of explosive being exam-

ined, as well as being a function of 𝜁. There are several factors that could lead to different

removal rates for different explosives. While the particle size distributions were similar

among the explosives and ceramic microspheres, we have little information regarding the

shapes of the explosive particles. It is reasonable to assume they are not spherical, but

we cannot speculate as to whether the different explosive particles have characteristically

dissimilar shapes, which would potentially result in different removal rates.

It is perhaps most natural to attribute the differences in removal rate to the chemistry of

the particle and substrate involved. Since we use a glass substrate in all of our experiments,

the adhesive force of each explosive can be impartially evaluated; other substrates may prove

to either enhance or diminish the removal trends we observed.

The differences in 𝜁50 values indicate that TNT particles were easier than RDX to remove;

C-4 particles appeared to require the highest shear stress to be resuspended. For example,

given a 4.75 𝑚𝑚 nozzle diameter, and a modest stand-off of 𝑧 = 20, our results from Figure

2.13 indicate 50% removal of TNT particles would require 790 𝑘𝑃𝑎 of supply pressure, 50%

removal of RDX would require 1100 𝑘𝑃𝑎, and 50% removal of C-4 would require 1300 𝑘𝑃𝑎

(the latter two pressures were never reached in this study). The ceramic microspheres

we tested, on the other hand, should require less than 150 𝑘𝑃𝑎 for 50% removal. It is

unclear, due to the limitations of our shear stress analysis, exactly what diameter a ceramic

microsphere would need in order to behave as a surrogate for each explosive, but the typical

diameter would need to be significantly smaller than 10 𝜇𝑚.
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Chapter 3

MULTI-COMPONENT TURBULENT JET

3.1 Nomenclature

𝛿𝑡 Elapsed time separating PIV images in a pair

𝑧 Nozzle stand-off distance

𝑧0 Downstream distance of virtual origin

𝑧* Virtual downstream distance (𝑧 − 𝑧0)

𝑑 Nozzle diameter

𝑈𝑗 Jet exit velocity

𝑈𝑒 Jet exterior axial velocity, as measured by PIV

𝑈𝑐(𝑧) Jet centerline axial velocity

𝑑𝑝 Particle diameter

𝑈̂ Jet exit/exterior velocity ratio
𝑈𝑗

𝑈𝑒

𝜏 Non-dimensional PIV time scale, eq. (3.22)

𝑧 Dimensionless downstream distance (𝑧/𝑑)

𝑧 Dimensionless virtual downstream distance ((𝑧 − 𝑧0)/𝑑)

𝑃 Ratio of momentum vs. buoyancy forces

𝜌𝑎 Ambient fluid density

𝜌𝑗 Jet fluid density

𝛾 Transmissivity

𝑇 Temperature

𝑅𝑒 Reynolds number

𝜇𝑎 Dynamic viscosity of the ambient fluid

𝜇𝑗 Dynamic viscosity of the jet fluid
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3.2 Background

The goal of this research is to enable non-intrusive velocity measurements of naturally-

occurring turbulent flows, specifically flows that are opaque, cannot be seeded or are oth-

erwise difficult to measure in-situ. In a laboratory setting there are a number of exper-

imental techniques by which fluid velocity can be measured, for example: anemometry,

hot-wire anemometry, laser Doppler anemometry (LDA), particle image velocimetry (PIV),

etc. Often times, naturally-occurring turbulent flows are inappropriate candidates for such

techniques, due to multiple considerations.

In some cases, the flow of interest may be difficult to access with laboratory instrumen-

tation, such as hydrothermal vents on the ocean floor. Flows can exist in exceedingly harsh

environments, such as the plumes emanating from a fire or a volcano eruption. However, a

remotely operated vehicle can reach the appropriate location equipped with a video camera

that can image the flow. Video cameras can capture the exterior view of hot, hazardous flows

from a safe distance. Finally, some natural phenomena may be fleeting, and the most desir-

able instrumentation cannot be organized and set up in a timely or cost-effective manner.

Video cameras, on the other hand, are nearly ubiquitous. Due to all of these considerations,

it is desirable to be able to learn about such turbulent free shear flows from a series of images

taken at known time intervals.

Our approach for analyzing such video will be to decompose it into consecutive image

pairs and perform particle image velocimetry (PIV) analysis – in our case, perhaps the more

appropriate moniker would be pattern image velocimetry. Typical “laboratory-grade” PIV

involves a transparent flow seeded with particles. These particles are typically illuminated

with powerful, brief laser bursts illuminating either a plane (for 2-D) or volume (for 3-D)

within the fluid region of concern, and a specialized camera captures image pairs of the

particle field with a well-controlled time separation between the two images in a pair (a

more thorough discussion of PIV is included later in this chapter). Rather than predicting

velocities by analyzing the movement of the particle field, our approach will deviate from

traditional PIV, and analyze the movement of the patterns of turbulent structures on the

jet exterior.
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The effort to understand naturally-occurring flows, or to extract more information from

flow visualization in the laboratory has led to multiple attempts to extend PIV techniques to

non-particle flows in the literature. Aerial views of the white-caps of wind-driven deep-ocean

waves have been analyzed using PIV by Melville & Matusov (2002) to determine their veloci-

ties along the ocean surface. Ryu et al. (2005) coined the term “bubble image velocimetry” in

the development of a technique to obtain velocity fields inside a bubbly plume, a commonly

occurring flow that presents enormous challenges to flow visualizations and direct measure-

ments. In order to look within the flow field of a breaking wave, Rodriguez-Rodriguez et al.

(2011) used the naturally entrained air bubbles to make velocity measurements. Tokumaru

& Dimotakis (1995) discussed a technique for extending traditional PIV using a method

called image correlation velocimetry. Through use of correlations of scalar images and global

minimization, they calculate velocity and the shear field directly, most notably of Jupiter’s

atmosphere.

Of course, in order to develop the technique for naturally-occurring flows, we must begin

in the laboratory, where we can control/measure the parameters of the flow and of the

imaging system. There are several conditions for the images to make analysis more accurate.

First, if the camera’s position and orientation (perpendicular to the jet axis) remains steady,

that will reduce the uncertainty in the optical displacement and the position of the visualized

flow structures. Additionally, the laser light-source will be approximately coaxial with the

camera. The flow will be momentum-dominated, and the jet flow rate will remain steady.

We base our study, and the development of this technique, on the momentum-dominated,

single phase, turbulent jet. This canonical free shear flow has several advantages to serve

as the theoretical basis for the study; it is a geometrically-simple flow that has been widely

studied, and for which simple relationships that describe its behavior have been derived.

An important characteristic is that, in the far field, the turbulent jet is known to have a

self-similar velocity profile. Wygnanski & Fiedler (1969) compiled velocity measurements

with a static hot-wire (SHW) anemometer at several downstream distances. By normalizing

the velocity magnitude and radial distance, the curves collapse (see Figure 3.1).

Likewise, the Reynolds stresses also exhibit self-similar behavior. Hussein et al. (1994)

also studied the characteristics of a momentum dominated turbulent jet using stationary
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Figure 3.1: Plot of velocity measurements ranging from 𝑧/𝑑 values of 40 to 97.5 reported in
Wygnanski & Fiedler (1969)

hot-wire anemometer (SHW), but supplemented the experimental data with flying hot-wire

(FHW) anemometers and LDA. Figure 3.2 shows the Reynolds stresses resulting from that

study.

The centerline velocity decay for a turbulent jet is, based on momentum conservation

arguments:
𝑈𝑐(𝑧)

𝑈0
=

𝐵𝑑

𝑧 − 𝑧0
=

𝐵𝑑

𝑧
(3.1)

where 𝐵 and 𝑧0 are both empirically determined constants (George, 1989). Hussein et al.

(1994) investigated these relationships; we will use their values: 𝐵 = 5.8 and 𝑧0 = 4𝑑. Figure

3.3 shows the favorable comparison of the model and experimental data.

These wealth of high-quality experimental data and rigorous mathematical analysis of

the behavior of this flow makes it ideal to validate the experimental technique, and the ideas

that it is based on, in a laboratory setting. This will allow the technique to be on solid

ground to be applied in the field, where necessarily the levels of uncertainty will make the

technique more complex to utilize and its results more difficult to interpret.
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(a) (b)

(c) (d)

Figure 3.2: Graphs from Hussein et al. (1994) showing results for Reynolds stresses collected
via SHW, FHW, and LDA

3.3 Experimental Setup

3.3.1 Fluids Equipment

We designed, built, and characterized an octagonal-prism acrylic tank to house the turbulent

jet experiment. The octagonal design was chosen in order to provide a high level of flexibility

to the experimental measurement techniques available for the study. In PIV measurements,

it is important that both the laser and camera orientations are always perpendicular to the

faces of the tank so as to avoid the complicating issues of refraction.
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Figure 3.3: Graph from Hussein et al. (1994) showing centerline velocity ratio collected via
SHW and LDA
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Perpendicular face pairs of the octagon can be utilized for traditional PIV analysis. A

laser sheet is cast through one side of the octagon, and the camera is oriented to look through

the complimentary pane. Of course, the camera can be placed coaxial with the laser when

imaging the jet exterior. While not part of this study, additional viewing angles are available

for phase Doppler particle analysis (PDPA) measurements. The optimal angle between

the lasers and the PDPA receiver is dependent on the particle/bubble-fluid combination.

Therefore, we designed the octagon not as a regular octagon, but with several different

internal angles, allowing for various PDPA setups. Specifically, we wanted to ensure there

was the possibility of performing PDPA experiments at 120∘, 135∘, and 150∘.

There are additional benefits to choosing a many-sided polygon. As the tank footprint

approaches that of a circle, the boundary effects are mitigated, and the approximation of

injecting fluid into an infinite reservoir is more accurate. Finally, the structural integrity is

improved by reducing the stress at the joints and the deflection of the sides. The drawbacks

to additional sides is complexity of construction and reducing viewing area of a given side.

Ultimately, we settled on the footprint seen in Figure 3.4, as the best compromise in

flexibility of measurements and minimizing drawbacks.

The footprint is approximately 1.2 meters in each direction, and the tank is approximately

2 meters tall. The size was selected to be essentially as large as feasible, considering space,

cost, and construction constraints. The motivating factor was to minimize the influence of

confinement on the flow.

Hussein et al. (1994) estimated the effect of confinement by examining a momentum

ratio, where a value approaching unity implies insignificant confinement effects:

𝑀

𝑀0
=

[︂
1 +

16

𝜋𝐵2
𝑚

(︁𝑧
𝑑

)︁2 𝐴0

𝐴𝑅

]︂−1

. (3.2)

The value 𝐴0 is simply the nozzle area, 1
4𝜋𝑑

2. Substituting, the ratio is independent of

diameter:
𝑀

𝑀0
=

[︂
1 +

4

𝐵2
𝑚

𝑧2

𝐴𝑅

]︂−1

(3.3)

where 𝐵𝑚 = 6.5 and our tank has an approximate cross-sectional area: 𝐴𝑅 = 1 𝑚2. Thus,
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Figure 3.4: A drawing of our octagonal tank, seen from different perspectives
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Nozzle Diameter (mm) 𝑀/𝑀0 > 0.99 (𝑧/𝑑) 𝑀/𝑀0 > 0.95 (𝑧/𝑑)

1 320 720

3 107 240

4 80 180

7 46 103

10 32 72

Table 3.1: Downstream distance for which confinement effects can be ignored in our exper-
imental setup

the value of 𝑧 below which the ratio 𝑀
𝑀0

remains above 0.95 can be calculated to be approx-

imately 72 cm; for 𝑀
𝑀0

to remain above 0.99, the maximum downstream distance is 32 cm.

Table 3.1 shows the value of 𝑧
𝑑 for different nozzle diameters at the two different thresholds.

Overflow slots are cut near the top of the tank (see detail D in Figure 3.4) to maintain

a constant level of fluid inside the tank as liquid is injected through the nozzle. An acrylic

box is mounted and plumbed around each slot to divert overflowing liquid down and away

to the floor drain. In this way, the ambient pressure as a function of distance from the

nozzle is essentially constant over time, in an effort to further minimize the effect of the

tank boundaries.

The tank is mounted on a custom-built steel table to accommodate the plumbing of the

drainage/filling holes as well as the nozzle. This setup holds the tank 0.7 𝑚 above the ground

in order to provide access to the jet nozzle, the underside of the tank, and flow connections

associated with the experiment.

The tank has an access port on one of the lateral panes, near the base in order to

manipulate the nozzle setup and allow maintenance. A transparent acrylic plate is used to

cover the port; it must be manually held in place during tank filling, but once full, water

pressure holds it in place, and a gasket seals it to prevent water leakage.

Convergent nozzles were designed to provide a nearly uniform velocity profile as the free

jet inlet condition. We defined the interior of our nozzle shape to be identical to the optimal

trinomial nozzle studied by Hussain & Ramjee (1976):

𝑅 = 𝑑𝑖
2 − 3

2(𝑑𝑖 − 𝑑𝑒)
(︀
𝑥
𝐿

)︀2
+ (𝑑𝑖 − 𝑑𝑒)

(︀
𝑧
𝐿

)︀3
. (3.4)
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Figure 3.5: CAD drawing of a converging nozzle with a 2 mm diameter

CAD drawings for the nozzles having various exits diameters (but the same inlet di-

ameters and lengths) were generated (see Figure 3.5); we had aluminum nozzles made and

anodized for exit diameters of 1, 3, 4, 7, and 10 𝑚𝑚.

Fluid flow is driven by a pressurized diaphragm tank; pressure was maintained by a reg-

ulated building air supply line (regulated to approximately 600 𝑘𝑃𝑎 for most experiments).

A Blancett Model 1110 turbine flowmeter equipped with the digital readout provided by a

B2800 Series flow monitoring system was used to measure the flow rate; the digital readout

(accurate to a few hundredths of a gallon per minute) is monitored during the experiments

and incremental adjustments to an in-line needle valve are made to maintain a constant flow

rate. The resulting average jet exit velocity depends on the diameter of the nozzle being

used:

𝑈𝑗𝑒𝑡 =
4𝑄

𝜋𝑑2
. (3.5)

Hot water can be injected by rerouting the water through heat-exchangers as it is injected

by the pressurized tank. Two steam-powered heat exchangers are used in series to heat up

the injected water to the desired level. Thermocouples are placed both in between heat

exchangers and slightly upstream of the nozzle to monitor temperatures.

Figure 3.6 gives an overview of the lab equipment’s organization and plumbing. The



35

Figure 3.6: Cartoon of the flow experiment plumbing

diaphragm tank is plumbed such that it can be filled or flushed with water from the building

water supply. A displacement pump is used to fill this tank with the liquid we wish to

inject, whether it be Rhodamine-dyed water, or a high-viscosity glycerin solution. Due to

the volume of the tubing between the diaphragm tank and the nozzle, the system must be

flushed of the old injected liquid when a new type of liquid is to be used in experiments.

3.3.2 Imaging Setup

Our Solo PIV Nd:YAG Laser (New Wave Research, Portland, OR) utilizes two individual

laser heads that can produce 532 𝑛𝑚 wavelength beams with virtually any time delay be-

tween them; the pulses themselves last on the order of 5-10 nanoseconds. The lasers’ power

can be modulated to provide the optimum exposure for a given combination of camera

distance, lens optics and flow.

A delay generator (505-8C, Berkeley Nucleonics Corporation, San Rafael, CA) is used

to achieve precise, consistent timing between the two laser pulses and the camera. Five
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BNC channels were used: two each for firing the lasers lamps and Q-switches, and a fifth to

trigger the camera. The Q-switch delay was typically set to 200 𝜇𝑠𝑒𝑐 because this nominally

provides for the brightest emission. However, occasionally the Q-switch interval is reduced

below 200 𝜇𝑠𝑒𝑐 to reduce the output power in order to illuminate the jet at a level that does

not saturate the camera sensor for the conditions of the experiment.

To image the interior of the jet, we use a combination of lenses to create a two-dimensional

laser sheet. First, a spherical lens is used to focus the laser beam. A cylindrical lens is placed

near the focal point of the spherical lens, resulting in laser light that is nearly parallel with

respect to the lateral direction. The beam expands in the vertical direction past the focal

point, creating a laser sheet which cuts diametrically across the nozzle in the streamwise

direction of the free jet flow. The resulting laser thickness is approximately 1 𝑚𝑚.

When broad-area illumination is needed for visualizing the jet surface, a concave lens

is used to expand the laser beam both vertically and laterally. A combination of highly

reflective mirrors are used to orient the laser beam so that it is aimed at the jet exterior at

an angle of less than 15∘, coplanar with the camera’s viewing axis. Figure 3.7 is a cartoon

of the laser/camera setups illustrating the differences.

A high-resolution 4 megapixel CCD camera (MegaPlus ES4020, Princeton Instruments,

Trenton, NJ) is used to capture the light scattered by the seeding particles in the flow,

illuminated by the pulsed laser. The triggering signal is received by the camera controller

via a BNC cable from the delay generator to start the first exposure for the camera; a

time delay is set on-board the camera such that the second exposure begins immediately

after the first laser pulse. Various Nikon lenses and macro extenders were used to obtain

the required field of view. Data was transferred via CameraLink to a computer via a PCI

frame grabber (PIXCI, EPIX Inc., Buffalo Grove, IL) and acquired by image acquisition and

analysis software (XCAP, EPIX Inc., Buffalo Grove, IL).

While the elapsed time between camera exposures can be set to be very small (on the

order of a few microseconds), the minimum time to reset between image pairs is on the order

of a tenth of a second. This is comparable to the laser’s maximum frequency, so neither the

camera nor laser is severely limited by the other element in the PIV system. An image-pair

acquisition frequency of approximately 10 𝐻𝑧 is insufficient to allow for any sort of time-
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Figure 3.7: Relative positions and configuration of the laser and camera for imaging of the
jet interior (top) and exterior (bottom)

resolved measurements between pairs of images. Comparing the laser’s characteristic time

to that of the (typical) flow,

𝜏𝐿
𝜏𝑗

=
1/𝑓

𝑑/𝑈
=

12.6 𝑚/𝑠

(0.004 𝑚)(10𝐻𝑧)
= 315, (3.6)

indicates that the image capturing is a couple of orders of magnitude shy of being able to

directly compare pairs of images to each other.

However, we make the assumption that the flow under consideration is statistically sta-

tionary; that is, the statistics of the calculated velocity field 𝑈 are invariant with time (Pope

(2000)). While the pairs of images may be recorded relatively sparsely in time, because the
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Figure 3.8: Image of the nozzle with the calibrated scale in place

flow is statistically stationary, statistical characteristics can be computed from image pairs

collected over relatively long periods of time.

3.3.3 Visualization Techniques

A removable fixture holds a calibration scale above the nozzle, perpendicular to the camera’s

focal axis, and located across the centerline of the jet. The fixture’s weight keeps it stationary

during filling; once calibration is complete, it can be pulled up and out of the tank with a

rope attached to its top. Figure 3.8 shows a typical calibration picture taken before injection

of fluid through the nozzle.

Depending on whether it is desirable to visualize the interior or the exterior of the jet,

the jet liquid is prepared with lycopodium particles and Rhodamine-B dye, respectively.
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3.3.3.1 Seeded Flow Imaging

For traditional PIV, using seeding particles in an otherwise transparent flow, lycopodium

particles were used as tracers. While the dry powder tends to be hydrophobic, once the

particles are wetted, they mix well with water and form a relatively stable suspension. The

particles are nearly neutrally buoyant (density is within 5% that of water), so settling effects

are irrelevant over the course of an experiment.

In order for the particles to be true flow tracers, they must quickly respond to the dynamic

flow conditions. The Stokes number is a useful metric for evaluating the response; it is the

ratio of the particle relaxation time to the flow relaxation time. If we use the Kolmogorov

microscale as the fastest characteristic time for velocity fluctuations that the particles should

respond to, we obtain:

𝑆𝑡 =
𝜏𝑝
𝜏𝑓

(3.7)

where the relaxation time of a spherical particle in a fluid is defined as (Kennedy & Moody,

1998):

𝜏𝑝 =
𝜌𝑝𝑑

2
𝑝

18𝜌𝑓𝜈𝑓
. (3.8)

If we assume that the lycopodium particles are spherical and less than 30 microns in diameter,

and considering their density is 5% greater than that of water (Okubo et al., 2010), then

the relaxation time of our PIV seeding particles becomes:

𝜏𝑝 = 1.05
(30 × 10−6 𝑚)2

18 (10−6 𝑚2/𝑠)
= 52.5 𝜇𝑠 (3.9)

For the fluid relaxation time of turbulent flow, we use the Kolmogorov time scale of the

flow (Pope (2000)):

𝜏𝑓 =

√︂
𝜈𝑓
𝜖

(3.10)

where 𝜖 is the turbulent dissipation, and it is assumed that

𝜖 =
𝜖𝑟1/2

𝑈3
0

=
𝜖𝑆 (𝑧 − 𝑧0)

4

(𝐵𝑈𝑗𝑑)3
(3.11)
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is self-similar at large enough distance from the nozzle (𝑧/𝑑 >> 1) and independent of

Reynolds number (Pope, 2000). Note that 𝑆, the spreading rate, is taken to be equal to

0.094. As a result, the relaxation time for the fluid can be written as

𝜏𝑓 =

(︂
𝑆𝜈𝑓
𝜖

)︂1/2 (𝑧 − 𝑧0)
2

(𝐵𝑈𝑗𝑑)3/2
(3.12)

and the Stokes number becomes

𝑆𝑡 =
𝜏𝑝
𝜏𝑓

=
7

120

(︂
𝑑𝑝

𝑧 − 𝑧0

)︂2(︂ 𝜖

𝑆

)︂1/2(︂𝐵𝑈𝑗𝑑

𝜈𝑓

)︂3/2

=
7

120

(︂
𝑧*

𝑑

)︂−2(︂ 𝜖

𝑆

𝑑𝑝
𝑑

)︂1/2(︂
𝐵
𝑈𝑗𝑑𝑝
𝜈𝑓

)︂3/2

(3.13)

In a round, turbulent jet, the maximum dissipation at a given downstream distance

occurs approximately at the centerline (or at least is near maximum at the centerline). If we

assume an approximate centerline value of 𝜖 = 0.017 (Panchapakesan & Lumley, 1993a), the

maximum dissipation (minimum characteristic fluid time) can be calculated as a function of

downstream distance. Note that the expression in equation 3.11 diverges as (𝑧 − 𝑧0) → 0.

The value of turbulent dissipation is physically bounded, and the smallest time scales in the

developing jet are not accurately predicted by their definition in equation 3.12, which would

estimate a zero time scale for an infinite value of 𝜖. Figure 3.9 is a plot of the Stokes number

along the centerline as a function of downstream distance, assuming a jet diameter of 4 𝑚𝑚,

a jet velocity of 12.6 𝑚/𝑠.

The actual value of the Stokes number below which a particle can be considered a fluid

tracer has been suggested in the literature to be 𝑆𝑡 = 1 (Kennedy & Moody, 1998); since

this seems like a high value (𝑆𝑡 = 1 particles interact strongly with the eddies with size near

the Kolmogorov scale and up to the peak of the dissipation spectra), we will conservatively

set the threshold at 𝑆𝑡 < 0.1. As can be seen in Figure 3.9, this condition is satisfied for all

downstream distances greater than 𝑧/𝑑 ≈ 45 (𝑆𝑡 < 1 is satisfied past 𝑧/𝑑 ≈ 15). Arguably,

the lycopodium particles are still adequate tracers upstream of this point, since the values

we used to calculate 𝜏𝑓 assume a fully developed flow; in fact, the relevant fluid time scale

likely increases significantly closer to the nozzle where turbulence is still developing.
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Figure 3.9: Stokes number as a function of downstream distance

3.3.3.2 Rhodamine-B

The major thrust of this investigation is to visualize the turbulent jet exterior. For estab-

lishing a baseline, we wanted to inject an opaque liquid with properties essentially identical

to water. Many of the liquids we considered to image the jet exterior were not opaque, and

they certainly could not reflect/absorb the large energies emitted by the pulsed laser. Ad-

ditionally, even if a single appropriate liquid were identified, it would likely limit the range

of density and viscosity ratios we aim to examine.

Ultimately, we settled on Rhodamine-B as a dye to visualize the exterior surface of the

jet. This gives us the flexibility to use many types of liquids (Rhodamine-B is soluble in

aqueous solutions). Rhodamine is superior to other types of dye because it fluoresces at the

wavelength of the Nd:YAG laser. As a result, a liquid with dissolved Rhodamine does not

necessarily need to inhibit transmission of all the light that hits the interface between the

injected fluid and the ambient fluid; the Rhodamine on the turbulent/non-turbulent interface

of the jet fluoresces strongly and prevents imaging the interior of the jet. Relatively little

dry powder needs to be mixed in to the jet (nominally 0.25 𝑔/𝐿), and it does not affect the

physical properties of the liquid. Figure 3.10 is a picture of a Rhodamine-dyed jet showing

how it appears under ordinary fluorescent lighting.

In order to determine the suitability of Rhodamine-B as a dye for inspecting the jet
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Figure 3.10: Photograph of a Rhodamine-dyed water jet

surface, the laser penetration depth should be evaluated. The Beer-Lambert Law relates the

transmissivity (𝛾) of a given length (𝑙) within a solution to the molar concentration (𝑐) and

molar absorptivity (𝜖𝑎):

𝛾 = 10−𝜖𝑎𝑙𝑐 (3.14)

which can be rearranged to solve for 𝑙:

𝑙 = − 1

𝜖𝑎𝑐
𝑙𝑜𝑔10 𝛾. (3.15)

The value of 𝜖𝑎 for Rhodamine-B at our laser wavelength in water is nominally 1×105 L/cm/mol

(Ramette & Sandell (1956)). Using this value, in conjunction with the molar concentration

used in our experiments (0.25 𝑔/𝐿 yields 5.22× 10−4 𝑚𝑜𝑙/𝐿), we can solve for the thickness

of solution required to achieve a desired transmissivity:

𝑙 = − 1

𝜖𝑐
𝑙𝑜𝑔10 𝛾. (3.16)
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For example, at a transmissivity of 50%, the length is calculated to be less than 0.6 𝑚𝑚. In

other words, 50% of the laser light has been absorbed (and re-emitted) by the outer 0.6 𝑚𝑚

of the jet. We believe this to be sufficiently opaque to allow for PIV measurement of the jet

exterior; images from the experiments support this conclusion.

3.3.4 Fluids

3.3.4.1 Water-Water

The best-understood free jet scenario involves a single-component, single-phase flow; thus

to set the baseline for the experimental results and analysis, our investigation begins with a

water jet (seeded with dye or particles) being injected into quiescent water. Temperatures

are typically in the range of 20 ∘𝐶 to 25 ∘𝐶.

Using water not only eliminates physical disparities between the jet and surroundings

that would complicate the flow characteristics, but it also simplifies visualization of the flow

interior. For PIV of the jet interior using seeding particles, it is important that the index of

refraction is constant throughout the jet flow field.

3.3.4.2 Water-Hot Water

Water, however, does not have universal properties. Specifically, the viscosity of water is a

function of temperature. The viscosity changes as a function of temperature according to

(Cheng (2008)):

𝜇𝑤 = 1.790 exp

(︂
(−1230 − 𝑇 )𝑇

36100 + 360𝑇

)︂
(3.17)

where 𝜇𝑤 is in 𝑐𝑃 and 𝑇 is in ∘𝐶.

The hot water jet is achieved by heating the water in-line as it is injected by the pres-

surized tank. Two steam-powered heat exchangers are used in series to heat up the injected

water to the level needed for the desired viscosity. Thermocouples are placed both in be-

tween heat exchangers and slightly upstream of the nozzle to monitor temperatures. The

heat exchanger temperature is difficult to control, but temperatures vary by less than 2 ∘𝐶

about the mean during an experiment. We believe that our conclusions are valid, but im-

proving the accuracy and precision of the injected water temperature would be an obvious
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% Water % Glycerol Viscosity (cP)

70 30 2

40 60 10

16 84 100

Table 3.2: Proportions of water and glycerol (by volume) used to achieve various viscosities

possible improvement to our experimental setup.

At a near boiling temperature of 95 ∘𝐶, the viscosity is reduced to a value of 0.3 𝑐𝑃 .

Unfortunately, at temperatures greater than approximately 70 ∘𝐶, the injected water is

permeated with vapor bubbles. We presume that in order to achieve such high temperatures,

there is local boiling in the heat exchanger, and the steam is not reabsorbed before injection.

This is another drawback of our current method of heating.

We assume that the effect on density of these temperature changes in the water does not

play a significant role in the dynamics of the flow, compared to the effect of viscosity, the

variable on which we focus our analysis.

3.3.4.3 Water-Glycerol

Water-glycerol solutions are mixed at different concentrations to produce a liquid of homo-

geneous properties with varying viscosity (according to standard viscosity tables from Sheely

(1932)). Dynamic viscosity values are reported on Table 3.2 together with the water/glycerol

ratios (by volume) used to achieve the different viscosities investigated (temperature is nom-

inally 25 ∘𝐶).

3.4 Particle Image Velocimetry

3.4.1 PIV Methodology

Particle-Image Velocimetry (PIV) has been developed extensively over the last two decades

(Raffel et al., 2007). The cross-correlation technique relies on two images being captured

within a relatively short time interval compared to the characteristic time of the turbulence

(i.e. 𝛿𝑡
𝜏𝑓

<< 1) in order to ensure the displacements vary smoothly across the interrogation
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sub-windows in which the imaged area is divided for analysis.

Typically, the images used in the correlation to find displacements are of flows that

have been seeded with particles and illuminated sufficiently to achieve appropriate levels

of exposure for the camera; furthermore, the exposure or illumination must be sufficiently

brief to prevent streaking of the particles. The images are taken as pairs (see Figure 3.17),

typically with a only a small time delay between the two images in a pair, 𝛿𝑡. The first image

is subdivided into interrogation areas of size 𝑀 × 𝑁 pixels (where the areas are typically

square, 𝑀 = 𝑁), and a cross-correlation field is calculated for each one against each possible

sub-window of the same size on the second image:

𝐶𝐼𝐼(𝑥, 𝑦) =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

[𝐼(𝑖, 𝑗) − 𝜇𝐼 ]
[︀
𝐼 ′(𝑖 + 𝑥, 𝑗 + 𝑦) − 𝜇𝐼′(𝑥, 𝑦)

]︀
(3.18)

where 𝐼 and 𝐼 ′ correspond to pixel intensity fields of interrogation areas of the first and second

images respectively, and 𝜇𝐼 and 𝜇𝐼′ are average pixel intensities for the same interrogation

areas:

𝜇𝐼 =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐼(𝑖, 𝑗)

𝑀𝑁

𝜇𝐼′(𝑥, 𝑦) =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)

𝑀𝑁

(3.19)

Notice that the correlation function is calculated not with the absolute pixel intensities,

but with differences from the mean. Improved performance is observed with the normalized

correlation function (Raffel et al. (2007)):

𝑐𝐼𝐼(𝑥, 𝑦) =
𝐶𝐼𝐼(𝑥, 𝑦)√︀

𝜎𝐼(𝑥, 𝑦)
√︀
𝜎𝐼′(𝑥, 𝑦)

(3.20)
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where 𝜎𝐼 and 𝜎𝐼′ are the squares of the standard deviations of the intensity fields:

𝜎𝐼(𝑥, 𝑦) =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

[𝐼(𝑖, 𝑗) − 𝜇𝐼 ]2

𝜎𝐼′(𝑥, 𝑦) =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

[︀
𝐼 ′(𝑖, 𝑗) − 𝜇𝐼′(𝑥, 𝑦)

]︀2 (3.21)

The value of (𝑥, 𝑦) at which the value of the correlation function is maximized is taken to

represent the displacement of the interrogation area. By repeating the exercise of finding the

maximum of the cross-correlation for each interrogation sub-window over the entire image

and dividing the displacements given by these maxima by the time between images, 𝛿𝑡, the

velocity field can be calculated. Further improvements can be made by making multiple

passes using various interrogation area sizes, as well as calculating sub-pixel displacement

and interrogation area transformations. These sophisticated refinements are outside the

scope of this discussion; they are addressed in depth by Raffel et al. (2007) and Adrian &

Westerweel (2011).

Figure 3.11 shows two different size of interrogation sub-windows from an image pair. In

Figure 3.12, the contour of the covariance function is plotted on top of the second image;

an arrow indicates the displacement (ignoring sub-pixel resolution effects) indicated by the

calculated peak.

(a) (b)

Figure 3.11: Interrogations areas from a pair of particle-seeded images; (a) M=N=32 pixel
square area from first image, (b) 64 pixel square area from second image

To further illustrate the result, Figure 3.13 shows a color contour of the first image plotted

on top of the second image, with squares showing both the original location of the first

image’s interrogation area and the calculated displacement of the area. This displacement,
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Figure 3.12: Contours of the computed cross-correlation function plotted on the first image
from Figure 3.11; arrow indicates displacement of the covariance peak from the image center

used in conjunction with the time between images determines the velocity; the process is

repeated for interrogation areas throughout the first image to calculate the velocity field.

Though it was originally intended to work on a flow seeded with particles, here we extend

the PIV technique by applying it to the images of the surface of an opaque flow. For the

turbulent jet, this surface is equivalent to the viscous superlayer: the interface separating

turbulent and non-turbulent flow. Figures 3.14 through 3.16 reproduce the same content as

Figures 3.11 through 3.13 but for an image pair taken from an experiment of the jet exterior.

Notice important differences between Figures 3.15 and 3.12. The features of the particle-

seeded images are much smaller and more diverse than the dyed-fluid images. This finer

patterning presents the opportunity for better correlations for a given window size. Also, the

covariance function tends to be more sophisticated, with several local maxima and minima.

In both cases, there is a clear maximum value indicating the location of the best correlation.
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Figure 3.13: Filled contour of the displaced interrogation area (from image 1) plotted on
image 2 (see Figure 3.11), with squares showing original and displaced locations

(a) (b)

Figure 3.14: Interrogations areas from a pair of opaque turbulent/non-turbulent interface
images; (a) M=N=32 pixel square area from the first image, (b) 64 pixel square area from
the second image

3.4.2 Image Processing

PIV analysis can be improved by preprocessing the image pair in order to give the algorithm

optimum image contrast to calculate the image-correlation and subsequent velocity field.

For laser plane imaging of particle-seeded flows, preprocessing the image allows for particles
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Figure 3.15: Contours of the computed cross-correlation function plotted on the first image
from Figure 3.14; arrow indicates displacement of the covariance peak from the image center

(and as a result, particle patterns) to be emphasized, while background noise is suppressed.

Furthermore, preprocessing is an especially critical step when examining the jet interfacial

velocity using an Nd:YAG laser such as our own; having two laser heads allows for very

small time steps between pulses, but also leads to appreciable differences in beam shape and

intensity, as noted by Raffel et al. (2007) and Adrian & Westerweel (2011).

Image processing is performed with ImageJ (NIH, Rasband (1997–2011)). Contrast is

typically adjusted by performing histogram normalization of the brightness levels. Binning of

the images (whereby adjacent pixels are combined with a resulting averaged pixel intensity)

helps improve the PIV software’s performance; this binning can either be performed on board

the camera, increasing the maximum frame rate, or it could be done in post-processing. The

resulting images have half of the resolution in each direction (from 2048 × 2048 down to

1024×1024 pixels). Figure 3.17 shows a pair of images of the particle-seeded flow illuminated

by laser planes both before and after the process of image manipulation.
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Figure 3.16: Filled contour of the displaced interrogation area (from image 1) plotted on
image 2 (see Figure 3.14), with squares showing original and displaced locations

3.4.3 PIV Analysis

We use the open source package gpiv (van der Graaf (2012)) for analysis of the image pairs,

both of the jet interior with particle seeding and of the jet interface dyed with Rhodamine-B.

It uses a multi-pass technique, calculating displacements for progressively smaller interroga-

tion areas. The use of displacement predictions for interrogation area selections is critical in

this application, since the jet may contain a wide range of fluid velocities over the imaged

area.

The smallest interrogation areas were typically 16×16 pixels (occasionally 32×32 pixels

was used, and little difference was noticed). For images with dimensions 1024× 1024 pixels,

this results in a velocity field with slightly less than 64 × 64 vectors.

The gpiv software includes an image deformation interrogation scheme, which allows for

better correlation than simple translation. After each pass, validation is performed on all



51

(a) (b)

(c) (d)

Figure 3.17: Image pairs (𝛿𝑡 = 20 𝜇𝑠) of illuminated lycopodium particles within a water
jet (𝑅𝑒 = 25, 000) interior both before (top) and after (bottom) contrast normalization via
ImageJ

of the calculated velocity vectors. Each vector is compared with the median of neighboring

vectors; if an inappropriate deviation is detected, the offending vector is replaced with the

median value of the neighboring vectors. This may improve correlation on subsequent passes

with smaller interrogation areas. If, after the final pass, a vector is still determined to be

invalid, it is excluded from the analysis. Additional parameters that were used consistently

include Gauss weighting of the correlation (in order to suppress spurious peaks near the
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boundaries), as well as Gaussian interpolation of sub-pixel displacements. The gpiv software

is able to increase the performance of the cross-correlation by accounting for rotation of

interrogation areas. Sub-pixel interpolation was used in order to further improve accuracy.

Figure 3.18 shows the results of PIV analysis of the image pair from Figure 3.17; only one

quarter of the calculated vectors are shown in order to de-clutter the image.

Figure 3.18: Calculated velocity vector field of the image pair from Figure 3.17; vectors are
colored by magnitude

3.4.4 Statistical Treatment of the PIV Measurements

The gpiv software saves the velocity vector data for each pair of images as a text file. A

python routine is used to average the velocity information from all pairs of images, as well

as to collect statistics on velocity fluctuations. The results can then be saved to another file
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and/or plotted. Figure 3.19 shows a typical averaged velocity field where the multitude of

turbulent fluctuations have yielded a smoothly varying velocity field. Several hundred pairs

of images are used for each averaged experimental velocity field.

Figure 3.19: Velocity field calculated by averaging 1300+ image pairs from the same exper-
iment as Figure 3.18

3.5 Results

3.5.1 Flow Velocity across the Jet

The first experimental tests and analysis focused on the single-phase turbulent jet flow field,

studied with a laser plane cutting along the jet centerline. This simple flow configuration has

been one of the most thoroughly studied phenomena in the field of turbulent free-shear flows.
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Furthermore, since the exterior jet PIV promised to push the technique beyond its nominal

capabilities, it was important to confirm the capabilities of the experimental setup and the

gpiv analysis for a canonical PIV-seeded flow. Experiments examining the interior of the

jet also allowed us to confirm that our turbulent jet was behaving in a manner consistent

with classical turbulent jet flows (Wygnanski & Fiedler, 1969; George, 1989; Hussein et al.,

1994).

In order to achieve a comprehensive flow field description, several experiments must be

conducted for each experimental configuration. The camera field of view (at the magnifica-

tion needed for detailed PIV analysis), was not adequate to capture the entire flow field of

interest. Therefore, the experiment was repeated keeping all aspects of the fluid injection

identical, while the camera field of view was translated downstream to examine a different

region of the flow field.

Figure 3.20 shows the flow profile as a function of non-dimensional downstream distance,

𝜂 (not to be confused with the Kolmogorov length scale), for several downstream distances in

a number of experiments; they exhibit the same self-similarity found in the classical literature

(Wygnanski & Fiedler, 1969), shown in Figure 3.1. Additionally, we calculated the Reynolds

stresses (see Figure 3.21), and they also qualitatively, if not fully quantitatively, compare

favorably to previous experiments in Figure 3.2. The 𝑧/𝑑 = 50 results more closely match

the self-similar data in Figure 3.2. It is widely believed that the self-similar region does

not truly begin as early as 𝑧/𝑑 = 25, so the improved agreement between measurements of

the Reynolds stresses (a higher order statistic) with increased downstream distance is to be

expected.

Finally, the centerline velocity decay is plotted in Figure 3.22, combining results from a

range of downstream distances. The behavior matches well quantitatively to equation 3.1,

which is also plotted (𝐵 = 5.8, 𝑧0 = 4𝑑 per Hussein et al. (1994)), and to experimental

results from Figure 3.3. Note that these favorable comparisons exist despite the fact that

experiments from the literature used entirely difference velocity measurement techniques

(static/flying hot-wire anemometry, laser Doppler anemometry).
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Figure 3.20: Normalized plots of axial velocity profiles, demonstrating the self-similarity of
the flow measured with PIV (4 mm nozzle, 𝑅𝑒 = 50, 000)

Figure 3.21: Plots of Reynolds stresses measured with PIV for flow through a 4 mm nozzle
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Figure 3.22: PIV results of the centerline velocity ratio decay for flow through a 4 mm nozzle

3.5.2 Flow Turbulent/Non-Turbulent Interface

Analyzing the flow velocity along the jet cross-section utilizes PIV in a conventional way,

matching patterns of illuminated seeding particles. When working with the jet turbulent/non-

turbulent interface, there are no seeding particle images to correlate, but there may very

well be correlatable patterns on the visible superlayer. For the same reasons it is important

to condition the images of seeding particles prior to performing PIV, the images of the illu-

minated jet exterior should also be normalized. Figure 3.23 shows a pair of images before

and after image manipulation similar to those from Figure 3.17.

The velocities measured were significantly smaller than the core jet velocities for a given

experimental condition. Figure 3.24 is a plot of the flow field calculated from the image

pair in Figure 3.23. Because the mean velocity is significantly lower than in the jet velocity

field measurements, the degree of variation in velocity vectors is on the same order as their

magnitude. Thus, the averaging of long series of image pair calculations is an important

step to understanding the general behavior of the flow. Figure 3.25 shows the velocity field

obtained after averaging 380 measurements from image pairs; the velocity vectors outside
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(a) (b)

(c) (d)

Figure 3.23: Image pairs (𝛿𝑡 = 120 𝜇𝑠) of an illuminated Rhodamine-dyed water jet (𝑅𝑒 =
50, 000) interface both before (top) and after (bottom) contrast normalization via ImageJ

the region of interest have largely canceled out, resulting in a coherent picture of the average

flow.

Also, it is worth noting some obvious qualitative differences between the averaged turbulent/non-

turbulent interface velocity field in Figure 3.25 and the averaged PIV velocity field from

Figure 3.19. While the jet PIV velocity field decays smoothly in the radial direction, the

interface velocity is uniform across the width of the jet before dropping off abruptly at the

jet edges. This is due to the fact that the visualization of the jet exterior surface is es-
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Figure 3.24: Calculated velocity vector field of the image pair from Figure 3.23; vectors are
colored by magnitude

sentially of the mixing superlayer. The superlayer’s radial distance from the jet’s center is

approximately axisymmetric, accounting for the uniformity of velocity across the width of

the jet in this average field.
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Figure 3.25: Velocity field calculated by averaging 380+ image pairs from the same experi-
ment as Figure 3.24

3.5.2.1 Reynolds Number

We performed experiments for a variety of Reynolds numbers achieved by varying both

the nozzle diameter and the exit velocity. Figure 3.26 shows data points for the jet core-

to-interface velocity ratio measured at 1.5 diameters downstream distance versus Reynolds

number. Except for some outliers in the 50-100 range, the results show no trend with the

Reynolds number, as we expect in experiments with jet Reynolds number well above the

mixing transition of 10, 000 (see Dimotakis (2005)).

Of course, we do not expect the measured velocity ratios to be random, but a function

of another parameter. While the Reynolds number completely defines the characteristics of
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Figure 3.26: Plot of the exterior jet velocity ratio (at 𝑧/𝑑 = 1.5) versus Reynolds number
for many experiments (uniform fluid properties)

an axisymmetric, constant viscosity jet, the captured image pair introduces an additional

variable. For a constant viscosity jet, dimensional analysis yields a second non-dimensional

number that relates the timescale of the image pair with that of the jet:

𝜏 =
𝛿𝑡
𝑑
𝑈

=
𝑈𝛿𝑡

𝑑
. (3.22)

If we differentiate the points from Figure 3.26 according to this new time ratio, 𝜏 , we

obtain Figure 3.27 which indicates that amongst a fixed value of 𝜏 , the velocity ratio is

indeed independent of Reynolds number. However, the dependency on this new flow-imaging

parameter is clear.

3.5.2.2 Inter-Frame Time Delay

Our PIV analysis of particle flow throughout the center-plane of the turbulent jet showed no

dependency on the time delay used between pulses (nor would we expect it to, in adequately
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Figure 3.27: Plot of the exterior jet velocity ratio (at 𝑧/𝑑 = 1.5) versus Reynolds number
colored by various values of 𝜏

performed PIV, subject to certain constraints (Adrian & Westerweel (2011)). However,

when examining the jet exterior, we noticed that the measured velocity had a significant

dependency on the time between image pairs.

Figure 3.28 shows the results of plotting the velocity ratio, 𝑈̂ =
𝑈𝑗

𝑈𝑒
measured at a

downstream distance of 1.5𝑑, against 𝜏 (defined in equation (3.22)). The data, including

results from a range of nozzle diameters, initial velocities, and camera time steps, tends to

collapse fairly tightly. We believe this is the first time this effect has been observed and

quantified. Although there have been several efforts to use PIV-correlation algorithms on

images of flow features collected from naturally occurring flows (Melville & Matusov (2002);

Ryu et al. (2005); Kleiss & Melville (2011); Rodriguez-Rodriguez et al. (2011)), this effect has

not been reported, most likely because it is not observed for traditional PIV measurements

of particle displacements, and the imaging setup in the naturally-occurring flows are heavily

constrained, not lending themselves to this type of rigorous study.

The data appears to behave linearly over most of its range. We will see later (section
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Figure 3.28: Plot of experimental data comparing the effect of 𝜏 on 𝑈̂ at 1.5 diameters
downstream distance

3.5.2.5) that similar linear relationships exist for jets with different viscosity ratios.

Clearly, the time delay between the images constituting a pair for PIV analysis must be

selected with care. However, the physics that cause this dependency are not entirely under-

stood. Our hypothesis is that the timescales of the vortical features, which are correlated

as patterns between two consecutive images by the PIV algorithm, are critically related to

the imaging time. Since the PIV algorithm is Gaussian-weighted, it will skew to zero dis-

placement if there is a lack of pattern-matching between images. As 𝛿𝑡 grows compared to

the flow time 𝑑/𝑈𝑗 , there will be larger deformation/diffusion of vortical structures between

images, resulting in less pattern matching. This will tend to decrease the average calculated

displacements, by biasing the field towards zero values.

3.5.2.3 Jet Initial Conditions

The initial jet experiments were all conducted with a cubic spline nozzle (see equation (3.4)

and Figure 3.5) which is designed to produce a top hat velocity profile for universality and

reproducibility of our results. However, such well-organized flows are not necessarily common
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in nature. As such, it is of interest to study a similar flow, a round turbulent jet, starting

with non-uniform flow velocity conditions. In the literature, a developed turbulent flow

(achieved by flowing through a length of circular pipe) is also a common experimental jet

initial condition (e.g. Crow & Champagne (1971), Pitts (1991b), Richards & Pitts (1993),

Chhabra et al. (2005)).

We use constant diameter aluminum pipes to provide an inhomogeneous flow in the

instantaneous sense, with vortical structures forced by the shear on the pipe wall that make

the surface feature-rich so the PIV algorithm can be applied from the very start of the flow

at the rim of the nozzle. Our 10.3 and 4.05 mm diameter pipe nozzles had the longest

lengths allowed by our injector geometry in order to maximize the development region of

the pipe flow before ejection into the tank; 14 and 35 diameters respectively.

Mi et al. (2001b,a) reported how the jet exit conditions affect the development of a

turbulent jet, as well as the effect on the distribution of a passive scalar. A major conclusion

of their research was that it is inappropriate to treat the free jet as a momentum point source

even far downstream; exit conditions should not be ignored. Specifically, concerning scalar

distribution, the initially turbulent pipe flow does a much more thorough job of mixing in

the near field, creating lasting effects.

Figure 3.29 compares pictures taken of nozzle and pipe flow at 𝑅𝑒 = 50, 000, with both

outlets being nominally 4 𝑚𝑚 in diameter. Very near the outlets, the flows are visibly

different. The nozzle jet emerges in what appears to be a laminar fashion until instabilities

become appreciable approximately half a diameter downstream. In contrast, the pipe jet

shows signs of turbulence on the jet exterior immediately after the nozzle. However, as Figure

3.28 illustrates, the flows’ non-dimensional velocities, measured two diameters downstream,

plotted against 𝜏 are essentially the same.

3.5.2.4 Buoyancy

The buoyancy of the jet is typically of interest when working with multiple fluids of different

densities. Lee & Chu (2003) describes a length scale at which the momentum and buoyancy
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(a) 4 mm nozzle exit (b) 4 mm pipe exit

Figure 3.29: Images of free, turbulent jet exteriors at 𝑅𝑒 = 50, 000

forces will be balanced for a free jet:

𝑧 ≈ 𝑀
3/4
0

𝐵
1/2
0

(3.23)

where 𝑀0 is the specific momentum (𝑈𝑗𝑄𝑗) and 𝐵0 is the specific buoyancy ((𝜌𝑎 − 𝜌𝑗)𝑔𝑄𝑗)

and 𝑄𝑗 = 1
4𝜋𝑑

2𝑈𝑗 . We will adjust the definition of 𝐵0 to accommodate jets with either

negative or positive buoyancy, by taking the absolute value of the density difference. The

equation can be rearranged to produce a dimensionless number criterion:

1 ≈
(︂

4

𝜋

)︂1/4

≈
√︃

𝑔𝑑

𝑈2
𝑗

|𝜌𝑎 − 𝜌𝑗 |
𝜌𝑎

· 𝑧
𝑑

= 𝑃 (3.24)

Therefore, we can use 𝑃 as a threshold criterion for determining whether a jet is dom-

inated by buoyancy or momentum at a downstream position 𝑧/𝑑. For a value much above
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Figure 3.30: Plots the minimum non-dimensional velocity (𝑈𝑗(𝑔𝑑)−1/2) required for 𝑃 > 1
as a function of the jet density ratio (𝜌𝑗/𝜌𝑎)

unity, the jet is considered buoyancy dominated; conversely, a value of 𝑃 much below unity

indicates the jet is momentum dominated. For values in the vicinity of unity, the jet will

be significantly affected by both buoyancy and momentum. This criterion appears to be

superior to that described by Pasumarthi & Agrawal (2005) which experiences difficulties at

either end of the density ratio spectrum (very light jet or a jet with nearly uniform density).

Since we typically evaluate the jet at 1.5 downstream diameters, it is worth exploring

the requirements at that distance to avoid buoyancy effects. Figure 3.30 plots the minimum

non-dimensional velocity (𝑈𝑗(𝑔𝑑)−1/2) required for 𝑃 < 1 as a function of the jet density

ratio (𝜌𝑗/𝜌𝑎). Of course, it is desirable for the velocity to be well in excess of this value in

order to minimize the effect of buoyancy.

Our primary concern is that, when experimenting with high viscosity jets, the glycerin-
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water solutions are denser than water alone. Experiments of extended duration result in

the jet forming a plume downstream (above the nozzle) and falling back down towards the

nozzle, obscuring the jet. However, at relatively close distances (i.e. 𝑧/𝑑 = 1.5) we ensure

that the jet is indeed momentum dominated.

3.5.2.5 Viscosity

We are interested in investigating the effect of jet fluid viscosity on the turbulent/non-

turbulent interface velocity (see Figure 3.31). It is common to have fluid with different

viscosities exiting in a jet-like manner into a quiescent fluid, such as volcanic eruption in

particle-free, colder air or oil spilling into a body of water. While mean velocities and stresses

are insensitive to absolute viscosity at sufficiently high Reynolds numbers, viscosity gradients

can play a significant role in modifying free jet development (Chhabra et al., 2005). In the

case of a converging nozzle, the laminar flow must first destabilize; Figure 3.32 illustrates

that this transition to turbulence is affected by the presence of a viscosity gradient (even for

flows with equivalent Reynolds number).

Figure 3.33 shows the effect that varying the jet viscosity has on the relationship between

𝜏 and 𝑈̂ . In general, increasing the viscosity difference decreases the velocity ratio (increases

the measured velocity of the jet interface) measured at 1.5 diameters downstream.

(a) (b) (c) (d) (e)

Figure 3.31: Images of jets issuing from a 4 mm convergent nozzle at 12.6 m/s; the jet
viscosity is (left to right) 0.5 𝑐𝑃 , 1 𝑐𝑃 , 2 𝑐𝑃 , 10 𝑐𝑃 , 100 𝑐𝑃



67

(a) (b) (c)

Figure 3.32: Images of three jets issuing from a 4 𝑚𝑚 convergent nozzle; the left-most jet
is 1 𝑐𝑃 and has a velocity of 12.6 𝑚/𝑠 (𝑅𝑒 = 50, 000); the middle jet is 2 𝑐𝑃 and has a
velocity of 12.6 𝑚/𝑠 (𝑅𝑒 = 25, 000); the right-most jet is 1 𝑐𝑃 and has a velocity of 6.3 𝑚/𝑠
(𝑅𝑒 = 25, 000)

Figure 3.34 is a plot of the velocity ratio versus downstream distance for 𝜏 = 0.25. The

interesting trend shown indicates that, while a higher viscosity universally increases the

observed velocity close to the nozzle, the jets tend to revert back to the uniform viscosity

case further downstream, presumably due to mixing. Indeed, experiments with a pipe tend

to exhibit lower viscosity effects quicker, because the wall-induced turbulence present at the

jet exit likely reduces the viscosity gradient closer to the pipe exit. In a later section, we

use stability arguments to explain the differences in observed velocities near the nozzle and

make predictions about velocity ratios we cannot currently test for.

3.5.3 Signal to Noise Ratio (SNR)

While 𝜏 has proven to be an informative and reliable metric for estimating the velocity

ratio, its definition relies on the jet velocity. Thus, it is less than ideal for determining a

non-laboratory flow’s jet velocity. We conjectured in section 3.5.2.2 that the dependence

on 𝜏 is due to deteriorating correlation as 𝛿𝑡 grows, driving the velocity to zero (and the
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Figure 3.33: Plot of the velocity ratio (𝑈𝑒/𝑈𝐽) versus the time ratio (𝜏) measured at 1.5𝑑
for jets (converging nozzle) of several different viscosities
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Figure 3.34: Plot of the velocity ratio (𝑈𝑒/𝑈𝐽) as a function of downstream distance for jets
of several different viscosities (𝜏 = 0.25)
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velocity ratio higher and higher). If this is true, we should see it manifested in the quality

of the PIV, as measured by the signal to noise ratio (SNR) in the image correlation.

The confidence in a calculated displacement value is often measured by the SNR, which is

a ratio of the displacements’ signal strength to the ambient noise of the covariance function.

Defining the “noise” can be done in several ways. When performing PIV on a flow seeded

with particles, defining the noise as the second largest peak can be a sensible thing to do.

The cross-correlation function plotted in Figure 3.12 shows a sophisticated behavior with

a number of local maxima and minima. Such a textured function indicates that there will

likely be a second peak against which to compare.

However, when applying these SNR techniques to a naturally-occurring flow, there may

be times that there is no usable second peak. Figure 3.15 shows the contour plot of the

cross-correlation function for a typical exterior image pair. We have already noted that

these contours are much smoother with fewer peaks and valleys. Thus, the occurrence of

a second peak is far from guaranteed. As such, we have made use of the average cross-

correlation value within the interrogation area to replace the second peak as the reference

in the calculation of SNR, modifying the gpiv code to produce the desired results. Note,

that these trends are qualitatively similar to those of a fellow researcher using a completely

different PIV code that uses the second-highest peak to calculate SNR.

If we plot the experimental results of the SNR versus the time ratio, we see the data

collapses quite well (Figure 3.35). In fact, the sensitivity to jet viscosity actually diminishes.

This supports the idea that calculating the velocity ratio data as a function of PIV-algorithm

SNR will result in useful trends, eliminating the need for a priori knowledge of the jet velocity

to adjust imaging parameters. A quick set of PIV-algorithm SNR can be calculated from

sample videos of the flow under study to determine the ideal imaging conditions, and the

resulting jet velocity ratio to apply in order to interpret the results.

Indeed, when we plot our results as a function of the signal to noise ratio, rather than

𝜏 , we see the points once again organize themselves according to jet viscosity (see Figure

3.36). This is likely much more appropriate for applying to non-laboratory flows when the

jet exit velocity is unknown.
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Figure 3.35: Plot of the SNR versus time ratio for several jet viscosities
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Figure 3.36: Plot of the velocity ratio versus SNR for several jet viscosities
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3.6 Conclusions

Our experiments indicate that there is a consistent, predictable relationship between the

PIV-calculated velocity of the jet turbulent/non-turbulent interface and the velocity at the

jet core, especially for small time ratios (𝑈𝑗𝛿𝑡/𝑑) or large signal-to-noise ratios. This rela-

tionship is modified, but still tractable when the viscosity of the jet is different than the

ambient fluid’s.

The signal to noise ratio dependency of the core-to-interface velocity ratio (Figure 3.36)

indicates that for sufficiently high signal to noise ratio, the velocity ratio converges to a

more or less constant value. Additionally, as the SNR goes up, the scatter of the points also

decreases. Thus, not only does the velocity ratio stabilize (not being a strong function of

SNR), but there is greater confidence that it is an accurate value. The goal when capturing

these flows is to use a sufficiently small 𝛿𝑡 to maximize the signal to noise ratio. The

only conceivable drawback to an ever decreasing 𝛿𝑡 would be a lack of pixel resolution to

determine very small displacements, although we did not encounter such a problem during

our investigation. A balance between average convective velocity and spatial coverage of the

flow in the image (taking into account pixel resolution in the imaging sensor) can be found

to avoid this potential problem in the field.

The various viscosity ratios converge to different values at difference SNR values. For

the constant viscosity jet, the velocity ratio appears to converge to 15 at an SNR of approx-

imately 3.0. The 0.5 and 2.0 𝑐𝑃 jets appear to exhibit the same converging trends, but they

do not decisively converge in our plot. Based on our limited data, the 10 𝑐𝑃 viscosity jet

appears to converge, at a very low SNR, to a velocity ratio of approximately 8 or 9.

Information can potentially be gleaned at lower signal to noise ratios, below the threshold

for constant velocity ratio. As the SNR decreases, however, Figure 3.36 indicates the scatter

of the velocity ratio goes up considerably.

It is as yet unclear why the viscosity of the jet affects the behavior of the jet interface, as

it relates to scrutiny using PIV. Quite interestingly, if we re-plot the data from Figure 3.33,

but multiplying the time ratio by the viscosity ratio, 𝜇𝑎/𝜇𝑗 , the curves tend to collapse (see

Figure 3.37).
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Figure 3.37: Plot of the experimental data velocity ratios versus the time ratio scaled by the
viscosity ratio (𝜏𝜇𝑟)
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It is not immediately obvious what causes the discrepancy in velocity ratios between jets

with different viscosities. It is our hypothesis that the viscosity affects the velocity prediction

through modification of the onset of turbulence. In the next chapter, we will examine the

effect of viscosity on the stability of the jet as it emerges from the nozzle.

3.7 Future Work

The jet experimental facility we designed is appropriate for a much wider variety of flows

than we have addressed thus far. In order to be able to address more complicated naturally-

occurring flows, additional variables may be introduced. Experiments can be conducted to

study buoyancy driven rather than momentum driven flows. We expect that just as the

relationship between the velocity and SNR/time-ratio changes as a function of viscosity, the

buoyancy ratio will also have an effect.

In order to produce jets with relatively high Reynolds number, our small scale facility

requires large velocities; thus, density ratios must be large to favor buoyancy versus mo-

mentum. Heavier fluids, such as glycerin, can be used to study negatively buoyant flows,

although any desire to match the jet and ambient fluids’ viscosities could be problematic.

For a positive buoyancy jet, it may be difficult to secure liquids that are significantly lighter

than water. Because of the tank’s size, it is infeasible to fill it with a liquid significantly

heavier than water and inject water. Alternatively, air may be added to the injected water to

produce a multi-phase, buoyant flow. Multi-phase flows are a common occurrence in nature,

so investigating them is a natural extension of the work.

We conducted several preliminary tests with water jets using air injected into flowing

water well upstream of the nozzle. Though the air significantly reduces the jet’s average

density, momentum is still an important factor. Figure 3.38 shows the type of image gener-

ated with our experimental setup. It appears that the air is distributed in large, continuous

pockets as opposed to small, evenly distributed bubbles. We foresee this will result in a

poor approximation to the type of continuously variable, low density jet we are interested

in. Nevertheless, we plotted the velocity ratio results in Figure 3.39, and they yield a curve

not unlike that of the 0.5 𝑐𝑃 jet.

Similar to Figure 3.37, we re-plotted the 1 𝑐𝑃 and air data from Figure 3.39, scaling
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Figure 3.38: Illuminated exterior of a Rhodamine-dyed jet consisting of air and water
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Figure 3.39: Plot of the experimental data velocity ratios versus the time ratio including the
jet containing air
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Figure 3.40: Plot of the experimental data velocity ratios versus the time ratio scaled by the
viscosity ratio (𝜏𝜇𝑟)

the time ratio by the density ratio, 𝜌𝑎/𝜌𝑗 . Figure 3.40 indicates that the data may again

collapse. However, this deserves additional attention before drawing any strong conclusions.

Depending on the exact aim of the research, it may be more appropriate to inject a higher

number density of smaller air bubbles if density differences are the primary concern.

Furthermore, other non-laboratory flows of interest may experience cross-flow. Though

our current experimental facility is not currently equipped to produce a cross-flow, it is

conceivable modifications could be made that would allow for this configuration. Regardless,

the effect of cross-flow is likely a configuration worth investigation.

Also, since our investigation primarily focuses on a specific downstream distance (𝑧/𝑑 =

1.5), there are open questions about the velocity ratio for additional downstream distances.

It may be useful to have velocity ratio relationships for locations much farther downstream,
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if such relationships meaningfully exist.
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Chapter 4

ROUND JET STABILITY

4.1 Nomenclature

𝑈(𝑟) Normalized jet velocity profile

𝜇 Dynamic viscosity

𝐶 Concentration

𝛿 Boundary layer thickness (at nozzle exit)

Θ Parameter used to define momentum thickness of the free boundary shear layer

Θ𝑐 Parameter used to define thickness of the concentration gradient at the shear layer

𝜇𝑟 Viscosity ratio, 𝜇𝑎/𝜇𝑗

𝐶𝑟 Concentration ratio, 𝐶𝑎/𝐶𝑗

𝐷 Diffusion coefficient

(·)𝑎 Ambient fluid quantity

(·)𝑗 Jet fluid quantity

𝑢, 𝑣, 𝑤, 𝑝, 𝑐 Mean flow variables

𝑅, 𝑑 Jet radius, diameter

𝑅𝑜𝑢𝑡 Size of computational domain

𝑅𝑒, 𝑅𝑒𝑑 Reynolds number (defined relative to the jet radius, diameter)

𝑧 Axial coordinate (downstream distance)

𝑟 Radial coordinate

𝜃 Azimuthal coordinate

𝑛 Azimuthal wavenumber

𝜔 Frequency

𝛼 Axial (complex) wavenumber

(̂·) Non-dimensionalized value
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4.2 Background

In Chapter 3, we reported that velocity measurements for the turbulent/non-turbulent in-

terface on the round jet are a function of the viscosity difference between the jet and the

ambient fluid. Qualitative visual observations show differences in the turbulent structures

even when several non-dimensional numbers are matched. We investigate the cause of these

modified structures that produce the different Feature Image Correlation velocity measure-

ment results. In his paper reviewing jet stability theory, Michalke (1984) notes that “[the]

many investigations of jet turbulence have shown that the coherent structures of jet turbu-

lence are a consequence of the instability of the turbulent jet shear layer”. George (1989) and

Carazzo et al. (2006) both conclude that large coherent structures in the turbulent jet may

affect the downstream development of the self-similar profile. Hence, it is appropriate that

we examine the characteristics of the shear layer instability in order to better understand

the role that the viscosity gradient plays in jet development.

Michalke (1965) was among the first to conduct stability analyses by examining spatial,

as opposed to temporal, growth rates of small perturbations. He observed that analysis of

spatial perturbations was more appropriate for certain classes of flows, to which our turbulent

round jet belongs. He also noted that “experimental investigations of free boundary layers of

plane and axisymmetric jets ... have shown that for large Reynolds numbers the instability

properties of free boundary layers are not noticeably affected by viscosity”. This statement

is, however, based on the implicit assumption that the fluid viscosity is constant.

The appendix of Michalke (1965) presents data from a 1965 paper by Freymuth (which

was published in German) that compares spatial and temporal stability analysis results with

experiments of forced flow. The results from spatial stability show that the wavenumber,

phase velocity and spatial growth rates all compare more favorably to experimental results

than temporal stability predictions (for small Strouhal numbers). The conclusion supports

physical arguments that the flow is best described as spatially rather than temporally evolv-

ing.

On the other hand, Crow & Champagne (1971) notes that their experimental results

more closely resemble the temporal analysis results from Batchelor & Gill (1962), particularly
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when comparing phase velocity to wavenumber. However, the temporal analysis of Batchelor

& Gill (1962) assumes inviscid flow with a discontinuous plug velocity profile. In fact, most

of the literature on round jet stability since Michalke (1965) has focused on examining the

spatial instability. Despite the fact that the temporal stability analysis can be considerably

simpler to perform than the spatial counterpart, we will discuss techniques for conducting

the spatial analysis, since the consensus is that it is the more relevant approach for the jet.

Yih (1967) was the first to look at the effect of a non-uniform viscosity on flow stability

characteristics. His investigations focused on immiscible fluids, where the viscosity varied

discontinuously. He found that Couette-Poiseuille flow became unconditionally unstable

when such an infinite viscosity gradient was introduced. Oztekin et al. (1999) and Ern et al.

(2003) both applied numerical techniques to further investigate the effect of a continuous

viscosity gradient on 2-D planar flows. In addition to equations of fluid motion, an equation

for viscosity transport was required. Both Oztekin et al. (1999) and Ern et al. (2003) derived

equations examining only temporally evolving (as opposed to spatially unstable) flows using

assumed relationships between concentration and viscosity.

Selvam et al. (2007) looked at axisymmetric flow with miscible fluids of different vis-

cosities, but also restricted their analysis to examining the temporal instabilities. Because

the flow in question was an internal flow, the spatial evolution is arguably not as important

as it is for a spatially-evolving free-shear flow. Like most authors, they used an assumed

relationship between concentration and viscosity; our analysis accommodates an arbitrary

viscosity definition.

In our analysis, we derive the spatial stability equations for a flow for which viscosity

varies arbitrarily with scalar concentration. Specifically, the flow of concern is a round free jet

where two miscible fluids of different viscosities are interacting; the instabilities themselves

are not necessarily axisymmetric.

Due to the complexity of the stability equations, numerical methods are required in

order to solve them. A variety of methods have been marshaled to solve the eigenproblem.

Finite-difference and spectral methods are often used to approximate the equations, and the

resulting, sometimes large, matrices can be inverted numerically. In the past, when computer

memory constraints were more pressing, shooting methods were successfully applied (e.g.
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Petersen & Samet (1988).

In this chapter, we opted to solve the spectral problem with a Chebyshev method. Not

only does it have a good track record for these types of problems (see Orszag (1971), Zebib

(1984), Khorrami et al. (1989), Oztekin et al. (1999), Reshotko & Tumin (2001), Boeck &

Zaleski (2005), Selvam et al. (2007)), but it also exhibits good accuracy using relatively few

modes.

It has been noted that the traditional Orr-Sommerfeld analysis is not always the definite

answer for analyzing instability growth in fluid flow problems. Trefethen & Embree (2005)

noted that examining only the eigenvalues of the Orr-Sommerfeld equation is unwise for

particular classes of confined, laminar flow. Specifically, Poiseuille, Couette and pipe flow

were identified as being poor candidates, since algebraic growth is more significant than

exponentially growing modes in understanding the instability and transition of these flows.

However, it appears that free-shear flows, such as the one we are examining here, are well

suited for eigenvalue-based linear stability analysis.

Because the stability analysis starts with a jet velocity profile, those characteristics will

be used to define a particular Reynolds number for use with this analysis. Unless otherwise

defined, the Reynolds number we use in this section will be defined as:

𝑅𝑒 =
𝜌𝑗𝑈𝑗𝑅

𝜇𝑗
(4.1)

where 𝜌𝑗 is the jet density, 𝑈𝑗 is the jet velocity within the potential core, 𝑅 is the jet

half-width (equivalent to the jet radius within the potential core), and 𝜇𝑗 is the jet fluid

viscosity.

4.2.1 Velocity Profiles

Michalke (1984) discusses four different normalized velocity profiles for round jets commonly

used to study instability behavior:

Profile 1:

𝑈 = 0.5
{︁

1 + 𝑡𝑎𝑛ℎ
[︁
𝑏1

(︁
1 − 𝑟

𝑅

)︁]︁}︁
(4.2)
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where

𝑏1 = 0.5𝑅
Θ >> 1 (4.3)

Profile 2:

𝑈 = 0.5

{︂
1 + 𝑡𝑎𝑛ℎ

[︂
𝑏2

(︂
𝑅

𝑟
− 𝑟

𝑅

)︂]︂}︂
(4.4)

where

𝑏2 = 0.25𝑅
Θ (4.5)

Profile 3:

𝑈 = exp

{︂
𝑛
[︁
𝑏3

(︁ 𝑟

𝑅
− 1

)︁
+ 1

]︁2}︂
(4.6)

where

𝑏3 = 0.312𝑅
Θ

𝑛 =

⎧⎪⎨⎪⎩
0, 𝑟

𝑅 ≤ 1 − 1
𝑏3

−ln 2, otherwise

(4.7)

Profile 4:

𝑈 =

[︂
1 + 𝑏4

(︁ 𝑟

𝑅

)︁2
]︂−2

(4.8)

where

𝑏4 =
√

2 − 1

𝑅
Θ = 2.185

(4.9)

In the equations above, 𝑅 characterizes the jet half-width (i.e. 𝑈(𝑅) = 0.5), and Θ

characterizes the momentum layer thickness; typically it is defined as:

Θ =

∫︁ ∞

0
𝑈(𝑟)(1 − 𝑈(𝑟))𝑑𝑟 (4.10)

Figure 4.1 shows the profiles for Θ/𝑅 = 0.15. We will concentrate primarily on profile

2; it is meant to approximate the flow in the development region of the jet and has been

used by numerous authors (e.g. Morris (1976), Crighton & Gaster (1976), Plaschko (1979),
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Michalke & Hermann (1982)). In this case, 𝑅 is not only the jet half-width, but also the

nozzle radius. Profile 4, which represents the velocity profile of a fully developed jet, is also

used for validation purposes.

Figure 4.1: Plots of the four velocity profiles outlined by Michalke (1984) (Θ/𝑅 = 0.16)

4.3 Derivation

In this section, we will give a brief overview of the stability equations. Appendix A covers

their derivation in more depth. See Figure 4.2 for a diagram of geometry used for the

stability analysis.
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Figure 4.2: Diagram of the coordinate system and geometry of the round jet

First, the flow variables must be decomposed into their mean and fluctuating parts:

𝑢(𝑧, 𝑟, 𝜃, 𝑡) = 𝑈(𝑧, 𝑟, 𝜃) + 𝑢′(𝑧, 𝑟, 𝜃, 𝑡)

𝑣(𝑧, 𝑟, 𝜃, 𝑡) = 𝑉 (𝑧, 𝑟, 𝜃) + 𝑣′(𝑧, 𝑟, 𝜃, 𝑡)

𝑤(𝑧, 𝑟, 𝜃, 𝑡) = 𝑤′(𝑧, 𝑟, 𝜃, 𝑡)

𝑝(𝑧, 𝑟, 𝜃, 𝑡) = 𝑃 (𝑧, 𝑟, 𝜃) + 𝑝′(𝑧, 𝑟, 𝜃, 𝑡)

𝑐(𝑧, 𝑟, 𝜃, 𝑡) = 𝐶(𝑧, 𝑟, 𝜃) + 𝑐′(𝑧, 𝑟, 𝜃, 𝑡)

(4.11)
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and we assume the fluctuation parts have the harmonic form:

𝑢′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑢̄(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)}

𝑣′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑣(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)}

𝑤′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑤̄(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)}

𝑝′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑝(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)}

𝑐′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑐(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)}

(4.12)

Additionally, there are supplemental equations that allow us to have a linear system of

equations:

𝑢̄𝛼 = 𝛼𝑢̄

𝑣𝛼 = 𝛼𝑣

𝑤̄𝛼 = 𝛼𝑤̄

𝑐𝛼 = 𝛼𝑐

(4.13)

These additional equations make clear the extra price that spatial stability analysis

exacts. Temporal analysis yields terms only linear in 𝜔, requiring only a system of five

equations to solve, whereas the supplemental equations needed to make 𝛼 appear linearly

result in a system of nine equations. The remaining five equations consist of three equations

for momentum, an equation for scalar concentration advection/diffusion, and finally, the

simplified continuity equation (based on the assumption of incompressible, constant density

flow). The non-dimensional versions of the equations are as follows:

𝑧-momentum:(︁
−𝜔̂ − 𝑖 1

𝑅𝑒
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟 + 𝑖 1

𝑅𝑒 𝜇̂(𝐶)
(︁
𝑛2

𝑟2
− 1

𝑟
𝜕
𝜕𝑟 −

𝜕2

𝜕𝑟2

)︁)︁
ˆ̄𝑢− 𝑈̂ ˆ̄𝑢𝛼

+ 𝑖𝜕𝑈̂𝜕𝑟 𝑣 + 𝑖 1
𝑅𝑒

(︁
𝜇̂(𝐶) 𝜕

𝜕𝑟 + 𝜇̂(𝐶)1𝑟 −
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

)︁
ˆ̄𝑣𝛼 − 𝑖 𝜇̂(𝐶)

𝑅𝑒
𝑛
𝑟

ˆ̄𝑤𝛼

+ 𝑖 1
𝑅𝑒

(︁
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

𝜕
𝜕𝑟 + 𝜕2𝑈̂

𝜕𝑟2
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 1
𝑟
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 𝜕𝑈̂
𝜕𝑟

𝜕
𝜕𝐶

(︁
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟

)︁
ˆ̄𝑐

= 𝛼̂ ˆ̄𝑝

(4.14)
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𝑟-momentum: (︁
−𝑖𝜔̂ 𝑅𝑒

𝜇̂(𝐶) −
𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
+ 2 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
ˆ̄𝑣

− 𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

ˆ̄𝑣𝛼 − 2𝑖 𝑛
𝑟2

ˆ̄𝑤

+ 𝑖 1
𝜇̂(𝐶)

𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

ˆ̄𝑐𝛼 − 𝑅𝑒
𝜇̂(𝐶)

𝜕
𝜕𝑟

ˆ̄𝑝

= 𝛼̂ˆ̄𝑣𝛼

(4.15)

𝜃-momentum:

𝑖𝑛𝑟

(︁
1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟 + 21

𝑟

)︁
ˆ̄𝑣

+
(︁
−𝑖𝜔̂ 𝑅𝑒

𝜇̂(𝐶) −
𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
− 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

1
𝑟 + 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
ˆ̄𝑤

− 𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

ˆ̄𝑤𝛼 − 𝑖𝑛𝑟
𝑅𝑒
𝜇̂(𝐶)

ˆ̄𝑝

= 𝛼̂ ˆ̄𝑤𝛼

(4.16)

Concentration:

−𝑃𝑒𝜕𝐶𝜕𝑟 ˆ̄𝑣 −
[︁
𝑖𝜔̂𝑃𝑒−

(︁
𝜕2

𝜕𝑟2
+ 1

𝑟
𝜕
𝜕𝑟 −

𝑛2

𝑟2

)︁]︁
𝑐− 𝑖𝑃𝑒𝑈̂ ˆ̄𝑐𝛼 = 𝛼̂ˆ̄𝑐𝛼 (4.17)

Continuity:

𝑖 𝜕
𝜕𝑟

ˆ̄𝑣𝛼 + 𝑖
𝑟
ˆ̄𝑣𝛼 − 𝑛1

𝑟
ˆ̄𝑤𝛼 = 𝛼̂ˆ̄𝑢𝛼 (4.18)

This system of nine equations can be succinctly written in matrix form:

𝐴𝑞 = 𝛼̂𝐵𝑞 (4.19)
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where, expanded, the matrices are defined as:

𝛼̂𝐵𝑞 = 𝛼̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ̄𝑢

ˆ̄𝑢𝛼

ˆ̄𝑣

ˆ̄𝑣𝛼

ˆ̄𝑤

ˆ̄𝑤𝛼

ˆ̄𝑐

ˆ̄𝑐𝛼

ˆ̄𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)

and

𝐴𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0

0 0 0 𝐴24 0 𝐴26 0 0 0

0 0 0 1 0 0 0 0 0

0 0 𝐴43 𝐴44 𝐴45 0 𝐴47 0 𝐴49

0 0 0 0 0 1 0 0 0

0 0 𝐴63 0 𝐴65 𝐴66 0 0 𝐴69

0 0 0 0 0 0 0 1 0

0 0 𝐴83 0 0 0 𝐴87 𝐴88 0

𝐴91 𝐴92 𝐴93 𝐴94 0 0 𝐴97 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ̄𝑢

ˆ̄𝑢𝛼

ˆ̄𝑣

ˆ̄𝑣𝛼

ˆ̄𝑤

ˆ̄𝑤𝛼

ˆ̄𝑐

ˆ̄𝑐𝛼

ˆ̄𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)
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where

𝐴24 = 𝑖 𝜕
𝜕𝑟 + 𝑖1𝑟

𝐴26 = −𝑛1
𝑟

𝐴43 = −𝑖𝜔̂ 𝑅𝑒
𝜇̂(𝐶) −

𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
+ 2 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

𝐴44 = −𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

𝐴45 = −2𝑖 𝑛
𝑟2

𝐴48 = 𝑖 1
𝜇̂(𝐶)

𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

𝐴49 = − 𝑅𝑒
𝜇̂(𝐶)

𝜕
𝜕𝑟

𝐴63 = 𝑖𝑛𝑟

(︁
1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟 + 21

𝑟

)︁
𝐴65 = −𝑖𝜔̂ 𝑅𝑒

𝜇̂(𝐶) −
𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
− 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

1
𝑟 + 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

𝐴66 = −𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

𝐴69 = −𝑖𝑛𝑟
𝑅𝑒
𝜇̂(𝐶)

𝐴83 = −𝑃𝑒𝜕𝐶𝜕𝑟

𝐴87 = −𝑖𝜔̂𝑃𝑒 +
(︁

𝜕2

𝜕𝑟2
+ 1

𝑟
𝜕
𝜕𝑟 −

𝑛2

𝑟2

)︁
𝐴88 = −𝑖𝑃𝑒𝑈̂

𝐴91 = −𝜔̂ − 𝑖 1
𝑅𝑒

𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟 + 𝑖 1

𝑅𝑒 𝜇̂(𝐶)
(︁
𝑛2

𝑟2
− 1

𝑟
𝜕
𝜕𝑟 −

𝜕2

𝜕𝑟2

)︁
𝐴92 = −𝑈̂

𝐴93 = 𝑖𝜕𝑈̂𝜕𝑟

𝐴94 = 1
𝑅𝑒

(︁
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟 − 𝜇̂(𝐶) 𝜕

𝜕𝑟 − 𝜇̂(𝐶)1𝑟

)︁
𝐴96 = −𝑖 𝜇̂(𝐶)

𝑅𝑒
𝑛
𝑟

𝐴97 = 𝑖 1
𝑅𝑒

(︁
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

𝜕
𝜕𝑟 + 𝜕2𝑈̂

𝜕𝑟2
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 1
𝑟
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 𝜕𝑈̂
𝜕𝑟

𝜕
𝜕𝐶

(︁
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟

)︁

(4.22)

4.3.1 Boundary Conditions

In order to calculate the instability behavior, it is important to properly define the boundary

conditions at the extremes of the domain. Our 1-D calculations will be conducted along the

𝑟–axis from the axis of symmetry to the outer part of the domain, 𝑅𝑜𝑢𝑡. The following
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boundary conditions as 𝑟 → 0 are driven by the requirements outlined in Khorrami et al.

(1989), with the addition of a concentration constraint:

lim
𝑟→0

𝜕𝑢

𝜕𝜃
= 0

lim
𝑟→0

𝜕𝑝

𝜕𝜃
= 0

lim
𝑟→0

𝜕𝑐

𝜕𝜃
= 0

(4.23)

Looking first at the condition for velocity, we can concentrate on the fluctuating part,

since the mean flow has no azimuthal dependence:

𝜕𝑢′

𝜕𝜃
=

𝜕

𝜕𝜃

(︀
𝑢′𝑒𝑧 + 𝑣′𝑒𝑟 + 𝑤′𝑒𝜃

)︀
. (4.24)

Therefore, by applying the chain rule:

lim
𝑟→0

𝜕𝑢′

𝜕𝜃
=

𝜕𝑢′

𝜕𝜃
𝑒𝑧 + 𝑢′

𝜕𝑒𝑧
𝜕𝜃

+
𝜕𝑣′

𝜕𝜃
𝑒𝑟 + 𝑣′

𝜕𝑒𝑟
𝜕𝜃

+
𝜕𝑤′

𝜕𝜃
𝑒𝜃 + 𝑤′𝜕𝑒𝜃

𝜕𝜃
= 0. (4.25)

Since
𝜕𝑒𝑧
𝜕𝜃

= 0,
𝜕𝑒𝑟
𝜕𝜃

= 𝑒𝜃,
𝜕𝑒𝜃
𝜕𝜃

= −𝑒𝑟 (4.26)

we can write the velocity boundary condition as:

lim
𝑟→0

𝜕𝑢′

𝜕𝜃
=

𝜕𝑢′

𝜕𝜃
𝑒𝑧 +

𝜕𝑣′

𝜕𝜃
𝑒𝑟 + 𝑣′𝑒𝜃 +

𝜕𝑤′

𝜕𝜃
𝑒𝜃 − 𝑤′𝑒𝑟 = 0. (4.27)

Substituting the exponential form from (4.12) and dividing through by the exponential

factor yields:

lim
𝑟→0

𝜕𝑢̄

𝜕𝜃
= 𝑖𝑛𝑢̄𝑒𝑧 + 𝑖𝑛𝑣𝑒𝑟 + 𝑣𝑒𝜃 + 𝑖𝑛𝑤̄𝑒𝜃 − 𝑤̄𝑒𝑟 = 0. (4.28)

Grouping according to components leads to:

lim
𝑟→0

𝜕𝑢̄

𝜕𝜃
= 𝑖𝑛𝑢̄𝑒𝑧 + (𝑖𝑛𝑣 − 𝑤̄) 𝑒𝑟 + (𝑣 + 𝑖𝑛𝑤̄) 𝑒𝜃 = 0. (4.29)

As Khorrami et al. (1989) points out, in order to satisfy the equality, each of the components
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must equal zero. Similarly, from (4.23), pressure and concentration can be written:

lim
𝑟→0

𝜕𝑝

𝜕𝜃
= 𝑖𝑛𝑝 = 0

lim
𝑟→0

𝜕𝑐

𝜕𝜃
= 𝑖𝑛𝑐 = 0

(4.30)

Therefore as 𝑟 → 0:

𝑖𝑛𝑢̄ = 0

𝑖𝑛𝑣 − 𝑤̄ = 0

𝑣 + 𝑖𝑛𝑤̄ = 0

𝑖𝑛𝑝 = 0

𝑖𝑛𝑐 = 0

(4.31)

Because the equations involving 𝑣′ and 𝑤′ are linearly dependent when 𝑛 = 1, we will

need another boundary condition, generated by enforcing continuity at the centerline:

∇ · 𝑢′ =
𝜕𝑢′

𝜕𝑧
+

𝜕𝑣′

𝜕𝑟
+

1

𝑟
𝑣′ +

1

𝑟

𝜕𝑤′

𝜕𝜃
= 0. (4.32)

Again, substitution from (4.12) and dividing by the exponential factor, we obtain (keeping

𝑛 = 1):

𝑖𝛼𝑢̄ +
𝜕𝑣

𝜕𝑟
+

1

𝑟
𝑣 +

𝑖

𝑟
𝑤̄ = 0. (4.33)

If we again take the limit as 𝑟 → 0:

lim
𝑟→0

𝑖𝛼𝑢̄(𝑟) +
𝜕𝑣

𝜕𝑟
+

1

𝑟
𝑣(𝑟) +

𝑖

𝑟
𝑤̄(𝑟) = 0. (4.34)

Since we are currently limiting ourselves to 𝑛 = 1:

lim
𝑟→0

𝑢̄ = 0. (4.35)
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And recalling 𝑣(0) + 𝑖𝑤̄(0) = 0

lim
𝑟→0

𝜕𝑣

𝜕𝑟
+

1

𝑟
(𝑣(𝑟) − 𝑣(0) + 𝑖𝑤̄(𝑟) − 𝑖𝑤̄(0)) = 0. (4.36)

Formally, the definition of a derivative is:

𝜕

𝜕𝑥
𝑓(𝑎) = lim

ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
. (4.37)

Therefore the previous condition becomes:

2
𝜕

𝜕𝑟
𝑣(0) + 𝑖𝑛

𝜕

𝜕𝑟
𝑤̄(0) = 0. (4.38)

This is the additional boundary equation we must utilize when 𝑛 = 1.

Let us now examine the conditions at 𝑟 = 0 for specific cases of 𝑛:

𝑛 = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕
𝜕𝑟 𝑢̄(0) = 0

𝜕
𝜕𝑟𝑝(0) = 0

𝜕
𝜕𝑟 𝑐(0) = 0

𝑣(0) = 𝑤̄(0) = 0

𝑛 = 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑢̄(0) = 𝑝(0) = 𝑐(0) = 0

𝑣(0) + 𝑖𝑤̄(0) = 0

2 𝜕
𝜕𝑟𝑣(0) + 𝑖 𝜕

𝜕𝑟 𝑤̄(0) = 0

𝑛 > 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑢̄(0) = 𝑝(0) = 𝑐(0) = 0

𝑣(0) + 𝑖𝑛𝑤̄(0) = 0

𝑖𝑛𝑣(0) − 𝑤̄(0) = 0

(4.39)

Finally, for any value of 𝑛, 𝑢̄𝛼(0) = 𝛼𝑢̄(0), 𝑣𝛼(0) = 𝛼𝑣(0), 𝑤′
𝛼(0) = 𝛼𝑤̄(0), and 𝑐′𝛼(0) =

𝛼𝑐(0).

For the purposes of implementation, it is more useful to state 𝑣(0)+𝑖𝑤̄(0) = 0 as opposed



94

to 𝑣(0) = −𝑖𝑤̄(0). We will discuss exactly how to implement these conditions in section 4.3.2.

For all variables, as 𝑟 approaches ∞:

lim
𝑟→∞

𝑢̄, 𝑢̄𝛼, 𝑣, 𝑣𝛼, 𝑤̄, 𝑤̄𝛼, 𝑝, 𝑐, 𝑐𝛼 = 0. (4.40)

The condition at the axis of symmetry will mimic the ideal flow, however, our computational

domain will prevent us from strictly defining the boundary as 𝑟 → ∞. For computational

purposes, we will enforce the conditions at the outer boundary: 𝑟 = 𝑅𝑜𝑢𝑡.

4.3.2 Method of Solution

The matrix system in the previous section represents only the statement of the problem; a

method of solution remains to be determined. The domain requires discretization, and the

model equations must be converted to equations in differences at the nodes. As mentioned

in the introduction, a Chebyshev method was implemented where domain discretization was

performed at the Gauss-Lobatto collocation points (see Trefethen (2000) and an appendix

of Schmid & Henningson (2001)), recast from [−1, 1] to [0, 𝑅]:

𝑦𝑗 =
𝑅

2

[︂
𝑐𝑜𝑠

(︂
𝑗𝜋

𝑁

)︂
+ 1

]︂
. (4.41)

These collocation points are appropriate for approximating Chebyshev polynomials, and the

distribution clusters nodes at the boundaries. This concentration of nodes at the domain

edges prevents interpolation errors that would otherwise occur at the boundaries (known

as the Runge phenomenon). We will define our desired solution 𝑓 as a sum of Chebyshev

polynomials 𝑇𝑛:

𝑓(𝑦) =
𝑁∑︁

𝑛=0

𝑎𝑛𝑇𝑛(𝑦) (4.42)

where the Chebyshev polynomials are mutually orthogonal and make up the basis of our

solution:

𝑇𝑛(𝑦) =
1

2

[︁(︁
𝑦 +

√︀
𝑦2 − 1

)︁𝑛
+
(︁
𝑦 −

√︀
𝑦2 − 1

)︁𝑛]︁
. (4.43)
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We can relate the first and second derivatives to 𝑓(𝑦) via the differentiation matrix:

[𝐷𝑓 ]𝑗 =
𝑁∑︁

𝑛=0

𝑎𝑛
𝜕𝑇𝑛
𝜕𝑟 (𝑦𝑗)

[︀
𝐷2𝑓

]︀
𝑗

=
𝑁∑︁

𝑛=0

𝑎𝑛
𝜕2𝑇𝑛
𝜕𝑟2

(𝑦𝑗)

(4.44)

where 𝑓 is a vector composed of 𝑓(𝑦𝑗).

Rather than constructing our matrix system with the Chebyshev polynomials and solving

for the coefficients 𝑎𝑛, we will use the differentiation matrix 𝐷 to solve for the unknown

variable 𝑓 directly. Trefethen (2000) defines the differentiation matrix 𝐷 for discretization

of 𝑁 segments (according to (4.41)) to be of size (𝑁 +1)×(𝑁 +1) with the following entries:

𝐷00 = −𝐷𝑁𝑁 =
2𝑁2 + 1

6
,

𝐷𝑗𝑗 = − 𝑥𝑗

2
(︁

1 − 𝑥2𝑗

)︁ , 𝑗 = 1, . . . , 𝑁 − 1,

𝐷𝑗𝑗 =
𝑐𝑖
𝑐𝑗

(−1)𝑖+𝑗

𝑥𝑖 − 𝑥𝑗
, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 0, . . . , 𝑁,

𝑐𝑖 =

⎧⎪⎨⎪⎩
2, 𝑖 = 0 or 𝑁

1, otherwise

(4.45)

and additionally,

𝐷2 = 𝐷𝐷. (4.46)

In order to solve the eigenproblem, the Python programming language was used, taking

advantage of the numpy, scipy and matplotlib libraries (Jones et al., 2001; Hunter, 2007).

The matrices were assembled according to the equations outlined in section 4.3. The first

and last row of each matrix block were reserved for the definition of boundary conditions

(or the rows/columns were deleted for homogenous Dirichlet conditions). In the case of, for

instance 𝑛 = 1, the conditions involving 𝑣 and 𝑤̄ are implemented on the right hand side

of the eigenvalue equation. That is, 𝑣(0) + 𝑖𝑤̄(0) = 0 becomes 𝛼𝑣𝛼(0) + 𝑖𝛼𝑤𝛼(0) = 0; in

this way, the right-hand side matrix 𝐵 can remain non-singular, and while 𝐴 is rendered
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singular, 𝐵−1𝐴 is usually non-singular.

4.3.3 Identifying the Most Unstable Mode

In the case of the one-equation Orr-Sommerfeld analysis, the identification of the most

unstable mode is as simple as looking for the eigenvalue which creates the largest real

exponent for the fluctuating flow parameters (equations (4.12)). However, as additional

equations are incorporated, either to increase the number of spatial dimensions analyzed or

increase the factors considered (e.g. density, concentration), the identification becomes more

difficult.

Nichols (2005) examined a round jet and noted that there are two main components of

the eigenvalue spectrum: the continuous and discrete parts. Because we are approximating

an infinite domain with a discretized, finite-sized domain, the continuous part of the spec-

trum is rendered discrete with a finite number of eigenvalues (the resolution of which will

increase with more computational nodes). Additionally, the discrete part of the spectrum

is represented by individual eigenvalues that may become more accurate, but not more nu-

merous as the refinement is increased. The discrete modes are typically the ones responsible

for instabilities in these flows.

Unfortunately, with increased complexity and computational approximations, spurious

modes arise that need to be identified and ignored; see Malik (1990), Zebib (1984), Gottlieb

& Orszag (1977).

From the literature, we have identified a set of unstable modes reported for assorted flow

conditions. Due to the difficulty of identifying the importance of a particular eigenvalue to

the stability problem, we have opted for an iterative technique that relies on marching from

known unstable modes to predict new unstable modes at slightly different conditions.

4.3.3.1 Inverse Iteration Method

Rather than calculating the entire set of eigenvalues, it seems sensible to limit our atten-

tion to the most unstable value, especially because it saves significant computational time.

Furthermore, once the most unstable value for a set of parameters (Reynolds number, vis-
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cosity ratio, etc.) has been identified, if we slightly perturb the circumstances, we expect

the eigenvalue/vector to change only slightly.

Subject to these considerations, the inverse iteration method is considered an appropriate

approach for our analysis.

The method requires an initial guess for the eigenvalue of interest, 𝛼̂, with a less stringent

requirement for the corresponding eigenvector, 𝑏. The eigenvector is determined via iteration

(Bender & Orszag (1999)):

𝑏𝑘+1 =
(𝐴− 𝛼̂𝐼)−1 𝑏𝑘

𝐶𝑘
(4.47)

where 𝐶𝑘 = ‖(𝐴− 𝛼̂𝐼)−1 𝑏𝑘‖ and is used for normalization.

Starting from a base state with a known unstable eigenvalue, inverse iteration is seeded

with the relevant 𝛼̂ (note: the algorithm is fairly forgiving when 𝑏 is unknown). Depending

on the parameter space to be explored, any value (e.g. 𝑅𝑒, 𝜔̂) can be slightly perturbed.

Subsequent calculations are marched out, filling the parameter space, using the previous

local value of the eigenvalue/vector to calculate a new value at the desired flow conditions.

Trial and error is necessary to determine the biggest steps that can be taken in the parameter

space without calculating an undesirable eigenvalue.

4.4 Validation

In order to build confidence in our model, we validate it against existing results published

in the literature. Although the spatial stability of the round jet with viscosity gradients

has not been specifically solved, there is literature available to compare against for constant

viscosity analyses.

One of the earlier papers available for comparison is Morris (1976). Not only is a wide

range of results from spatial stability analyses presented, but the parameters of the calcula-

tions (e.g. velocity profile) are clear. Furthermore, within this paper results are compared

favorably to previous papers, notably Mollendorf & Gebhart (1973). Finally, there are de-

tailed results for eigenvalues that provide for quantitative comparison against the method

presented here.

The results from Morris (1976) are for a round jet with constant viscosity. Though a
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different numerical scheme was used, we expect our results to match those in the seminal

paper, as the underlying physics and assumptions are the same. However, a few important

distinctions should be noted. Morris (1976) examines both velocity profiles 2 and 4, though

for profile 4, 𝑏4 = 1 is used. Furthermore, as noted by Lessen & Singh (1973), some of the

non-dimensional numbers differ from traditional definitions; we believe this is a source of

some of the minor discrepancies observed in the comparison below.

The plot presented in Morris (1976) of damped modes (𝑛 = 0, 𝑅𝑒 = 80, 𝜔̂ = −0.2)

compares favorably with our calculations. Using 400 nodes, and a domain size of 𝑅𝑜𝑢𝑡 = 10𝑅,

Figure 4.3 shows the eigenvectors calculated for the four eigenvalues satisfying 0 ≤ 𝛼̂𝑟 ≤

1, 0 ≤ 𝛼̂𝑖 ≤ 2. These results compare favorably, in a qualitatively sense, with results

from several previous studies; Mollendorf & Gebhart (1973) studied the spatial stability

characteristics of thermally buoyant jets. Initial results for a uniform density jet at similar

𝑅𝑒 and 𝜔 found an eigenvector that closely resembles the most stable eigenvector from Figure

4.3.

(a) (b)

Figure 4.3: Eigenfunctions corresponding to four eigenvalues identified by Morris (1976)
(results are normalized such that function has the value 1 at 𝑟 = 0); left: original plot from
Morris (1976), right: results from the current study

The eigenvalues that correspond to the eigenvectors shown in Figure 4.3 are displayed in

Table 4.1, with the current results side by side with those of Morris (1976).

To provide further validation, we computed the value of the most unstable mode as a
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Morris (1976) Current study
𝛼̂𝑟 𝛼̂𝑖 𝛼̂𝑟 𝛼̂𝑖

0.2322 0.0666 0.23248366 0.06659581

0.3840 0.3904 0.38379811 0.39048067

0.4842 0.8976 0.48396263 0.89729115

0.5628 1.5850 0.56341682 1.58520790

Table 4.1: Eigenvalues from Morris (1976) compared to those from the current study (𝑛 = 0,
𝑅𝑒 = 80, 𝜔̂ = −0.2, 𝑅𝑜𝑢𝑡 = 10, 400 nodes)

function of 𝜔̂ at several Reynolds numbers. Figure 4.4 present the results for 𝑛 = 0 and

𝑛 = 1 that we obtained under jet conditions similar to those in Figure 4.3. These plots also

compare favorably to comparable plots from Morris (1976).

Figure 4.5 provides a more thorough look at the 𝑛 = 1 results; the contour plot of −𝛼𝑖

over a range of Reynolds numbers and 𝜔̂ once again compares favorably to Morris (1976).

It is worth noting that for large Reynolds numbers, the 𝜔̂ corresponding to the maximum

value of −𝛼̂ remains constant.

Recall that velocity profile 4 (4.8) corresponds to that of a fully developed jet. Perhaps

the more pertinent velocity profile is profile 2 (4.4), for which we can also validate our

results. Figure 4.6 displays our results for both 𝑛 = 0 and 𝑛 = 1 modes, both of which

appear identical to their counterparts from Morris (1976).

4.4.1 Resolution Study

In order to ensure we are using a sufficient number of nodes, we conducted a resolution study

of our results. Since the momentum thickness is inversely related to the Reynolds number,

it is worth investigating a relatively large Reynolds number. If the resolution is adequate

to resolve a very thin boundary layer, it will be adequate for lower Reynolds numbers and

thicker boundary layers. This study was conducted using a flow profile with a Θ/𝑅 value of

approximately 0.04. Figure 4.7 shows the convergence of the value of −𝜔̂ where the peak 𝛼̂

occurs for a constant viscosity flow where the domain size 𝑅𝑜𝑢𝑡 = 10𝑅.

As shown in the figure, 150 nodes can be thought of as the bare minimum to obtain

accurate results. At 250 nodes, the results appear to reach a very consistent value. It is
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(a) (b)

(c) (d)

Figure 4.4: Plots of −𝛼̂𝑖 corresponding to the most unstable eigenvalue for four different
Reynolds numbers for velocity profile 4 (200 nodes); left: 𝑛 = 0, right: 𝑛 = 1; top: original
plots from Morris (1976), bottom: results from the current study

expected that for larger values of Θ/𝑅, fewer nodes may be needed.

4.5 Results

At first glance, the stability problem laid out by the stability equations has a huge number

of degrees of freedom. The concentration and velocity profiles each essentially have an

infinite number of degrees of freedom. Additionally, there are the non-dimensional numbers

describing the flow: the Reynolds number and the Péclet number. Furthermore, there are

the two real numbers in the disturbance equations (4.12): the circular frequency, −𝜔̂, and

the azimuthal mode number 𝑛. Computationally, we also have the resolution, 𝑁 and the

domain size 𝑅𝑜𝑢𝑡. Finally, there is the relationship between the concentration, 𝑐, and the
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(a) (b)

Figure 4.5: Contour plot of the most unstable −𝛼̂𝑖 versus −𝜔̂ and 𝑅𝑒 (200 nodes, 𝑛 = 1);
top: original plot from Morris (1976), bottom: results from the current study

viscosity, 𝜇.

Taken together, the parameter space is overwhelmingly extensive. It is necessary to find

sensible ways to limit its range to make investigation of this space tractable.

First, we can restrict ourselves to a class of problems looking at large Reynolds num-

bers. In this case, there is a common velocity profile used by a number of investigators for

axisymmetric flows. Recall that Michalke (1984) discusses a “profile 2” that has been used

by numerous authors:

𝑈 = 0.5

{︂
1 + 𝑡𝑎𝑛ℎ

[︂
𝑏2

(︂
𝑅

𝑟
− 𝑟

𝑅

)︂]︂}︂
(4.48)

where

𝑏2 = 0.25𝑅
Θ (4.49)

where Θ represents the momentum thickness, which needs to be defined.

Initially, for simplicity, we will define the concentration profile to have the same form

as the velocity profile (profile number 2), and we will take the Péclet number equal to the

Reynolds number (that is, the Schmidt/Prandtl number is unity). The non-dimensional

profile will vary from 1.0 to 𝐶𝑎 at the far boundary, and we will investigate the effect

of varying 𝐶𝑎. While the viscosity may be an arbitrary function of concentration, our
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(a) (b)

(c) (d)

Figure 4.6: Plots of −𝛼̂𝑖 corresponding to the most unstable eigenvalue for four different
Reynolds numbers for velocity profile 2, Θ/𝑅 = 0.16, (200 nodes); left: 𝑛 = 0, right: 𝑛 = 1;
top: original plots from Morris (1976), bottom: results from the current study

investigation will begin by assuming 𝜇̂ = 𝑐.

4.5.1 Concentration Gradient

To this point, we have assumed equivalent thicknesses for both the momentum and concen-

tration gradients, defined by equation (4.52). We want to examine the effect of changing the

thickness of the concentration gradient. Figure 4.8 shows the effect of varying Θ𝐶 on the

stability characteristics of a flow with 𝑅𝑒𝑑 = 8450, 𝐶𝑟 = 0.5. Of course, out of the range

of Θ𝐶 investigated, under the jet circumstances, the effect on both the frequency and the
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Figure 4.7: Graph of −𝜔̂ at which the maximum instability occurs versus the number of
collocation points (Θ/𝑅 = 0.04, 𝑅𝑜𝑢𝑡 = 10𝑅, 𝐶𝑟 = 1, 𝑛 = 0)

magnitude of instability appears negligible.

4.5.2 Reynolds Number

Our PIV data in Chapter 3 shows an insensitivity of results versus Reynolds number (for

the constant viscosity jet), however this does not in itself imply that the instability will be

insensitive to Reynolds number. In fact, comparing the exteriors of different Reynolds num-

ber flows (refer back to Figure 3.32), the onset of turbulence at the lower Reynolds number

is delayed. We also see the familiar scaling of the turbulent structures, with smaller, finer

features corresponding to the high Reynolds number jet. Without the non-dimensional time

scaling of the PIV images (see (3.22)), the measured velocities would in fact be dependent

on Reynolds number.

Since the velocity profile has an effect on the −𝜔̂ of maximum instability, it is natural to

conclude that Θ should be independent of 𝑅𝑒. Indeed, Crighton & Gaster (1976) proposed

the following relationship between Θ/𝑅 and 𝑧/𝑑 (subsequently used by Plaschko (1979) and
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Figure 4.8: Contour plot of the most unstable eigenvalue, −𝛼̂𝑖, as a function of the concen-
tration thickness, Θ𝐶/𝑅, and the frequency, −𝜔̂ (𝑅𝑒𝑑 = 5000, 𝐶𝑟 = 𝜇𝑟 = 2.0,Θ/𝑅 = 0.05)

Michalke & Hermann (1982)), independent of Reynolds number:

Θ

𝑅
= 0.06

𝑧

𝑑
+ 0.04 (4.50)

However, not only does this relationship generally only hold for 𝑧/𝑑 > 1 (further downstream

than we are typically interested in), it does not reduce the degrees of freedom of the problem;

it merely substitutes 𝑧/𝑑 for Θ/𝑅. Indeed, more recent work by Cohen & Wygnanski (1987)

found a non-linear relationship upstream of 𝑧/𝑑 = 1, though downstream results still agree

with Crighton & Gaster (1976) (see Figure 4.9).

However, our limited experiments indicate a Reynolds number dependence. This seems

to agree with observations in Crow & Champagne (1971), which notes that the rippling

immediately downstream of the nozzle exit shows a Reynolds number dependence. Also,

Hussain & Kaman (1981) noted a dependence of coherent structures on Reynolds numbers
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Figure 4.9: Comparison of 𝑅/Θ versus downstream distance (𝑧/𝑑) relationships from
Crighton & Gaster (1976) and Cohen & Wygnanski (1987)

at higher 𝑅𝑒𝑑 flows (55, 000). It is generally observed that Reynolds number independence

becomes compromised with decreasing Reynolds number, so at our current conditions, cer-

tain Reynolds number dependence remains.

Rather than relating the length scale to 𝑧/𝑑, Becker & Massaro (1968) presented a

correlation between the displacement thickness at inflow, 𝛿 and Reynolds number for their

converging nozzle (which was designed to produce a top-hat profile):

𝛿

𝑑
=

0.9√
𝑅𝑒𝑑

. (4.51)

Let us presume that at a given downstream distance, the momentum thickness value Θ is

proportional to (4.51). If we take Θ ≈ 8𝛿 (selected to obtain favorable agreement with

experimental results measured at 𝑧/𝑑 = 0.5), the equation becomes:

Θ

𝑅
=

14.4√
𝑅𝑒𝑑

=
7.2√
2𝑅𝑒

. (4.52)
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This allows us to completely define the velocity profile at a given 𝑅𝑒, reducing our parameter

space. Figure 4.10 shows a subtle dependence of the most unstable 𝜔̂ on Reynolds number,

where 𝑅𝑒𝑑 is dependent on Θ/𝑅 according to (4.52).

Figure 4.10: Contour plots of the most unstable −𝛼̂𝑖 versus −𝜔̂ and 𝑅𝑒𝑑; dashed line
indicates maximum value of−𝛼̂𝑖 at a given 𝜇𝑟 (with points representing experimental results)

4.5.3 Viscosity Ratio

As a preliminary examination of the effect of viscosity gradients on the stability characteris-

tics of the jet, let us reproduce Figure 4.6 but this time with concentration gradients (both

𝐶𝑟 = 0.5 and 𝐶𝑟 = 2.0) present. Note that we mentioned that Θ is a function of 𝑅𝑒, but to

make the comparison more straight-forward, we will first produce results for Θ/𝑅 = 0.16 in

Figure 4.11.

We extend the range of concentration ratios to investigate in an attempt to uncover a

dependency on the viscosity gradient. Figure 4.12 is a contour plot of −𝛼̂𝑖 over several
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(a)

(b)

Figure 4.11: Contour plots of the most unstable −𝛼̂𝑖 versus −𝜔̂ and 𝑅𝑒𝑑 (200 nodes); (a)
𝑛 = 0, (b) 𝑛 = 1

decades of viscosity ratios. Despite the extent of the study, we do not observe a significant

trend in either the frequency or the magnitude of the peak instability. Isolated from other

variables, varying the concentration gradient alone does not produce the types of behavior

we have observed experimentally.
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Figure 4.12: Contour plot of −𝛼𝑖 versus −𝜔̂ and 𝜇𝑟 (𝑅𝑒𝑑 = 8450, Θ𝑐 = Θ = 0.16𝑅)

4.5.4 Viscosity/Concentration Relationship

4.5.4.1 High Viscosity Jet

In order to create a jet with a higher viscosity than the ambient water, we used a glyc-

erin/water solution. This high viscosity jet has the advantage of being soluble in the sur-

rounding water. The jet’s density, however, is higher than that of the ambient water, due to

glycerin’s higher density. For instance, a 2 𝑐𝑃 jet at 25∘𝐶 is approximately 7% denser than

water.

Sheely (1932) reported the fluid viscosity across the entire range of glycerin/water mixing

ratios, from pure water to pure glycerin. This was used as a guide for producing our own

liquids at desirable viscosities. A digital viscometer (NDJ-5S, Rinch Industrial Company,

Shanghai, China) was used to confirm the viscosity of our glycerin/water solutions prior to

injection.
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Cheng (2008) developed an equation for viscosity as a function of mass fraction of glycerin

(𝐶𝑚) and temperature (𝑇 , in ∘) that we made use of in our stability code. It is defined as:

𝜇 = 𝜇𝛼
𝑤𝜇

1−𝛼
𝑔 (4.53)

where

𝛼 = 1 − 𝐶𝑚 +
𝑎𝑏𝐶𝑚(1 − 𝐶𝑚)

𝑎𝐶𝑚 + 𝑏(1 − 𝐶𝑚)

𝜇𝑤 = 1.790exp

(︂
(−1230 − 𝑇 )𝑇

36100 + 360𝑇

)︂
𝜇𝑔 = 12100exp

(︂
(−1233 + 𝑇 )𝑇

9900 + 70𝑇

)︂ (4.54)

and

𝑎 = 0.705 − 0.0017𝑇

𝑏 = (4.9 + 0.036𝑇 )𝑎2.5
(4.55)

The validity of this equation compares very favorably to the results from Sheely (1932).

Figure 4.13 illustrates the quality of the agreement.

4.5.4.2 Low Viscosity Jet

The experimental setup used heat exchangers to increase the temperature of the water

(thereby lowering its viscosity) in a manner identical to that described in section 3.3.4.2.

Also described in that section is the equation used to determine water viscosity from Cheng

(2008):

𝜇𝑤 = 1.790exp

(︂
(−1230 − 𝑇 )𝑇

36100 + 360𝑇

)︂
. (4.56)

Armed with the equation for 𝜇𝑤, the stability equations can be evaluated simply by

swapping out concentration (𝐶) for temperature (𝑇 ).

Figure 4.14 shows the calculated stability over the range of 𝜇𝑟 = 𝜇𝑎/𝜇𝑗 = 0.5 to 2 using

the concentration/temperature relationships for hot water (for 𝜇𝑟 > 1) and glycerin (for

𝜇𝑟 < 1). Still, the stability characteristics appear quite insensitive to 𝜇𝑟. The behavior is
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Figure 4.13: Comparison of model prediction from Cheng (2008) and experimental results
of Sheely (1932) of glycerin/water mixtures at 25∘𝐶

very similar to the stability behavior from Figure 4.12. Again, the effect is not as pronounced

as we expected. We must consider other effects that viscosity may have; in the next section

we discuss the effect that viscosity has on the velocity profile.

4.5.5 Velocity Profile

Our analyses to this point have not shown much dependence on viscosity gradients. However,

this disagrees not only with previous investigators, but also observations from our own

experiments. We have to this point ignored the viscosity gradient’s effect on the velocity

profile, in an attempt to isolate the effect of the concentration fluctuations’ influence on

the jet’s stability. Apparently, the effect is relatively minor. Previous investigators have

incorporated the effect of the viscosity gradient on the velocity profile; we must conclude

that this is the main driver of stability modification.

Several previous investigators investigating the effect of viscosity on (temporal) instabili-

ties have benefited from a confined flow such that the velocity can be analytically determined
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Figure 4.14: Contour plot of −𝛼̂𝑖 versus the frequency and viscosity ratio, where the
concentration-viscosity relationship is defined according to equations (4.53) and (4.56)

as a function of the velocity profile (see Yih (1967), Ern et al. (2003), Selvam et al. (2007)).

We do not have the benefit of being able to solve for the velocity in our developing free jet

problem.

For both temperature and concentration driven viscosity changes, the momentum dif-

fusivity of our problem is approximately an order of magnitude larger than the respective

concentration diffusion (e.g. Prandtl number of water is approximately 7). Therefore, let us

assume that the concentration profile will be significantly narrower than the velocity profile.

For the purpose of calculating the velocity profile, we will simplify the problem by assuming

a discontinuous concentration profile where

𝑐 =

⎧⎪⎨⎪⎩
𝑐𝑗 , 𝑟 ≤ 𝑅

𝑐𝑎, 𝑟 > 𝑅

(4.57)

As before, we will set 𝜇 = 𝑐 for simplicity. We will, however, omit the concentration equation

from our stability calculations, as we are assuming the instabilities are driven primarily by
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the velocity profile. For lack of experimental guidance, we will conceive a velocity profile by

modifying profile 2 (equation (4.4)).

Because of our discontinuous concentration profile, we will define the new velocity profile

in a piece-wise sense, inside and outside of 𝑟 = 𝑅. On either side of 𝑅, the velocity profile

will be defined by profile 2, with an appropriate value of 𝑏2. We will assume the jet fluid

side still has a value of Θ𝑗 defined by the Reynolds number. Considering it is pulling up the

ambient fluid, the ambient fluid velocity profile must match both the velocity and the shear

stress at 𝑟 = 𝑅. The velocity will automatically match, since 𝑈(𝑅) = 0.5 for any value of

𝑏2. In order to match the shear, we must satisfy, as 𝑟 approaches 𝑅 from either direction:

𝜇𝑗
𝑑𝑈𝑗

𝑑𝑟
= 𝜇𝑎

𝑑𝑈𝑎

𝑑𝑟
. (4.58)

The derivative of the velocity profile with respect to 𝑟 is

𝑑𝑈

𝑑𝑟
= −

0.5𝑏2(𝑅
2 + 𝑟2)𝑠𝑒𝑐ℎ2

(︀
𝑅
𝑟 − 𝑟

𝑅

)︀
𝑟2𝑅

. (4.59)

Evaluated at the midpoint, 𝑟 = 𝑅:

𝑑𝑈

𝑑𝑟
= −𝑏2

𝑅
= − 1

4Θ
. (4.60)

Therefore,

− 𝜇𝑗

4Θ𝑗
= − 𝜇𝑎

4Θ𝑎
(4.61)

or

Θ𝑎 =
𝜇𝑎

𝜇𝑗
Θ𝑗 (4.62)

Thus, the new, modified velocity profile becomes:

𝑈(𝑟) =

⎧⎪⎨⎪⎩
0.5

{︁
1 + 𝑡𝑎𝑛ℎ

[︁
𝑅

4Θ𝑗

(︀
𝑅
𝑟 − 𝑟

𝑅

)︀]︁}︁
, 𝑟 ≤ 𝑅

0.5
{︁

1 + 𝑡𝑎𝑛ℎ
[︁

𝑅𝜇𝑗

4𝜇𝑎Θ𝑗

(︀
𝑅
𝑟 − 𝑟

𝑅

)︀]︁}︁
, 𝑟 > 𝑅

(4.63)

Figure 4.15 shows the velocity profiles for various viscosity ratios.
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Figure 4.15: Non-dimensional velocity profiles defined by equation (4.63) for various viscosity
ratios, 𝜇𝑟 = 𝜇𝑎/𝜇𝑗

As we mentioned, due to the small effect observed, we have omitted the equation for the

concentration instability, as well as the terms for concentration in the other equations from

the following analyses. The viscosity-altered velocity profiles are driving the instabilities.

Figure 4.16 first shows the effect varying 𝜇𝑟 = 𝜇𝑎/𝜇𝑗 has on the most unstable eigenvalue

as a function of 𝜔̂. An interesting behavior emerges. There is a local minimum in the most

unstable 𝜔 at approximately 𝜇𝑟 = 1.

If we plot the wavenumber, 𝛼̂𝑟 instead, we can begin to see the wavenumber associated

with the most unstable mode (see Figure 4.17).

Isolating just the most unstable wavenumber at every value of 𝜇𝑟, Figure 4.18 shows how

we expect the disturbances to shrink or grow as a function of the viscosity ratio. Again,

there is a minimum (maximum wavelength) at 𝜇𝑟 ≈ 1.
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Figure 4.16: Contour plot of −𝛼̂𝑖 as a function of 𝜇𝑟 and −𝜔̂; dashed line indicates maximum
value of −𝛼̂𝑖 at a given 𝜇𝑟 (with points representing experimental results)

4.5.6 Asymmetric Instability Mode

As stated previously, we have primarily concentrated on the axisymmetric mode. This is,

in part, simply to limit the scope of our investigation to something manageable, but also,

the experiments that follow in section 4.6, exhibit primarily axisymmetric instabilities. In

Figure 4.19 we compare the calculated instability of the axisymmetric mode with the first

asymmetric mode. Across the range of relevant viscosity ratios, the axisymmetric mode is

at least marginally larger.

4.6 Experiments

4.6.1 Experimental Setup

Due to our use of liquids, we made use of dye to visualize the jet cross-section with a high-

speed camera that could provide the necessary temporal resolution. PIV did not provide

the necessary temporal resolution to make it an effective tool to study the instability devel-
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Figure 4.17: Contour plot of 𝛼̂𝑟 as a function of 𝜇𝑟 and −𝜔̂; dashed line indicates maximum
value of −𝛼̂𝑖 at a given 𝜇𝑟

opment, and hot-wire anemometry was not available for use in liquids (hot film) to record

the velocity characteristics near the jet interface.

We conducted experiments in the experimental tank which has already been described

in detail in 3.3. Specifically, we used a laser plane similar to the more traditional PIV

configuration outlined in section 3.3.2. There are, however, a few noteworthy differences

in how the experiments were conducted. Whereas in PIV tests, we wanted the jet to be

essentially opaque to the laser light, we now desire uniform illumination of the jet interior.

Therefore we used significantly lower Rhodamine concentration to dye the injected fluid.

Furthermore, rather than illuminating with a pulsed laser, synchronized with the MegaPlus

camera, we used a 514.5 𝑛𝑚 continuous laser (Stabilite 2017 Ion Laser, Spectra-Physics,

Santa Clara, CA) that was manipulated to become a laser sheet co-planar with the jet

centerline. Figure 4.20 is a photograph of the laser plane illuminating Rhodamine-dyed

high-viscosity fluid above the 10 𝑚𝑚 nozzle.

Video of the flow was captured with a high-speed camera (Phantom V12, Vision Re-

search, Trenton, N.J.) that allowed us to record the continuous evolution of the flow. Our
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Figure 4.18: Plot of most unstable 𝛼̂𝑟 as a function of 𝜇𝑟

experiments were imaged at between 1000 and 5000 frames per second, which provided

acceptable temporal resolution for the flow rates considered.

In order to observe the frequency of the instability, we analyzed the images extracted

from the high-speed video in ImageJ, creating individual TIFF images for each video frame.

A vertical line of pixels is taken from a number of consecutive images; these columns are

stacked horizontally along a time axis at a particular downstream location. Figure 4.21

shows both an example source image, as well as the result from compiling columns of pixels

from approximately 500 consecutive images. The columns of the image each represent the

same downstream location at successive frames from the video. Taken at, say 2000 frames

per second, two adjacent pixels represent the change at the location one half millisecond

apart in time. An image 500 pixels wide therefore spans 250 milliseconds of video. By

counting the number of peaks or valleys at the jet edge (interface fluctuations) – in this

case, approximately 38 – and dividing by the timespan, we can determine the frequency of

the dominant instability to be 38/0.25 𝑠𝑒𝑐 = 152 𝐻𝑧. Calculation of the non-dimensional
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Figure 4.19: Plot of 𝛼̂𝑖 versus 𝜇𝑟 for both 𝑛 = 0 and 𝑛 = 1 modes (𝑅𝑒𝑑 = 8450,Θ/𝑅 = 0.16)

Figure 4.20: Photograph of the laser plane generated by the continuous laser illuminating
Rhodamine-dyed high-viscsity fluid above the 10 𝑚𝑚 nozzle
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frequency can be made given 𝑈𝑗 and 𝑅:

𝜔̂ =
𝜔𝑅

𝑈𝑗
=

(152 𝐻𝑧)(0.00475𝑚)

0.74𝑚/𝑠
= 0.98 (4.64)

(a) (b)

Figure 4.21: (a) Single frame from the high-speed video of a stability experiment (𝑅𝑒𝑑 =
8450, 𝐶𝑟 = 1), showing 𝑧/𝑑 ≈ 0.5, (b) Columns of pixels from 500 consecutive images
grabbed from the indicated position from image (a)

Additionally, since peaks and valleys in the top of the image roughly correspond to the

same phase peaks and valleys in the bottom of the image, we can conclude that the dominant

disturbance is indeed axisymmetric. As Figure 4.21 makes clear, individual images from the

video confirm that the instability is axisymmetric.

We conducted experiments in two main directions. First, we tested uniform viscosity jet

flows at several Reynolds numbers. Then, we held the jet Reynolds number fixed (𝑅𝑒𝑑 =

8450) and varied the viscosity ratio, 𝜇𝑟 = 𝜇𝑎/𝜇𝑗 . The ratio was controlled by leaving

the ambient fluid as water (∼ 1 𝑐𝑃 ) and adjusting the viscosity of the jet. As discussed

previously, low viscosity jets were achieved by heating the water, and high viscosity jets were

produced by mixing the water with an appropriate amount of glycerin.
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4.6.2 Reynolds Number Variation

In section 4.5.2, we discussed a likely effect of Reynolds number of the velocity profile of

the jet. We have largely used equation (4.52) to define the constant-viscosity jet profile as

a function of Reynolds number.

Figure 4.10 includes experimental points generated from analysis of the constant-viscosity

jets. The experiments have quite a bit of scatter, but generally adhere to the magnitude and

trend of the predictions. One source of uncertainty is that our frequency analysis focuses on

𝑧/𝑑 = 0.5, but the location of the initial instability growth may be sensitive the Reynolds

number.

4.6.3 Viscosity Ratio Variation

As we mentioned, the viscosity of the jet is varied to achieve different viscosity ratios.

Specifically, we heated the jet water to ∼ 55 ∘𝐶 to drive the viscosity down to 0.5 𝑐𝑃 (while

the density remains essentially unchanged). As interesting as it would be to explore even

lower viscosities, it is difficult to achieve higher temperatures with this setup without having

localized boiling, which generates many small bubbles that affect the flow stability.

On the other side, we are able to mix in glycerin to increase the viscosity to 2 𝑐𝑃 . This

is accompanied by a mild increase in the jet density (∼ 6% higher), which we anticipate will

have little effect on stability. Higher viscosities are easy to achieve by mixing in a larger

proportion of glycerin, however the density starts to be noticeably affected.

In order to maintain a constant jet Reynolds number of 𝑅𝑒𝑑 = 8450, the jet velocity is

adjusted accordingly; for the lower viscosity jet, the velocity was halved, and for the higher

viscosity jet, the velocity was doubled.

Figure 4.22 includes still images from the video of each jet. There are a few different

observations we can make right away. First, the jet disturbances are much smaller for the

high viscosity jet than either of the other jets. These disturbances do not appear to grow

into vortices of the same size as both of the other jets do. The wavelength of the low

viscosity jet is comparable, but slightly shorter than the jet with nearly uniform viscosity

(𝜇𝑟 = 1.2). Second, the onset of the instability occurs further upstream for higher viscosity



120

jets (corresponding to lower viscosity ratios).

(a) (b)

(c)

Figure 4.22: Images of jets with various viscosities having Reynolds number 𝑅𝑒𝑑 = 8450;
(a) 𝜇𝑗 = 0.8 𝑐𝑃 (𝜇𝑟 = 1.2), (b) 𝜇𝑗 = 0.5 𝑐𝑃 (𝜇𝑟 = 2), (c) 𝜇𝑗 = 2 𝑐𝑃 (𝜇𝑟 = 0.5)

Both of these observations agree with the predictions from section 4.5.5. Figure 4.16

suggests that instability growth rate increases with decreasing 𝜇𝑟, consistent with our ex-

perimental findings. Figure 4.18 predicts that the most unstable wavenumber will grow

(wavelength will shrink) as 𝜇𝑟 increases or decreases; however, it is appreciably larger for

𝜇𝑟 = 0.5 than 𝜇𝑟 = 2 as is the case in our experiments. Furthermore, the wavelengths for

𝜇𝑟 = 1.2 and 𝜇𝑟 = 2.0 are comparable in both the experiments and stability predictions.

Additionally, we took several hundred images from each video and used ImageJ to plot

the standard deviation of the collection, based on pixel intensity. The resulting gray-scale
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plot has pixel intensities corresponding to the magnitude of the standard deviations. Figure

4.23 shows the results for the three jets. It is clear that the jet with the uniform viscosity

expands more quickly, and entrains more ambient fluid, than either the high or low viscosity

jet.

(a) (b)

(c)

Figure 4.23: Standard deviation plot of jets with various viscosities having Reynolds number
𝑅𝑒𝑑 = 8450; (a) 𝜇𝑗 = 0.8 𝑐𝑃 (𝜇𝑟 = 1.2), (b) 𝜇𝑗 = 0.5 𝑐𝑃 (𝜇𝑟 = 2), (c) 𝜇𝑗 = 2 𝑐𝑃 (𝜇𝑟 = 0.5)

This behavior is consistent with previous investigators when initial engulfment is inhib-

ited. Buratinni & Djenidi (2004) used a grid to enhance turbulence at the jet origin. The

effect is to inhibit the organization of coherent structures caused by instability near the jet

exit. The reduction in these coherent structures corresponds to a reduced entrainment, cen-

terline jet decay, and radial spreading. The increase in the jet viscosity accomplishes much

the same thing, because the initial disturbances are reduced in size.
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4.7 Discussion

Our investigation of the viscosity gradient’s role on jet stability led us to incorporate equa-

tions for the concentration distribution throughout the domain and account for its rela-

tionship to viscosity. However, by examining each parameter’s effect on the stability space

while holding other parameters constant, we are led to conclude that the mere presence of

a viscosity/concentration gradient is not sufficient to alter the stability behavior. Rather,

it is the modification of the velocity profile by the viscosity gradient that must be respon-

sible for observed changes in the stability. Having made this observation, we can omit the

concentration equations from our eigenvalue analysis, saving computational time.

The experiments and stability analysis both indicate that the modification of stability

behavior on jet entrainment is at least partly responsible for the PIV behavior seen in Figure

3.36. Our analysis indicated that as the viscosity ratio is modified in either direction from

(approximately) unity, the frequency and wavenumber of the initial instability both increase

(see Figures 4.16 and 4.18). We hypothesize that the reduced entrainment by higher viscosity

jets not only allows the centerline velocity to decay more slowly, but the surrounding fluid

offers less shear resistance to the jet superlayer than equal viscosity ambient fluid in a similar

Reynolds number jet. These factors contribute to the higher measured velocity of the jet

turbulent/non-turbulent interface, relative to the jet core velocity.

The lower viscosity jet also exhibits reduced entrainment. Campbell & Turner (1985),

concerned with naturally-occurring magma flows, conducted experiments of a low-viscosity

fluid injected into a chamber of higher-viscosity fluid. Consistent with our results in Figure

4.23, they also concluded that entrainment is inhibited. However, the mixing thresholds they

calculated were for much lower Reynolds numbers than the current study, and buoyancy was

a significant effect.

Chhabra et al. (2005) conducted jet experiments with the ambient fluid having a viscosity

6 to 45 times greater than that of the jet. They saw reduced entrainment, also leading to

elevated centerline velocities relative to the constant viscosity counterparts. From their plots

of the axial velocity profiles, it appears that the velocity of the jet boundaries may decay

more quickly than in the constant viscosity case. However, without knowing the position
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of the turbulent/non-turbulent interface of the jet, it is impossible to tell exactly what the

velocity of the jet interfacial surface is. We suggest that, it is the elevated viscous stress

provided by the surrounding high viscosity fluid that causes the lower velocity to be measured

by the Feature Image Correlation in Chapter 3.

4.8 Future Work

This analysis would benefit greatly from more detailed and abundant experimental data.

Specifically, rather than making assumptions about the velocity profile, experiments and

numerical investigations could provide more concrete guidance on the conditions to model.

Without experiments, there are additional estimations for the velocity profile that can be

tried. For instance, the approximations we have made for the viscosity-altered velocity pro-

files (section 4.5.5) do not preserve the momentum injected at the jet nozzle. While we match

the shear force and velocity at the fluid interface (at 𝑟 = 𝑅), we do not take measures to

ensure that momentum is consistent among the profiles. Figure 4.24 shows profiles resulting

from adjusting the interface velocity in order to conserve the flow momentum. As a result

of the momentum conservation, the interface velocity increases for lower viscosity ratios,

and decreases for higher viscosity ratios. This trend is consistent with the PIV observations

qualitatively if not quantitatively.

Accurate velocity measurements may require experimenting with gases rather than liq-

uids. That would open up the opportunity to use hot-wire anemometry. Alternatively,

hot-film measurements could be conducted at the liquid jet edge with very high spatial reso-

lution (the boundary layer thickness of a few hundred microns needs to be resolved with ∼ 10

data points). Liquids with different viscosities typically have sufficiently different indices of

refraction that PIV experiments are not accurate.

Similarly, corresponding experimentally-measured concentration profiles would also add

certainty to the analyses.

The experimental setup may benefit from vibration dampening measures such as isolating

the table from the ground. While it is not obvious that the experimental results were affected,

our laboratory is clearly subject to vibrations from nearby traffic and heavy equipment.

Furthermore, covering a wider range of Reynolds numbers is desirable. It would be
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Figure 4.24: Plot of momentum-conserving velocity profiles for various viscosity ratios
(Θ𝑗/𝑅 ≈ 0.1)

interesting to have results for both lower Reynolds numbers where the onset of instability is

delayed, and higher Reynolds numbers where asymmetric modes may become dominant.

While engulfment is an important feature of turbulent jet flow, the downstream, smaller

scale “nibbling” is seen to play a large role in entrainment (Westerweel et al., 2005). For the

flows in our experiment, at large downstream distances the viscosity will homogenize due

to diffusion. However, if wishing to analyze immiscible fluids with the Feature Image Cor-

relation velocity measurement technique developed in this thesis, turbulent features farther

downstream may be an important consideration. Such analyses may demand a different ap-

proximation of the velocity profile; additionally, the assumption of an axisymmetric velocity

profile would likely need to be re-examined for downstream locations.
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Chapter 5

CONDENSATION AT THE EDGE OF A TURBULENT JET

5.1 Nomenclature

𝜂 Non-dimensional radius (𝑟/(𝑧 − 𝑧0))

𝑧 Distance downstream from the nozzle

𝑧0 Downstream distance of virtual origin

𝑧* Virtual downstream distance (𝑧 − 𝑧0)

𝑑 Nozzle diameter

𝑈𝑗 Jet exit velocity

𝑧, 𝑧* Dimensionless downstream distances (𝑧/𝑑, 𝑧*/𝑑)

𝑓(𝑧*, 𝜂) Scalar value, eq. (5.3)

𝑓𝑐(𝑧
*) Scalar value along jet centerline

𝑓𝑗 Scalar value at jet exit, assumed to be unity

𝐹 (𝜂) Dimensionless scalar value, eq. (5.1)

⟨·⟩ R.M.S variation of turbulent quantity

𝑃𝑣 Vapor pressure

𝑃𝑠𝑎𝑡 Saturation pressure

Γ Turbulent transport coefficient, eq. (5.14)

𝜎 Schmidt number

ℎ𝑝 Specific enthalpy of a computational particle, eq. (5.18)

ℎ𝑤𝑒 Latent heat of evaporation for water

𝑐𝑝𝑎 Specific heat capacity of air at constant pressure

𝑐𝑝𝑤 Specific heat for water vapor at constant pressure

𝑐𝑤 Specific heat capacity of water

𝑥 Mass fraction of the water (liquid and vapor)

𝑥𝑙 Mass fraction of liquid water (with respect to the total particle mass)
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5.2 Background

Growth of liquid droplets by condensation is an important phenomenon in many environ-

mental and industrial applications. In a homogeneous environment, condensation will tend

to narrow the diameter distribution of a poly-disperse collection of droplets. This is because,

in the most basic analysis, droplet growth is proportional to the inverse of the drop radius

(Squires, 1952).

The mixing driven by a turbulent flow will, however, entrain additional aerosols that will

play the role of condensation nuclei, which can broaden the droplet diameter distribution.

Furthermore, turbulence can have the effect of subjecting droplets in close proximity to

very different local conditions leading to a different growth rate based on different histories

of sampling an intermittent supersaturation field. This type of droplet size distribution

broadening is critical to understanding many vapor deposition processes, including rain

formation in clouds.

In order to properly understand the condensation behavior of water droplets in a tur-

bulent flow, it is crucial to understand the dispersion of a passive scalar (e.g. temperature,

water vapor), as well as that of small inertial particles. This scalar dispersion is important

to understand how water vapor and temperature are dispersed, the combination of which

dictates supersaturation, the main driver of droplet condensational growth or evaporation.

5.2.1 Momentum-Dominated Turbulent Jet

We have already discussed velocity statistics in section 3.2; just as Hussein et al. (1994)

observed self-similarity in the velocity field, a passive scalar being emitted by the jet exhibits

a self-similar nature in the developed region of the turbulent jet. Thus, the average and

root mean squared (R.M.S.) of the distribution of a passive scalar, 𝑓 , can be predicted

at any downstream distance and radial position (Panchapakesan & Lumley, 1993b). The

normalized, self-similar mean profile is typically approximated by a Gaussian function,

𝐹 (𝜂) = exp (−𝐴𝜂2) (5.1)
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where we will select 𝐴 = 59 based on Richards & Pitts (1993). We assume the centerline

value, 𝑓𝑐, will be defined as a function of downstream distance, 𝑧* = 𝑧−𝑧0
𝑑 :

𝑓𝑐(𝑧
*) = 𝑓0

𝐵

𝑧*
=

𝐵

𝑧*
(5.2)

where Richards & Pitts (1993) observed 𝐵 to be 4.76. In this way, the mean value of the

scalar 𝑓 , which has a value of unity at the jet exit and zero in the ambient environment, can

be defined for any (𝑧*, 𝜂) position:

𝑓(𝑧*, 𝜂) = 𝐹 (𝜂)𝑓𝑐(𝑧
*). (5.3)

Scalar quantities with different values at the boundaries, such as 𝜔 (water vapor concentra-

tion) and 𝑇 (temperature), can be related to 𝑓 :

𝑓(𝑧*, 𝜂) =
𝜔(𝑧*, 𝜂) − 𝜔∞
𝜔𝑐(𝑧*) − 𝜔∞

=
𝑇 (𝑧*, 𝜂) − 𝑇∞
𝑇𝑐(𝑧*) − 𝑇∞

(5.4)

where quantities with the subscript 𝑐 represent centerline values. This definition is similar

to that used by Strum & Toor (1992).

While the radial variation of concentration fluctuation intensity, ⟨𝑓⟩
𝑓 , typically is not

described by an equation, it also exhibits self-similarity. We will look to the literature and

interpolate quantities from Figure 5.1 provided by Panchapakesan & Lumley (1993b).

5.2.2 Condensation Mixing Model

The literature is relatively sparse regarding attempts to model the condensation and evap-

oration of a liquid-vapor system inside of a turbulent jet.

A notable example of modeling the condensation problem in a turbulent jet can be

found in Strum & Toor (1992). The model is based on the concept of a series of ever

larger continuously stirred-tank reactors (CSTR), which are a commonly used analytic tool

in chemical engineering (see Figure 5.2). The jet is discretized into CSTRs in the axial,

but not the radial direction. As a result, within a CSTR, the fluid conditions (e.g. particle

distribution, water vapor partial pressure) are assumed to be homogeneous, though the
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Figure 5.1: Graph of the radial variation concentration fluctuation intensity from Pancha-
pakesan & Lumley (1993b)

contained droplets will not necessarily all have the same size. The droplet size distribution

evolves with axial distance but does not depend on the radial location, a clearly incorrect

assumption that implies mixing is infinitely fast and the supersaturation statistics are the

same at the centerline of the jet and at the edge, for a given distance downstream from

the nozzle. However oversimplified, this represented an superior use of the CSTR model

compared to Friedlander (2000), which neglected even the axial dependence.

At each axial position, there are two important steps in computing with this model. The

droplet population is grown (or shrunk) based on the (uniform) conditions in the CSTR

section. Additionally, “dry,” ambient air is entrained along with the condensation nuclei

it contains. Once these tasks are performed, the entire mass is convected into the next

downstream CSTR. One would expect non-uniform droplet profiles to develop due to the

entrainment.
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Figure 5.2: Figure from Strum & Toor (1992) illustrating the continual stirred-tank reactor
used in the condensation mixing model

5.3 An Improved Axisymmetric, Two-Dimensional CSTR Model

5.3.1 Description

The previous CSTR-based model from the literature, with a dependence only on axial dis-

tance, represents a first step in including differential jet velocities and entrainment depen-

dency in the mixing and condensation. A more complete model of condensation in a tur-

bulent jet should include the radial dependence both because the mixing of droplets and

entrained nuclei is not instantaneous across the jet width, and the droplets themselves are

advected in the axial direction at different speeds as a function of their position along the

jet radius (in the average sense).

Mixing in the free turbulent jet is dominated by eddies which intersperse fluid from

otherwise disparate regions. The stretching creates elongated sheets and filaments of the

fluid regions, increasing the surface area of the boundary between the regions, which allows

molecular diffusion to mix more effectively. The distribution of the iso-concentration regions

throughout the jet is independent of the jet Reynolds number (see Figure 5.3 from Villermaux

& Innocenti (1999)). This is a necessary condition in order for self-similar profiles of mean

and R.M.S. scalar values to exist independent of downstream distance and Reynolds number.
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Therefore, when variations in a passive scalar in the flow are observed, it is because

otherwise homogeneous regions are being increasingly subdivided and interspersed. Diffu-

sion takes hold as the interfacial surface area is ever-increased, resulting in the continuous

distribution of scalar values described by the self-similar mean and R.M.S. profiles.

As such, when discretizing the jet at a given downstream distance, it is more meaningful

to discretize based on intervals in the value of the passive scalar, rather than on radial

location. Indeed, the scalar at a given downstream distance and radius should not be

described by a single value; there will be a distribution of values due to the nature of

turbulence. Knowing the properties of each scalar region, we should be able to reconstruct

the jet behavior as a function of radius, based on the self-similar mean and R.M.S. behavior

of the scalar.

Based on the number density and size distribution of the droplets in a region of constant

𝐹 , we can calculate the actual water vapor content and temperature based on the depletion

of water vapor and release of latent heat.

We will rely on several assumptions in order to develop our model. The self-similar nature

of a turbulent jet is presumed to extend upstream throughout the development region. Any

negative effects due to this assumption are mitigated by the small volume and high velocity

of the region. The self-similarity also holds downstream as far as the model considers active

mixing and supersaturation in the axial direction along the jet; also, the buoyancy force

is neglected. Knowledge about the mean value and standard deviation of 𝐹 allows us to

calculate the relative proportions of any number of discretized 𝐹 regions at an arbitrary

radius 𝜂.

An additional assumption is that droplet number density is constant throughout the

field. Assuming the jet’s particle concentration is approximately equal to the ambient’s,

then according to Friedlander (2000):

𝜕𝑁∞
𝜕𝑡

= 𝐼𝑑 +

[︂
𝜕𝑁∞
𝜕𝑡

]︂
𝑐𝑜𝑎𝑔

. (5.5)

Since we are ignoring coagulation (droplets’ Stokes numbers are small), and homogeneous
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Figure 5.3: Figure from Villermaux & Innocenti (1999) illustrating Reynolds number inde-
pendence of iso-concentration regions; the upper image is of a jet with half the Reynolds
number of the jet in the lower image
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nucleation is absent (𝐼𝑑 = 0), the result is

𝜕𝑁∞
𝜕𝑡

= 0. (5.6)

That is, the total number concentration is constant in time.

5.3.2 Implementation

First, at each downstream location, the jet must be discretized into regions based on their

non-dimensional scalar value, each with size 𝑑𝐹 . This may represent widely difference radial

width of the spatial discretization, but equal “width” in scalar value, which guarantees similar

resolution of the scalar gradients, the important metric to resolve the supersaturation field

accurately (equivalent to grid refinement based on the local gradient).

We know the value of the mean and R.M.S. of 𝐹 (𝜂), but we do not necessarily know

the distribution of 𝐹 that yields the behavior. In order to move forward, we will assume a

normal Gaussian distribution of the fluid across 𝐹 at each 𝜂, given self-similar values of the

mean, 𝐹𝜇(𝜂) and the standard deviation, 𝐹𝜎(𝜂). Thus, the specific volume of a range of 𝐹 ,

𝐹2 − 𝐹1 = 𝑑𝐹 , is defined as

𝜈 =

∫︁ 𝐹2

𝐹1

1

𝜎
√

2𝜋
𝑒
−
(𝐹−𝐹𝜇)2

2𝐹 2
𝜎 𝑑𝐹. (5.7)

Dividing the 𝐹 domain into bins of 𝑑𝐹 , the size of each bin can be computed as a function

of 𝜂. Figure 5.4 is a representation of the 𝐹 distribution that can be used throughout the

succeeding calculations.

The jet is discretized in the radial direction by the common non-dimensional variable

𝜂 = 𝑟/(𝑧−𝑧0). This provides for a well-defined computational domain, rather than allowing

the jet radius to grow without bound as downstream distances increase. Similarly, scalar

discretization will proceed on the variable 𝐹 . At each discretized span of 𝜂, the normalized

mean value of 𝐹 (𝜂) and its standard deviation are known a priori (as described in the

previous section). Each of these annular sections in the value of 𝐹 are well-mixed CSTR

regions similar to the regions described by Strum & Toor (1992) (see Figure 5.2).
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Figure 5.4: Graph of normalized proportion of scalar bin 𝑑𝐹 = 0.03 as a function of 𝐹 value
and 𝜂
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Figure 5.5: Illustration of the computational domain decomposition

Garmory & Mastorakos (2008) noted in their work studying condensation in a turbulent

jet that modeling droplet diameter distribution with only a few moments may be inadequate.

Therefore each discretized region 𝑑𝐹 is further discretized into droplet radius bins, 𝑑𝑟, rather

than assuming a Weibull (or other) distribution. Figure 5.5 illustrates the decomposition of

the domain at each downstream distance (as opposed to Figure 5.2) where the entire axial

slice is considered well-mixed and therefore described by a single scalar concentration value.

Note that each 𝐹 bin exists independent of the 𝜂 discretization. It is knowledge of the

distribution of 𝐹 (see Figure 5.4) that allows for reconstruction of the droplet distribution

at each 𝜂 location. That is, we assume that the droplet size distribution within a given

𝑑𝐹 bin is the same regardless of the radial position. This allows for a significant savings

in computational storage and time. It can be justified by arguing that regions with similar

values of 𝐹 have undergone similar histories regardless of their 𝜂 location.

The downstream fluid conditions in each 𝑑𝐹 bin are calculated using equations 5.3 and
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5.4. The droplet diameter distributions are advanced from the previous axial position and

their effect on the region’s temperature (through latent heat release) and water vapor content

(reduction in water vapor) is calculated. This, in turn, is used to calculate the region’s local

water vapor pressure using Antoine’s equation:

𝑙𝑜𝑔10𝑃𝑠𝑎𝑡 = 𝐴− 𝐵

𝐶 + 𝑇
(5.8)

where A, B and C are constants tailored to the particular gas and temperature range of

concern. In the case of water vapor (Albright, 2008):

𝐴 = 8.07131

𝐵 = 1730.63

𝐶 = 233.426

(5.9)

which yield 𝑃𝑠𝑎𝑡 in units of 𝑚𝑚 Hg. The vapor pressure, 𝑃𝑣, must be determined from the

local conditions of the 𝑑𝐹 bin.

This is sufficient information to calculate the supersaturation, which is used to simulta-

neously integrate the system of ordinary differential equations:

𝑑𝑟𝑏
𝑑𝑡

= 𝛾
𝑠𝑠

𝑟𝑏
(5.10)

where

𝑠𝑠 =
𝑃𝑣

𝑃𝑠𝑎𝑡
− 1 (5.11)

and the subscript 𝑏 is the diameter bin index. In this analysis, we assume that the droplet

growth will not have a significant influence on the local supersaturation conditions over the

interval of time integration, 𝑑𝑡. The time over which the integration occurs will depend on

the 𝐹 bin’s approximate mean axial velocity, by determining 𝑈(𝑧*, 𝜂1) given 𝐹 = 𝐹 (𝜂1).

That is, the value of 𝑑𝑡 is calculated for each 𝑑𝐹 bin:

𝑑𝑡 =
𝑑𝑧

𝑈(𝑧*, 𝜂)
. (5.12)
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Once the growth of each droplet bin diameter has been determined, the new droplet

distribution among the bins will be determined by interpolation, ensuring conservation of

liquid water mass.

As a consequence of the jet expansion, although the 𝑑𝜂 values will remain constant as the

simulation progresses downstream, the actual volume of each discretization will continue to

grow. In order for the 𝑁 concentration to remain constant (see equation 5.6), droplets must

be added to each 𝑑𝜂 region. Beginning with the centerline 𝑑𝜂, the appropriate number of

droplets are moved from each 𝑑𝐹 bin contained in the next outermost 𝑑𝜂 inward to maintain

𝑁 .

The outermost 𝑑𝜂 bin will mix in the same type of aerosol “droplets” present at the

inlet. These nuclei are assumed to behave as very small particles, and they are given a

nominally small, uniform diameter; in our case they are 0.1 𝜇𝑚. As such, we do not let

drops evaporate below that threshold diameter, at which point they are assumed to have

completely evaporated. This obviously ignores any effects specific to nucleation.

The values 𝜔 and 𝑇 can be computed from equation 5.4. Time is marched forward by

advancing in increments of axial distance, 𝑧. Rather than fit a Weibull distribution, we

discretize the droplet diameter distribution, organizing droplet populations into diameter

bins. These will be tracked as a function of axial distance (𝑧) and radial distance (𝜂).

The described algorithm is implemented with the Python programming language. We

leveraged routines from numpy, scipy and matplotlib libraries (Jones et al., 2001; Hunter,

2007) to streamline the coding process.

5.3.3 Comparison with Experiments from Literature

In order to justify the model’s added complexity, it was important that the model worked

to adequately predict not only the diameter distribution as a function of axial distance

(already well-captured the original one-dimensional model of Strum & Toor (1992)), but

also to provide accurate predictions as a function of radial distance from the jet centerline.

The experiments consisted of air saturated with water vapor being injected into the

ambient environment using a 1.1 𝑐𝑚 diameter nozzle at a Reynolds number of ∼ 2000. The
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jet inflow in the case considered here was free of droplets and nuclei (we will look at jets

seeded with droplets in section 5.4). A PDPA was used to measure the particle sizes and

velocities at various radial and axial locations.

To validate the two-dimensional model, we first compared the one-dimensional evolution

of the average diameter along the centerline, for increasing distance downstream of the

nozzle, to the experimental measurements provided in Strum & Toor (1992). Figures 5.6

and 5.7 show the volume-averaged droplet diameter, 𝐷30, as a function of axial distance,

𝑧/𝑑, for 62 and 85 ∘𝐶 saturated jets. Note 𝐷30 is a volume-averaged diameter, while 𝐷10 is

a simple arithmetic average of the recorded droplet diameters. The model correctly predicts

the trend for the growth of particles in the unseeded case (noted as u62 and u85 in the

legend of the plots). For the 62 ∘𝐶 jet, it provides quantitatively-accurate measures of the

maximum value of the average diameter, ∼ 4.5 𝜇𝑚, and the location of this maximum,

between 15 and 25 diameters downstream. It correctly captures, although exaggerating the

magnitude, the decrease of the droplet size due to evaporation as the supersaturation decays

with entrainment of more dry ambient air beyond an axial distance of about 25 diameters. In

the 85 ∘𝐶 jet, the model correctly predicts the growth of droplets to a maximum of ∼ 7 𝜇𝑚,

but it delays the position of this maximum to about 25 diameters downstream, rather than

the 15 diameters observed in the experiments.

The next step in the validation of the model is the comparison of actual droplet size

distributions, rather than the first moments, the average diameter. Figures 5.8 and 5.9 show

comparisons of the droplet diameter distributions in the model (right) versus experiments

(left) for downstream locations, over a wide range from ∼ 2𝑑 to ∼ 40𝑑. Both the 62 and

85 ∘𝐶 jets show a monotonic decrease of the percentage of small droplets and an increase in

the larger droplets along the jet centerline from the nozzle to a distance of ∼ 15𝑑, in good

agreement with the experiments. At 𝑧/𝑑 ≈ 25, the diameter distribution shows significant

flattening. The distribution of relatively large and small droplets both increase, exhibiting

a bimodal behavior, while the mean droplet diameter decreases very slowly (as noted in

Figures 5.6 and 5.7).

Finally, modeled droplet size distributions at various radial locations are compared side-

by-side with the experimental results in Figures 5.10 and 5.11. This is the novel contribution
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Figure 5.6: Comparison of experimental and model results of droplet diameter, 𝐷30, at the
jet centerline as a function of downstream distance for a saturated 62 ∘𝐶 jet

Figure 5.7: Comparison of experimental and model results of droplet diameter, 𝐷30, at the
jet centerline as a function of downstream distance for a saturated 85 ∘𝐶 jet
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Figure 5.8: Comparison of experimental and model results of droplet diameter distribution
at the jet centerline for various downstream positions for a saturated 62 ∘𝐶 jet

of this two-dimensional model, as the axial-only model did not discriminate between radial

positions and considered the size distribution uniform along these axial slices. The results

at 𝑧/𝑑 = 1.7 show a small inhomogeneity of the size distribution within the jet, with good

qualitative agreement with the experiments. Because the measurement locations are largely

within the potential core, the number of droplets being measured is quite low. Furthermore,

the accuracy of the PDPA is suspect for such small droplet diameters. The plots in Figure

5.11 present a much richer behavior in which the outskirts of the jet (𝑟/𝑑 = 4) have a

decrease in the mode droplet number but an increase in the larger (∼ 10 𝜇𝑚) and smaller

(∼ 2 𝜇𝑚) droplets, due to the inhomogeneity of the mixing in that region. This is similar to

the behavior of the droplets near the centerline observed in Figures 5.8 and 5.9, but for much

larger distances downstream (𝑧/𝑑 ≈ 25 − 35) where the inhomogeneity in supersaturation

reaches the centerline fluid.

Thus, this two-dimensional model captures the transition from a unimodal near the jet

centerline to a bimodal distribution near the mixing layer by capturing the radial distribution

of supersaturation and the distinct evolution of the droplets near the edges. Both of these

phenomena are important for large scale flows in which the mixing-induced inhomogeneities

significantly contribute to condensation/evaporation dynamics.
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Figure 5.9: Comparison of experimental and model results of droplet diameter distribution
at the jet centerline for various downstream positions for a saturated 85 ∘𝐶 jet
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Figure 5.10: Comparison of experimental and model results of droplet diameter distribution
at various radial positions at a downstream distance of 𝑧/𝑑 = 1.7 for a saturated 85 ∘𝐶 jet
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Figure 5.11: Comparison of experimental and model results of droplet diameter distribution
at various radial positions at a downstream distance of 𝑧/𝑑 = 15 for a saturated 85 ∘𝐶 jet
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5.4 PDF-Based Model

The two-dimensional analytic model developed in the previous section exhibits an ability to

predict droplet distributions throughout the domain (both in the radial and axial directions).

However, due to the numerous assumptions made, it is heavily dependent on the knowledge

of the scalar concentration and velocity self-similar fields, a priori, and therefore it cannot be

easily expanded to other more realistic flow configurations beyond the turbulent jet. Hence,

we develop a more general model that would be flexible enough to compute droplet growth

in a much wider variety of turbulent flows. We will, however, validate it using the same

turbulent jet experimental data from Strum & Toor (1992) used in section 5.3.

Turbulence modeling has been a subject of great interest within the fluid dynamics

community since the inception of numerical simulations. Numerical models range from

fully resolving the turbulence with direct numerical simulation (DNS) to Reynolds-Averaged

Navier-Stokes (RANS) models that simply calculate a few moments of the mean velocity

field.

DNS models have resolution demands (in both space and time) that make moderate

and high Reynolds number flows inaccessible to solve in a timely manner. In fact, when

considering the mixing of particulate flows (e.g. smoke or small water droplets), the compu-

tations become even more demanding. The Schmidt numbers of such flows tend to be in the

105 − 106 range (Dimotakis, 2005). The associated steep gradients can dramatically drive

up spatial requirements, as well as the associated computational demands.

RANS models solve the closure problem by using averaged versions of the Navier-Stokes

equations and utilizing models of varying complexity for the Reynolds stresses, 𝑢′𝑖𝑢
′
𝑗 . The

RANS models can make modeling efforts of high Reynolds number flows tractable, but the

instantaneous fluctuations of velocities (and subsequently, any advected scalars) are omitted.

When modeling non-linear behavior such as condensation or combustion, scalar averages are

insufficient; the fluctuations of scalars are critically important to track.

Large-Eddy Simulations (LES) tend to serve as a compromise in both computational

demands and accuracy of the two previous methods, but consequently, it suffers from both

sets of drawbacks: large computational requirements and significant modeling sensitivity.
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Probability density function (PDF) methods have been proposed as an alternative ap-

proach to addressing the closure problem in turbulence modeling. While it enjoys some use

for velocity joint PDF modeling, it has found greater utility modeling scalar transport and

chemical reactions.

Pope (1985) made a seminal contribution in proposing and discussing a solution algo-

rithm for a composition-velocity joint PDF method. Given a velocity field with information

about the turbulence characteristics, stochastic particles were evolved during each time step

over a sequence of fractional steps. These fractional steps included a reaction model (for com-

bustion, condensation, etc.), a mixing model, and finally displacement (advection/diffusion).

Muradoglu et al. (1999) formalized a hybrid Lagrangian particle/Eulerian carrier-fluid

method. Like other investigators, their aim was to take advantage of the best aspects of the

finite volume and stochastic particle methods while minimizing their weaknesses. In their

method, the finite volume code is used to calculate the mean velocity and pressure fields.

The stochastic computational particles account for the turbulent velocity fluctuations and

the chemical reactions.

Veroli & Rigopoulos (2010) also tackles the condensation problem using a hybrid method.

However, rather than treating the PDF of velocity fluctuations, they use the turbulence

model in their CFD code to calculate turbulent quantities such as turbulent viscosity. This,

in turn, is used to calculate appropriately random velocity vectors by which to advect the

computational particles. The stochastic particle properties are only species concentrations,

particle/droplet size and mass.

They test their code against experimental results of 𝐵𝑎𝑆𝑂4 precipitation. The 𝐵𝑎𝑆𝑂4

droplet/particle population distribution is heavily dependent on the nucleation rate which is

very sensitive to supersaturation. The evolution of the precipitation is not believed to have

a significant impact on the flow dynamics, so their Monte Carlo code is one-way coupled

to the CFD results. As is the case with our approach, they chose to model the droplet

population by discretizing the size domain into diameter bins. Typically, researchers have

modeled the droplet/particle population using (relatively few) moments as a computational

compromise. As computing resources have become more accessible, full size distribution

binning discretization has become more feasible.
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We adopt an approach similar to Veroli & Rigopoulos (2010), utilizing a finite-volume

code (OpenFOAM) to calculate the underlying velocity field. The CFD simulation uses a

traditional turbulence model (e.g. 𝑘 − 𝜖) to compute the free-shear turbulent flow field. A

particle-mesh Monte Carlo method utilizes a large number of stochastic particles throughout

the domain to resolve the PDF of the water vapor and droplets. Haworth (2010) provides a

comprehensive overview of PDF methodology for reactive flows, on which we relied heavily

when developing the code for this thesis.

To the computational strategy of Veroli & Rigopoulos (2010), we are adding a thermody-

namic model that tracks enthalpy to calculate temperature which, combined with the water

vapor partial pressure, defines supersaturation. Furthermore, we incorporate a relatively

new computing method that offers valuable simulation speed-up.

The advent of graphical processing units (GPU) for numerical calculations provides new,

affordable opportunities for such a Monte Carlo approach. The acceleration afforded by

utilizing hundreds or thousands of GPU cores per processor (as opposed to tens of CPU cores)

allows for the computation of larger domains, more chemical species, and finer discretization

of the population.

The gaming industry has been driving design and cost improvements of GPU hardware

since the 1980s. In the past decade, researchers have begun to co-opt the processing power

of graphics hardware to assist with scientific computing. Platforms such as nVidia’s CUDA

and OpenGL has begun to make non-graphics uses more mainstream. Owens et al. (2008)

lists characteristics that make a given application particularly well-suited to be solved using

a GPU:

∙ Computational requirements are large

∙ Parallelism is substantial

∙ Throughput is more important than latency

Our Lagrangian Monte Carlo particle code satisfies all three requirements, so it is sensible

to proceed with programming to take advantage of GPU hardware.
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The PDF method is implemented with parallelization based on GPU hardware. GPUs

have traditionally been used to speed up graphics calculations by leveraging specialized par-

allel cores to compute ray tracing and shading, for example. However, as the cores have

become more sophisticated, densely packed, and cheaper, they have increasingly been used

for other types of parallel computations. Specifically, companies such as nVidia have devel-

oped software tools to more easily use the hardware for generic computational engineering

problems. We used Eclipse, nVidia’s integrated development environment, to program our

C++ based code.

The overhead involved in utilizing the GPU consists mostly of copying data between the

CPU’s and the GPU’s memory. nVidia’s parallel GPU architecture, called CUDA, handles

much of the memory management on the GPU. Once the data is copied to the GPU, it is

further distributed to the various cores, which share a limited amount of memory in blocks, as

well as each core having a small amount of easily accessible memory. The CUDA architecture

ensures efficient parallel computation (maximizing throughput) by running computational

threads on cores as they become available, so that the typical idle time occupied by memory

access is minimized.

5.4.1 Model Overview

5.4.1.1 Computational Domain

Unlike the CFD simulation, the PDF model does not use the computational grid to discretize

governing equations. It merely serves as an organizing system for the averaging, mixing, etc.

of the computational particles.

Because we are limiting our studies to the turbulent jet, where the flow statistics are

axisymmetric, we create a rectangular, two-dimensional axisymmetric domain. The grid

spacing is uniform in both the radial and axial directions, though the grid spacing in each

direction is not necessarily equal. Typically, the radial direction was afforded more resolution

in order to provide adequate refinement at the mixing interface. Though the spacing is equal,

due to the nature of cylindrical coordinates, the volumes in the radial direction are unequal,

particularly near the axis of symmetry.



147

Figure 5.12: PDF particle field (particles colored by passive scalar) overlaid with the PDF
computational grid (top) and CFD computational grid (bottom)

Of course, the rectangular grid and regular cell resolution are not necessary features

of this computational approach. However, body-fitting or gradient-tracking grid refinement

requires additional computational overhead that is not justified in this case, as will be shown

later in the presentation of the composition PDF calculations.

The spatial discretization for the PDF is constructed to be completely encompassed by

the CFD domain. This is because the CFD domain needs to extend further in all directions

to accurately calculate the flow field in the core of the domain where mixing s taking place.

In the case of this simulation, the PDF calculations can exist solely in the region of interest

and produce satisfactory results. See Figure 5.12 for a comparison of the particle fields

(colored by passive scalar value) over-set by both the PDF and CFD grids.

The domain of PDF particles is typically subdivided into the same cells as the CFD

computational grid Haworth (2010). However, the demands of the CFD grid do not neces-
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sarily align with those of the PDF grid. In this particular case, the CFD grid resolution calls

for fine resolution near the jet’s axis of symmetry. The wedge cell volumes are necessarily

smaller even with constant spacing; clustered spacing near the axis would exacerbate the

problem. Since cell balancing requires comparable numbers of particles in all cells, the par-

ticles near the jet axis will have significantly smaller masses than those at the fringes. This

can cause undesirable issues with mixing, and cell/mass balancing. For a typical simulation,

we used a resolution of 80 radial and 160 axial cells. With an average of 20 computational

particles per cell, there are approximately 250,000 particles to track.

5.4.1.2 Initial Conditions

The domain is initially seeded such that each cell has a number of computational particles

equal to the desired average (i.e. 20 for the baseline case). They are seeded uniformly,

at the center of each mesh cell, but random velocity fluctuations cause them to disperse.

The particles are all assigned similar scalar values representing ambient temperature/water

vapor conditions. The simulation must be run out, allowing the jet to propagate through

the domain, before the flow becomes statistically stationary and the results can be averaged.

5.4.1.3 Boundary Conditions

Based on the velocity information provided by the CFD results, particles were added and

subtracted from each of the PDF model’s boundary cells, such that the mass fluxes matched.

Concerning cells with a net outflow, particles are subtracted at each time step until the

appropriate amount of mass is removed. New computational particles are created within

cells at inflow boundaries at each time step. Each new particle is given a mass corresponding

to the cell’s mass divided by the average (or desired) number of particles. If a particle is

to otherwise cross one of the domain’s boundaries, it is reflected back into the domain as if

it were a symmetry boundary. This is based on the assumption that if particles leave the

domain in excess of what the CFD results describe (due to inherent random motion), they

would be offset by comparable particles randomly moving into the domain.

Newly created particles at the boundary are given a scalar value corresponding to the



149

region from which they originate. Particles inside the jet radius are given a scalar value of

unity and the appropriate initial distribution of droplets/nuclei (if the jet is seeded). Other

particles are given a scalar value of zero and seeded with an amount of nuclei to correspond

to their mass.

5.4.2 Model Time Stepping

The code advances all the particles in the entire domain using discrete time steps; during each

time step, the following fractional steps are performed on all computational particles/cells.

5.4.2.1 Advection Model

Each particle is translated during each time step based on the following equation:

𝑑𝑥𝑖 = 𝑢𝑖𝑑𝑡 + 1
⟨𝜌⟩

𝜕Γ
𝜕𝑥𝑑𝑡 +

(︁
1
⟨𝜌⟩Γ

)︁0.5
𝑑𝑊𝑖. (5.13)

where Γ is the turbulent transport coefficient, defined as (Haworth (2010)):

Γ =
𝜇

𝜎
=

𝜈

𝜌𝜎
(5.14)

where 𝜎 is the Schmidt number. The values for 𝑢𝑖, 𝜌,
𝜕Γ
𝜕𝑥 and Γ are interpolated based on the

particle’s position within the overlapping CFD cell. Additionally, 𝑑𝑊𝑖 is a Wiener process

proportional to 𝛿𝑡0.5.

5.4.2.2 Cell Balancing

The PDF method relies on modeling stochastic particles that are tracked throughout the

domain. In order to collect proper statistics, an appropriate number of particles must be

maintained in each cell, regardless of the cell size (Haworth, 2010). If a cell contains less than

the threshold number of required particles, existing computational particles are selected and

divided to make two particles, each with half the mass of the original particle, and identical

properties otherwise. In the case of too many particles, particles are randomly selected to be

combined, and their properties are mass-averaged to create a single particle while preserving
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all of the appropriate quantities.

5.4.2.3 Reaction Model

The reaction model is not specific to the PDF method itself, but instead directly relates to

the particular problem being studied. In the case of the condensing jet, the thermodynamic

processes of condensation, evaporation, and the associated latent heat exchange must be

accounted for within each fluid particle of the PDF model.

In non-reacting flow, the best quantity to track is enthalpy, since it is a conserved scalar:

𝐻 = 𝑈 + 𝑝𝑉. (5.15)

In a closed, constant pressure system such as our computational particles (we make the

assumption that the static pressure is homogeneous throughout the domain), the enthalpy

is constant. This of course breaks down when mixing between particles occurs. The new

(specific) enthalpy can be calculated from the particle’s scalar value:

ℎ𝑝 = 𝑐ℎ𝑗 + (1 − 𝑐)ℎ𝑎. (5.16)

The scalar values are assigned such that particles emanating from the jet are designated

with the value of unity, and particles from the ambient are given a zero value. Intermediate

values occur when particles interact through mixing (see section 5.4.2.4).

For an adiabatic particle, the process of droplet condensation/evaporation does not affect

its enthalpy:

ℎ𝑝 = ℎ𝑎𝑖𝑟 + ℎ𝑣𝑎𝑝𝑜𝑟 + ℎ𝑙𝑖𝑞𝑢𝑖𝑑. (5.17)

Our enthalpy calculations will rely on use of a reference temperature (i.e. ℎ = 0 when

𝑇 = 0 ∘𝐶). Over the small range of temperatures we are considering, it is reasonable to

assume that the enthalpy components have a linear dependence on temperature. Thus,

rather than using tables, we can rewrite equation (5.17) as

ℎ𝑝 = (1 − 𝑥) 𝑐𝑝𝑎𝑇 + (𝑥− 𝑥𝑙) (𝑐𝑝𝑤𝑇 + ℎ𝑤𝑒) + 𝑥𝑙𝑐𝑤𝑇 (5.18)
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where ℎ𝑝 is the computational particle’s specific enthalpy, 𝑐𝑝𝑎 is the specific heat capacity

of air at constant pressure (1.006 𝑘𝐽/𝑘𝑔 ∘𝐶), 𝑥𝑙 is the mass fraction of the liquid water to

the total particle mass (𝑘𝑔/𝑘𝑔), 𝑐𝑝𝑤 is the specific heat of water vapor at constant pressure

(1.84 𝑘𝐽/𝑘𝑔 ∘𝐶), ℎ𝑤𝑒 is the evaporation heat of water vapor at 0 ∘𝐶 (2501 𝑘𝐽/𝑘𝑔), 𝑥 is

the mass fraction of all of the water (𝑘𝑔/𝑘𝑔), and 𝑐𝑤 is the specific heat capacity of water

(4.19 𝑘𝐽/𝑘𝑔 ∘𝐶).

For a computational particle with a given water content and droplet distribution, all

values in the above equation are known, except for the temperature. Rearranging, we can

solve for temperature:

𝑇 =
ℎ𝑝 − (𝑥− 𝑥𝑙)ℎ𝑤𝑒

(1 − 𝑥) 𝑐𝑝𝑎 + (𝑥− 𝑥𝑙) 𝑐𝑝𝑤 + 𝑥𝑙𝑐𝑤
. (5.19)

The computational particle’s temperature is needed to calculate the local saturated water

vapor pressure using Antoine’s equation (see equation 5.8). The particle’s actual water vapor

pressure can be computed, assuming that all particles are at the local atmospheric pressure:

𝑃𝑤 = 𝑃𝑎𝑡𝑚

(︂
1 − (1 − 𝑥)

(1 − 𝑥) + (𝑥− 𝑥𝑙)𝑀𝑎𝑖𝑟/𝑀𝑤

)︂
. (5.20)

As was the case with the 2-D CSTR model from section 5.3, the local supersaturation is

simply a function of the calculated water vapor pressure and the stochastic fluid particle’s

water vapor partial pressure:

𝑠𝑠 =
𝑃𝑤

𝑃𝑠𝑎𝑡
− 1 (5.21)

and again, this supersaturation is used to calculate the growth/evaporation of the droplet

diameter bins local to the fluid particle:

𝑑𝑟𝑏
𝑑𝑡

= 𝛾
𝑠𝑠

𝑟𝑏
. (5.22)

5.4.2.4 Mixing Model

Haworth (2010) describes two main classes of particle mixing methods. There are meth-

ods that involve individual particle compositions interacting weakly with the neighboring

particles. The interaction by exchange with the mean (IEM) model is perhaps the best-
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known of this type. The other class of methods involves direct particle-particle interaction.

This is sometimes called a coalescence-dispersion model. Perhaps the oldest and most well-

known of this class of methods is described in Curl (1963). The probability of two particles

in a computational cell mixing directly during a time step (i.e. both assuming the same

mass-weighted average composition) is described by the following equation:

𝐶𝜑𝑁𝜔𝑑𝑡 (5.23)

where 𝑁 is the number of particles in the cell, and 𝐶𝜑 has been reported to be a range of

values from 1 to 4 according to Haworth (2010).

The work of Dopazo (1979) and Janicka et al. (1979), suggested a modification to Curl’s

model that not only randomizes the occurrence of particle mixing, but also the degree to

which the particles are mixed. Pope (1982) defines it as:

𝜑*
𝑎 = (1 − 𝛼)𝜑𝑎 + 1

2𝛼 (𝜑𝑎 + 𝜑𝑏)

𝜑*
𝑏 = (1 − 𝛼)𝜑𝑏 + 1

2𝛼 (𝜑𝑎 + 𝜑𝑏)
(5.24)

In these equations, 𝛼 is a random number, with a uniform distribution from 0 to 1. Since our

particles do not have identical masses, we take 𝜑 to represent the particle mass. In order to

completely define the new particles, the associated scalars are weight-averaged according to

the degree of mass mixing, such that all quantities are conserved. Pope (1982) determined

that 𝐶𝑝ℎ𝑖 should be taken to be 3 when 𝛼 is evenly distributed.

Furthermore, Pope (1982) extended this to an “improved” mixing model which takes the

particle age into account when predicting the occurrence of mixing. However, this has been

shown by Chen & Kollmann (1991) to not improve significantly the results for the scalar

statistics we are concerned with.

5.4.3 RANS Simulation

Because we are limiting ourselves to modeling the joint-composition of two scalars (as op-

posed to joint-composition-velocity), a CFD code must be used to calculate the appropri-
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ate velocity field, as well as the turbulent kinetic energy and dissipation fields. We used

OpenFOAM, a flexible, open-source solver (ope (2012)) for our RANS computations. The cur-

rent implementation uses one-way coupling, where the CFD results inform the PDF model,

similar to Veroli & Rigopoulos (2010).

We have first evaluated OpenFOAM using a 𝑘−𝜖 turbulence model for a canonical, turbulent

jet (no heating or species reactions). Aside from the density differences, the jet mimics the

85 ∘𝐶 jet from Strum & Toor (1992). The jet nozzle has a 1.1 𝑐𝑚 diameter with a top-hat

flow profile with a velocity of 4.57 𝑚/𝑠. Because of the axisymmetric nature of the problem,

the simulation is two-dimensional using cylindrical symmetry; the plane of cells creates a 20

radii wide (100 cells) wedge that extends 10 radii upstream and 100 radii downstream (160

cells), for a total of 16, 000 computational cells. Figure 5.13 shows a contour plot of the

z-velocity across the entire computational domain. Figure 5.14 plots the non-dimensional

velocity against non-dimensional radial distance at various downstream distances, a dozen

locations spanning approximately 𝑧/𝑑 = 30 to 50. The curves are nearly indistinguishable,

conforming to the self-similarity principle of a turbulent jet (see Figure 3.1). Furthermore,

Figures 5.16 and 5.15 show the comparison of CFD results (centerline velocity ratio and jet

half width) against analytic solutions. Equation 3.1 is plotted with coefficients 𝐵 = 4.7 and

𝑧0 = 2𝑑; the equation for the jet half-width is (Pope, 2000):

𝑟1/2 = 𝑆(𝑧 − 𝑧0) (5.25)

where 𝑆 = 0.105 and 𝑧0 = 2𝑑. This level of agreement across these metrics is judged to be

adequate to use the flow field data as the basis for the PDF section of this analysis.

Most of our interest is in warm, humid jets, so before selecting a solver, it is important

to evaluate the relative important of buoyancy and momentum. Lee & Chu (2003) describes

a length scale at which the momentum and buoyancy forces will be balanced for a free jet:

𝑧 ≈ 𝑀
3/4
0

𝐵
1/2
0

(5.26)

where 𝑀0 is the specific momentum (𝑈𝑗𝑄𝑗) and 𝐵0 is the specific buoyancy ((𝜌∞−𝜌𝑗)𝑔𝑄𝑗).



154

Figure 5.13: CFD results from OpenFOAM showing velocity contours

Figure 5.14: Plot of normalized jet velocity as a function of 𝜂 at various downstream distances
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Figure 5.15: Plot of the jet half-width as a function of downstream distance

Figure 5.16: Plot of the jet centerline velocity ratio (𝑈𝑗/𝑈𝑐(𝑧)) as a function of non-
dimensional downstream distance (𝑧/𝑑)
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This equation can be rearranged:

√︃
𝑔𝑑

𝑈2
𝑗

𝜌∞ − 𝜌𝑗
𝜌∞

· 𝑧
𝑑

=

(︂
4

𝜋

)︂1/4

≈ 1 (5.27)

If we define a new variable 𝑃 :

𝑃 =

√︃
𝑔𝑑

𝑈2
𝑗

𝜌∞ − 𝜌𝑗
𝜌∞

· 𝑧
𝑑

(5.28)

we can use 𝑃 as a threshold criteria for determining buoyancy versus momentum dominated

at a downstream position 𝑧/𝑑. For a value much above unity, the jet is considered buoyancy

dominated; conversely, a value of 𝑃 much below unity indicates the jet is momentum domi-

nated. For values in the vicinity of unity, the jet will be significantly affected by buoyancy

and momentum. This criteria appears to be superior to that described by Pasumarthi &

Agrawal (2005) which experiences difficulties for either very light jets or jets with nearly

uniform densities.

For the experiments in Strum & Toor (1992) that we use for comparison, the values of

𝑃 are for the 62 ∘𝐶 jet:

𝑃 =

√︃
(9.81 𝑚/𝑠2)(0.011 𝑚)

(4.1 𝑚/𝑠)2
(1 − 0.81) · 𝑧

𝑑
= 0.035

𝑧

𝑑
(5.29)

and for the 85 ∘𝐶 jet:

𝑃 =

√︃
(9.81 𝑚/𝑠2)(0.011 𝑚)

(4.57 𝑚/𝑠)2
(1 − 0.65) · 𝑧

𝑑
= 0.042

𝑧

𝑑
. (5.30)

For both jets, buoyancy effects begin to equal momentum forces around 𝑧
𝑑 = 30. We examine

our jets to 𝑧
𝑑 = 40, so buoyancy forces may indeed play a role. Based on these results,

although we ran the simulations using a buoyancy model in buoyantSimpleFoam, we expect

its effect to be negligible in the development of the jet in the area of interest for droplet

condensation. Additionally, even absent buoyancy forces, it is important to account for the

lower density of the jet in the momentum dynamics and mixing.
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Figure 5.17: Plot of the jet centerline velocity ratio (𝑈𝑗/𝑈𝑐(𝑧)) as a function of non-
dimensional downstream distance (𝑧/𝑑) for the low-density, 85 ∘𝐶 jet

Panchapakesan & Lumley (1993b) modified the decay equation, 3.1, with an effective

diameter, 𝑑𝑒 =
(︁

𝜌𝑗
𝜌𝑎

)︁1/2
𝑑, that accounts for density differences between the jet and ambient:

𝑈𝑐(𝑧)

𝑈𝑗
=

(︂
𝜌𝑗
𝜌𝑎

)︂0.5 𝐵𝑑

𝑧 − 𝑧0
=

(︂
𝜌𝑗
𝜌𝑎

)︂0.5 𝐵𝑑

𝑧
(5.31)

We ran simulations with jet densities of 𝜌𝑗/𝜌𝑎 = 0.65 and 0.81 to match experimental

conditions from the 85 ∘𝐶 and 62 ∘𝐶 jets respectively. Figure 5.17 shows the comparison of

equation (5.31) (featuring the same coefficients as Figure 5.16) with the CFD results.

5.4.4 PDF Implementation

Using CUDA, the PDF solver software is written in C++, which handles the particle array

bookkeeping, as well as the sequential execution of the model steps from 5.4.2.
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5.4.4.1 Time-Stepping

In our PDF simulations, the grid spacing in the z-direction is uniform. The velocity is

obviously largest near the nozzle exit, therefore, we set our time step such that particles

near the nozzle do not travel further than one cell in a single time step (i.e. ∆𝑡 <
𝑈𝑗𝛿𝑡
Δ𝑧 ).

5.4.4.2 Diameter Distribution

Rather than using only a few “moments” to represent the droplets’ diameter distribution, we

have subdivided the diameter continuum into a finite number of bins, similar to section 5.3.

In these simulations, each bin increments the droplet diameter by 0.3 𝜇𝑚 over the previous

bin. Rather than tracking a droplet concentration within each bin, the actual number of

droplets in the computational particle is accounted for within each droplet diameter bin.

A typical simulation used 50 diameter bins spanning a total of 15𝜇𝑚 to resolve the

droplet size distribution. For a computation with a quarter million particles, doing a number

of Runge-Kutta time steps to grow each diameter bin can begin to become very expensive

computationally; hence the need for parallelization. The GPU computations allow us to

compute the diameter distribution using this more detailed approach.

After each simulation time step, each bin has been calculated to grow or shrink to a

new diameter. These new droplets are redistributed between the bracketing diameter bins

such that the total droplet number is preserved. The values tracked in each represent the

predicted number of droplets in the computational particle (fractional values are allowed).

5.4.4.3 Reaction Model

Because every particle requires thermodynamic calculations at each time step, and the ther-

modynamics calculations are the most numerically intense, parallelization of this step is

critical for efficiency and speed. Fortunately, there is no particle communication necessary

for this step, so the parallelization is quite effective (serialization in fact).

A fourth order Runge-Kutta algorithm is used to calculate the condensation/evaporation

of the water droplets. All of the particle bins must be done simultaneously, in order for the

particle’s new supersaturation to be computed correctly within the Runge-Kutta algorithm.
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Typically, the time-step over which the droplet growth calculations are computed must be

smaller than the time-step needed for particle advection/mixing (especially for the smallest

droplets). In our case, we use 10 smaller time steps for the reaction model at each model

time step.

Speaking to the efficiency (and necessity) of the GPU implementation, we focused on

evaluating the “reaction” subroutine, which calculates the droplet growth rate and associated

thermodynamics of the computational particles. As part of the software execution, the

reaction portion takes a majority of the run time during each time step (about 80%). In

real-time on our computer’s GeForce GT 730M, this accounts for just over one second of

clock time. Upon serialization of the routine, the same routine, running on the laptop’s 2.5

GHz i5 Intel processor takes nearly a minute to complete during each time step.

5.4.4.4 Boundary Conditions

By definition, the boundary conditions only need to be examined and updated in a limited

number of cells. Furthermore, the particles involved are limited only to those incoming and

outgoing which, because of the small time step, are typically only a fraction of those particles

present. Therefore, in order to simplify the programming and bookkeeping, the boundary

conditions are handled at each time step by a serial routine.

5.4.4.5 Cell Balancing

Because cell balancing necessarily involves all of the cells in the domain, we elected to use

the CUDA platform and do the particle subtraction/addition in parallel. Of course, since

the CUDA threads have very limited communication, certain care must be taken. There

are “atomic” functions available in CUDA that prevent other threads from progressing if

the array of particles needs to be manipulated (addition or subtraction of particles). That

ensures that no other threads modify the array before becoming aware of the current array

changes.
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5.4.4.6 Cell Integration and Advection

Simulations with wide variations in element volumes (as is the case for our cylindrical ge-

ometry) are known to promote discrepancies in the mass distribution (Zhang & Haworth,

2004). In order to mitigate the negative effects of mass accumulation, we have implemented

a velocity correction algorithm. Particle velocities are modified to move them in the direc-

tion opposite the local gradient of the density error. Figure 5.18 shows the effect of the

velocity correction on a uniform density flow. Without velocity correction, it is clear the

domain has density discrepancies of nearly 10% throughout the domain, and well over 10%

near the jet axis along the length of the domain. However, the velocity correction restores

the vast majority of the domain to a density nearly identical to that of the CFD simulation.

Near the jet axis, the density is less than 10% off; furthermore, the volumes near the axis

are so small that the actual mass imbalance is negligible. Only near the nozzle exit, where

velocity gradients are quite high, do the density inhomogeneities persist.

(a) (b)

Figure 5.18: Plot the density discrepancies between the PDF and CFD simulations both (a)
with and (b) without velocity corrections
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Figure 5.19: Plot of computational particles colored with scalar value

5.4.5 Validation

Before looking at the more interesting condensation results, validating the code for a passive

scalar is a useful exercise. Our initial PDF simulations do not model any chemical reactions;

our goal is to match the scalar distribution and variance for the well-studied problem of

passive scalar mixing in a turbulent jet. Comparisons can be directly made against other

investigators experimental and computational results to ensure the scalar in our code is

being dispersed correctly. Figure 5.19 shows all of the stochastic particles at several times

during the PDF simulation plotted together and colored by the scalar value.

The statistics of scalar distribution in a momentum-dominated turbulent jet have been

investigated by a number of authors. Section 5.2.1 provides some results for both average

scalar and its R.M.S. by Richards & Pitts (1993).

An obvious point of validation is the centerline decay of a passive scalar. Like the decay

of the velocity, the inverse of the non-dimensional value assumes a linear profile. We compare

our results against two studies in Figure 5.20. In the first study, Pitts (1991a) examined the

concentration decay of an injected low-density gas. His derived expression can be simplified

by assuming 𝜌𝑗 = 𝜌𝑎 (as is the case in our validation simulation):

𝐶𝑗

𝐶𝑐
= 0.114

𝑧

𝑟
. (5.32)

Additional results appeared in Lubbers et al. (2001); they completed a Direct Numerical

Simulation (DNS) of a passive scalar in a round, axisymmetric jet and compared their results
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Figure 5.20: Plot of the non-dimensionalized centerline concentration decay

to Dowling & Dimotakis (1990) as well as several other investigators. It is believed that at

a sufficiently high Reynolds number (they used 2000), the distribution characteristics of a

passive scalar are independent of Reynolds number. They described the centerline decay of

the mean concentration value:
𝐶𝑗

𝐶𝑐
=

𝑧 − 𝑧0
𝜅𝑐𝑑

(5.33)

where 𝑧0 = 0.5 and 𝜅𝑐 = 5.5. Figure 5.20 displays these results with our own best fit line

where 𝑧0 = 1.5 and 𝜅𝑐 = 4.7. Lubbers et al. (2001) makes a survey of previous literature

and finds values of 𝜅𝑐 between 4 and 6, so our value falls comfortably within that range.

Another well-established property of the round, turbulent jet is its self-similarity. In

addition to the velocity profile being self-similar, investigators have found the concentration

profile to also be self-similar (e.g. Dowling & Dimotakis (1990)). Figure 5.21 shows over a

dozen profiles from 𝑧/𝑑 = 20 to 𝑧/𝑑 = 40. It is apparent that they collapse onto each other.
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Figure 5.21: Plot of the non-dimensionalized concentration profiles
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Figure 5.22: Plot of the non-dimensionalized concentration profiles

Of course, if the particle velocity field is properly defined, the mean concentration profile

will be predicted correctly regardless of how the particles are mixed (i.e. exchange of mass

and associated properties). The R.M.S. on the other hand, strongly depends on the way

the particles have been mixed to that point. The resulting profile should be self-similar, as

mentioned by Panchapakesan & Lumley (1993b) (see section 5.2.1). Lubbers et al. (2001),

Babu & Mahesh (2005) and Dowling & Dimotakis (1990) made similar observations. The

results from the PDF code (again from 𝑧/𝑑 = 20 to 𝑧/𝑑 = 40) are plotted in Figure 5.22.

They qualitative and quantitative agree with the literature, giving us confidence in our

mixing algorithm, described in section 5.4.2.4.
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Figure 5.23: Contour plot of 𝐷10 values predicted by PDF for the 85 ∘𝐶 jet

5.4.6 Comparison to Experiments from Literature

As done earlier with the simplified analytic two-dimensional radial-axial CSTR model, we

compare our model results against the experiments of Strum & Toor (1992). To present an

overview of our 2-D flow, Figure 5.23 shows the flow field with contours of average diameter

(𝐷10). An interesting effect observed is the development in the near nozzle field where

drops form on the jet border but are absent from the (potential) core. In early attempts at

experiments we undertook, this effect was also quite clear when the water-vapor-saturated

jet was illuminated by a laser plane (see Figure 5.24).

We present our model results side-by-side with the experimental results for comparison.

Figure 5.25 shows the diameter distributions along the jet centerline for the unseeded 62 ∘𝐶

jet. Figure 5.26 shows the same comparison with experimental data, in this case for the
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Figure 5.24: Time-lapse photo of a condensing jet illuminated by a laser sweeping along the
jet axis
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unseeded 85 ∘𝐶 jet.

The model captures well the rate of droplet growth, in number density and diameter,

until modes of about 5−7 𝜇𝑚 are reached at 𝑧/𝑑 = 25. The flattening of the size distribution

that occurs after 𝑧/𝑑 = 25, particularly in the 85 ∘𝐶 data, is also correctly predicted by

the model. Increases in probability for the smallest and largest droplets, and a marked

decrease in the probability of median droplets, can be observed in the simulations of both

the 62 ∘𝐶 and 85 ∘𝐶 jets. The mixing of ambient dry air makes the probability of droplets

encountering a region of supersaturation decrease with distance downstream (after an initial

increase due to the nonlinearity in the supersaturation with temperature and vapor mixing).

Because droplet growth depends non-linearly on diameter, and supersaturation depends

also non-linearly on mixing, the smallest and largest droplets are more sensitive to the

inhomogeneities in the supersaturation field. As droplets evaporate, the larger droplets do it

slower and their weight in the total distribution increases. Small droplets evaporate quickly

back to the nuclei size (0.1 𝜇𝑚) but can also grow quickly into 1−2 𝜇𝑚 droplets as they visit

an improbable supersaturated region, an asymmetric behavior that will bias the distribution

towards having more of them. The most numerous droplets will evaporate with the decrease

in supersaturated with a rate that is best represented by the average properties. A bimodal

distribution is established by this non-linear response, as shown in Figure 5.26(c), and this

complex behavior is well captured by the model, as seen in Figure 5.26(d). A potential

additional source of disparities between the measurements and the model is the limitations

of the PDPA experimental technique, especially circa 1990 when the data was collected,

to fully account for the number of droplets with diameters below 2 𝜇𝑚. This explains the

extremely low percentage of droplets detected below 1 𝜇𝑚 and the relatively low probability

of droplets in the 1− 2 𝜇𝑚 range detected, versus predicted from basic nucleation statistics.

Notice that in both 5.25 and 5.26 our model omits curves for distributions closest to the

nozzle (𝑧/𝑑 ≈ 2). This is because at a location so far upstream, the velocity field is well

within the potential core, there is no active mixing, and not only is super-saturation less

than or equal to unity, but also no nuclei have been entrained yet into the jet centerline. As

a result, our PDF model does not have any droplets to report. In fact, while Strum & Toor

(1992) did report a droplet distribution at that location, other data in the paper indicate an
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(a) (b)

(c) (d)

Figure 5.25: Plot of the diameter distribution of the centerline of the 85 ∘𝐶 jet at various
downstream distances

extremely low droplet concentration; the droplets that were recorded/reported are almost

incidental.

Figure 5.27 shows experimental and modeled diameter distributions at various radial

locations for the unseeded 85 ∘𝐶 jet at 𝑧/𝑑 = 15. Our model does a fairly good job of

reproducing both the diameter and relative distribution of the droplets. Similar physics as

discussed in the evolution of the droplet size distribution along the centerline at late stages

in the jet (𝑧/𝑑 > 25) control the condensation and evaporation of droplets in jet outskirts

(𝑟/𝑑 ≈ 2) for this intermediate downstream stage (𝑧/𝑑 = 15). A bimodal distribution of

droplets is also observed to occur in Figure 5.27(c) for the measurements at 𝑟/𝑑 = 2.25 and

it is successfully predicted by the model, as shown in Figure 5.27(d).
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(a) (b)

Figure 5.26: Plot of the diameter distribution of the centerline of the 62 ∘𝐶 jet at various
downstream distances

(a) (b)

(c) (d)

Figure 5.27: Plot of the diameter distribution for the 85 ∘𝐶 jet at 𝑧/𝑑 = 15 at various radial
distances
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In addition to the humid, unseeded jets, Strum & Toor (1992) also ran experiments with

jets seeded with water droplets generated with an atomizer, at the same temperatures and

humidities. These droplets were reported to have a 𝐷30 value of 2 𝜇𝑚 at initial injection

into the jet, so we simply added droplets with uniform 2 𝜇𝑚 diameters to the injected

computational particles. The experimental measurements for the seeded jets are plotted as

𝐷30 data along with the unseeded jets in Figures 5.28 and 5.29. These figures show the

PDF-model data seeded with a uniform distribution of small, 2 𝜇𝑚 diameter, water droplets

plotted alongside the experimental data reproduced from Strum & Toor (1992). The blue

dotted line in this figure shows the evolution of the droplet volume-averaged diameter in the

jet. The abundance of condensation nuclei limits the availability of supersaturation, reducing

the growth rate well below the unseeded case. The distribution reaches a maximum diameter

of about 4.5 𝜇𝑚 at about the same location as in the unseeded case (𝑧/𝑑 ≈ 25) and begins

to evaporate, although slower than in the unseeded case. The abundance of small droplets

that have grown from the condensation nuclei represents a source of quickly accessible water

vapor, as the small droplets will be the first to evaporate. The larger droplets that dominate

the volume-averaged statistics will therefore suffer the decrease of the saturation less acutely

than in the unseeded case, where more of the water vapor had been locked in large droplets,

slower to return to the vapor field.

5.4.6.1 Effect of Aerosol/Droplet Concentration

Pruppacher & Klett (1997) estimated a nuclei concentration of 103 to 105 𝑐𝑐−1 (over land),

and perhaps as high as 106 in urban areas. For their unseeded experiments, Strum & Toor

(1992) assumed an ambient concentration of condensation nuclei in the range of 20 × 103

to 65 × 103. We use 40 × 103 𝑐𝑐−1 and achieve very comparable results. Strum & Toor

(1992) reported their seeded jet to have a droplet concentration of 105 𝑐𝑐−1. However,

they acknowledged that the precision of the PDPA’s droplet counting for this size range

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 < 2 𝜇𝑚 is uncertain. We found successful comparisons by seeding the jet in the

PDF simulation with 5 × 105 droplets. This is actually more consistent with the atomizer

specifications from Strum (1990) that list a number concentration of 2 × 106 𝑐𝑐−1.
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Figure 5.28: Comparison plot of 𝐷30 versus downstream distance for the 85 ∘𝐶 jet, both
seeded and unseeded
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Figure 5.29: Comparison plot of 𝐷30 versus downstream distance for the 62 ∘𝐶 jet, both
seeded and unseeded
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Figure 5.30: Plot of the typical particle concentration throughout the domain

5.4.6.2 Effect of Computational Particle Concentration

The computational particle concentration we used was typically an average of 20 parti-

cles/cell, with a minimum of 10 and maximum of 40. Figure 5.30 shows the particle density

throughout the domain for a typical simulation. The low concentration near the jet axis is

a persistent problem caused by the relatively small volumes. There is no good solution to

prevent the volume disparity in a cylindrical mesh without compromising radial resolution

near the axis. An alternative would be to use a Cartesian mesh with equal size/volume cells

everywhere (which could still utilize quarter-symmetry).

The behavior of the scalar fields indicate this is adequate for the scalar distribution,

but we also conducted simulations with more particles. Figure 5.31 shows the 𝐷30 results

along the centerline for the baseline case as well as a simulation with an average of 40

particles/cell with a minimum of 20 and maximum of 60. The negligible difference indicates

that our baseline concentration is adequate.
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Figure 5.31: Plot of 𝐷30 along the jet centerline for two particle density cases

5.4.6.3 Effect of Diameter Bin Size

We conducted another refinement study to examine the effect of the discretization size of

the droplet diameter distribution. Our baseline case uses 50 0.3 𝜇𝑚 diameter bins to resolve

droplet sizes over the range of the nuclei stage to 15 𝜇𝑚 in diameter. Again, the comparison

of 𝐷30 for the baseline and refined values shows insensitivity to this parameter of the PDF

discretization, as seen in Figure 5.32.

These results, in conjunction with the previous sensitivity study, looking at the effect

of computational particle concentration, not only illustrate the insensitivity with regards to

the simulation parameters, but also exemplify the reproducibility of our Monte Carlo results

given sufficient averaging. Typically, the results presented are composed of 2000 time steps

(not counting the time needed to initialize the simulation).
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Figure 5.32: Plot of 𝐷30 along the jet centerline for two diameter bin discretizations

5.5 Conclusions

Our hybrid stochastic computational particle/finite volume method accurately reproduces

the experimental results from Strum & Toor (1992) for a condensing water-vapor-saturated

jet. The particle size distribution agrees with the measurements both as it evolves down-

stream and radially. The stochastic particles satisfactorily reproduce the scalar distribution,

and as a result they are able to predict the bimodal behavior observed in some locations in

the experiments.

The GPU hardware is well-suited to parallelize this type of problem. The thermody-

namic calculations are isolated within each computational particle during a time step, and

therefore they are readily parallelized. The calculations of the supersaturation, droplet

growth, and population balance within each thermodynamic step are among the most time-

consuming operations within the code. On the computer used for this study, we observed

approximately between one and two orders of magnitude speed-up: month-long simulations
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become day-long simulations; day-long simulations are completed in a half-hour. This type

of acceleration traditionally requires parallel execution on high-end, expensive CPUs with

many cores, or a computational cluster. The GPU approach opens up the possibility of

undertaking problems with far greater scope using more sophisticated GPUs, or combining

traditional parallelization strategies to utilize arrays of GPUs.

5.6 Future Work

Due to the model’s satisfactory comparison with experiments, as well as the relatively mild

effect condensation has on buoyancy (esp. relative to combustion), it is unlikely that coupling

of the CFD to the PDF code would dramatically change the results. However, if the scale

of the problem is increased (e.g. atmospheric simulations), it is easy to imagine that even a

few degrees of temperature difference could lead to density changes that would cumulatively

have a large impact on a buoyancy-driven, slowly-developing flow. Therefore, in order to

apply this technique to a wider range of problems, it would be necessary to implement two-

way coupling between the PDF code and OpenFOAM. It is not clear, however, how tight the

coupling needs to be. That is, do the codes need to run alongside each other for each time

step, or does the coupling only need to take place periodically? This decision will drive

the architecture of the programming. It may very well be compatible to continue a CFD

calculation, which is perhaps already designed to be parallelized across multiple processors,

alongside a PDF simulation which takes advantage of GPU hardware.

The code may also require additional features to tackle other classes of flow scenarios. For

instance, in the case of a flow featuring homogeneous nucleation, the thermodynamic routine

would need the relevant thermodynamic model. If the super-saturation field is sufficiently

expansive, or residence times are prolonged, the droplets would cease to behave as Stokes

particles. A collision kernel could be incorporated to account for the redistribution of droplet

sizes.

We confined ourselves to studying a statistically stationary flow, but it is not difficult to

imagine extending this methodology to time-dependent flows. In order to collect sufficient

data for averaging, one would either need to use many more particles per cell, or run the

simulation multiple times.
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Appendix A

DERIVATION OF VISCOSITY-DEPENDENT STABILITY

EQUATIONS

A.1 Navier-Stokes (Cylindrical Coordinates)

A general form of the Navier-Stokes equation is presented as

𝜌
𝐷𝑢

𝐷𝑡
= 𝑓 + ∇ · 𝜏 , (A.1)

as well as equations for continuity,

𝐷𝜌

𝐷𝑡
+ 𝜌∇ · 𝑢 = 0 (A.2)

and concentration,
𝐷𝑐

𝐷𝑡
+ (∇ · 𝑢)𝑐 = ∇ · (𝐷∇𝑐) + 𝑅 (A.3)

where for cylindrical coordinates:

𝑢 = (𝑢𝑧, 𝑢𝑟, 𝑢𝜃) = (𝑢, 𝑣, 𝑤) (A.4)

and
𝐷

𝐷𝑡
≡ 𝜕

𝜕𝑡
+ 𝑢 ·∇ ≡ 𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑧
+ 𝑣

𝜕

𝜕𝑟
+ 𝑤

1

𝑟

𝜕

𝜕𝜃
(A.5)

These can be expanded to

𝜌

[︂
𝜕𝑢

𝜕𝑡
+ (𝑢 ·∇)𝑢

]︂
= 𝑓 + ∇ · 𝜏 (A.6)

Continuity:

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑧
+ 𝑣

𝜕𝜌

𝜕𝑟
+

1

𝑟
𝑤
𝜕𝜌

𝜕𝜃
+ 𝜌

𝜕𝑢

𝜕𝑧
+

1

𝑟
𝜌
𝜕(𝑟𝑣)

𝜕𝑟
+

1

𝑟
𝜌
𝜕𝑤

𝜕𝜃
= 0 (A.7)
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Concentration:

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑧
+ 𝑣

𝜕𝑐

𝜕𝑟
+

1

𝑟
𝑤
𝜕𝑐

𝜕𝜃
+ (∇ · 𝑢)𝑐 =

𝜕

𝜕𝑧

(︂
𝐷

𝜕𝑐

𝜕𝑧

)︂
+

1

𝑟

𝜕

𝜕𝑟

(︂
𝑟𝐷

𝜕𝑐

𝜕𝑟

)︂
+

1

𝑟

𝜕

𝜕𝜃

(︂
𝐷

𝑟

𝜕𝑐

𝜕𝜃

)︂
+ 𝑅

(A.8)

We will assume uniform density, incompressible flow, meaning 𝜕𝜌
𝜕𝑡 = 𝜕𝜌

𝜕𝑧 = 𝜕𝜌
𝜕𝑟 = 𝜕𝜌

𝜕𝜃 = 0

(by extension, continuity implies ∇ · 𝑢 = 0), and constant diffusive coefficient 𝐷, so the

components of the Navier-Stokes equation can be written as:

𝑧-momentum:

𝜌

(︂
𝐷𝑢

𝐷𝑡

)︂
=𝜌

(︂
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
+

𝑤

𝑟

𝜕𝑢

𝜕𝜃

)︂
=𝑓𝑧 +

𝜕𝜏𝑟𝑧
𝜕𝑟

+
1

𝑟

[︂
𝜕𝜏𝜃𝑧
𝜕𝜃

+ 𝜏𝑟𝑧

]︂
+

𝜕𝜏𝑧𝑧
𝜕𝑧

(A.9)

𝑟-momentum:

𝜌

(︂
𝐷𝑣

𝐷𝑡
− 𝑤2

𝑟

)︂
=𝜌

(︂
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
+

𝑤

𝑟

𝜕𝑣

𝜕𝜃
− 𝑤2

𝑟

)︂
=𝑓𝑟 +

𝜕𝜏𝑟𝑟
𝜕𝑟

+
1

𝑟

[︂
𝜕𝜏𝜃𝑟
𝜕𝜃

+ (𝜏𝑟𝑟 − 𝜏𝜃𝜃)

]︂
+

𝜕𝜏𝑧𝑟
𝜕𝑧

(A.10)

𝜃-momentum:

𝜌

(︂
𝐷𝑤

𝐷𝑡
− 𝑣𝑤

𝑟

)︂
=𝜌

(︂
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑧
+ 𝑣

𝜕𝑤

𝜕𝑟
+

𝑤

𝑟

𝜕𝑤

𝜕𝜃
− 𝑣𝑤

𝑟

)︂
=𝑓𝜃 +

𝜕𝜏𝑟𝜃
𝜕𝑟

+
1

𝑟

[︂
𝜕𝜏𝜃𝜃
𝜕𝜃

+ (𝜏𝑟𝜃 + 𝜏𝜃𝑟)

]︂
+

𝜕𝜏𝑧𝜃
𝜕𝑧

(A.11)
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For cylindrical coordinates, the symmetric stress tensor 𝜏 is defined as:

𝜏𝑧𝑧 = −𝑝 + 2𝜇
𝜕𝑢

𝜕𝑧
+ 𝜅∇ · 𝑢

𝜏𝑟𝑟 = −𝑝 + 2𝜇
𝜕𝑣

𝜕𝑟
+ 𝜅∇ · 𝑢

𝜏𝜃𝜃 = −𝑝 + 2𝜇

(︂
1

𝑟

𝜕𝑤

𝜕𝜃
+

𝑣

𝑟

)︂
+ 𝜅∇ · 𝑢

𝜏𝑧𝑟 = 𝜏𝑟𝑧 = 𝜇

(︂
𝜕𝑢

𝜕𝑟
+

𝜕𝑣

𝜕𝑧

)︂
𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝜇

(︂
1

𝑟

𝜕𝑣

𝜕𝜃
+

𝜕𝑤

𝜕𝑟
− 𝑤

𝑟

)︂
𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 𝜇

(︂
𝜕𝑤

𝜕𝑧
+

1

𝑟

𝜕𝑢

𝜕𝜃

)︂

(A.12)

where 𝜅 is the bulk viscosity. We have already stated the assumption of incompressible flow

which makes 𝜅∇ · 𝑢 = 0. Substituting:

𝑧-momentum:

𝜌

(︂
𝐷𝑢

𝐷𝑡

)︂
=𝜌

(︂
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
+

𝑤

𝑟

𝜕𝑢

𝜕𝜃

)︂
=𝑓𝑧 −

𝜕𝑝

𝜕𝑧
+

𝜕

𝜕𝑧

[︂
2𝜇

𝜕𝑢

𝜕𝑧

]︂
+

1

𝑟

𝜕

𝜕𝑟

[︂
𝜇𝑟

(︂
𝜕𝑣

𝜕𝑧
+

𝜕𝑢

𝜕𝑟

)︂]︂
+

1

𝑟

𝜕

𝜕𝜃

[︂
𝜇

(︂
1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑤

𝜕𝑧

)︂]︂ (A.13)

𝑟-momentum:

𝜌

(︂
𝐷𝑣

𝐷𝑡
− 𝑤2

𝑟

)︂
=𝜌

(︂
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
+

𝑤

𝑟

𝜕𝑣

𝜕𝜃
− 𝑤2

𝑟

)︂
=𝑓𝑟 −

𝜕𝑝

𝜕𝑟
+

𝜕

𝜕𝑧

[︂
𝜇

(︂
𝜕𝑣

𝜕𝑧
+

𝜕𝑢

𝜕𝑟

)︂]︂
+

𝜕

𝜕𝑟

[︂
2𝜇

𝜕𝑣

𝜕𝑟

]︂
+

1

𝑟

𝜕

𝜕𝜃

[︂
𝜇

(︂
1

𝑟

𝜕𝑣

𝜕𝜃
+

𝜕𝑤

𝜕𝑟
− 𝑤

𝑟

)︂]︂
+

2𝜇

𝑟

[︂
𝜕𝑣

𝜕𝑟
− 1

𝑟

𝜕𝑤

𝜕𝜃
− 𝑣

𝑟

]︂ (A.14)
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𝜃-momentum:

𝜌

(︂
𝐷𝑤

𝐷𝑡
− 𝑣𝑤

𝑟

)︂
=𝜌

(︂
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑧
+ 𝑣

𝜕𝑤

𝜕𝑟
+

𝑤

𝑟

𝜕𝑤

𝜕𝜃
− 𝑣𝑤

𝑟

)︂
=𝑓𝜃 −

1

𝑟

𝜕𝑝

𝜕𝜃
+

𝜕

𝜕𝑧

[︂
𝜇

(︂
1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑤

𝜕𝑧

)︂]︂
+

𝜕

𝜕𝑟

[︂
𝜇

(︂
1

𝑟

𝜕𝑣

𝜕𝜃
+

𝜕𝑤

𝜕𝑟
− 𝑤

𝑟

)︂]︂
+

1

𝑟

𝜕

𝜕𝜃

[︂
2𝜇

𝑟

(︂
𝜕𝑤

𝜕𝜃
+ 𝑣

)︂]︂
+

2𝜇

𝑟

[︂
1

𝑟

𝜕𝑣

𝜕𝜃
+

𝜕𝑤

𝜕𝑟
− 𝑤

𝑟

]︂ (A.15)

Our simplified equations for continuity and concentration become:

Continuity:

𝜌
𝜕𝑢

𝜕𝑧
+ 𝜌

𝜕𝑣

𝜕𝑟
+

1

𝑟
𝜌𝑣 +

1

𝑟
𝜌
𝜕𝑤

𝜕𝜃
= 0 (A.16)

Concentration:

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑧
+ 𝑣

𝜕𝑐

𝜕𝑟
+

1

𝑟
𝑤
𝜕𝑐

𝜕𝜃
= 𝐷

(︂
𝜕2𝑐

𝜕𝑧2
+

𝜕2𝑐

𝜕𝑟2
+

1

𝑟

𝜕𝑐

𝜕𝑟
+

1

𝑟2
𝜕2𝑐

𝜕𝜃2

)︂
+ 𝑅 (A.17)

A.2 Decomposition (Mean and Fluctuating Parts)

We will decompose the terms into their mean and fluctuating parts, assuming that the flow

is axisymmetric (𝜕𝑈𝜕𝜃 = 𝜕𝑉
𝜕𝜃 = 𝜕𝑃

𝜕𝜃 = 𝜕𝐶
𝜕𝜃 = 0 and the mean flow in the 𝜃 direction is zero

(𝑊 (𝑧, 𝑟, 𝜃) = 0):

𝑢(𝑧, 𝑟, 𝜃, 𝑡) = 𝑈(𝑧, 𝑟) + 𝑢′(𝑧, 𝑟, 𝜃, 𝑡)

𝑣(𝑧, 𝑟, 𝜃, 𝑡) = 𝑉 (𝑧, 𝑟) + 𝑣′(𝑧, 𝑟, 𝜃, 𝑡)

𝑤(𝑧, 𝑟, 𝜃, 𝑡) = 𝑤′(𝑧, 𝑟, 𝜃, 𝑡)

𝑝(𝑧, 𝑟, 𝜃, 𝑡) = 𝑃 (𝑧, 𝑟) + 𝑝′(𝑧, 𝑟, 𝜃, 𝑡)

𝑐(𝑧, 𝑟, 𝜃, 𝑡) = 𝐶(𝑧, 𝑟) + 𝑐′(𝑧, 𝑟, 𝜃, 𝑡)

(A.18)

Furthemore, we will assume 𝜇 is an arbitrary function of 𝑐 that is continuously differen-

tiable over the range of 𝑐 of interest. For instance, if 𝑐 represents temperature in units of
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Kelvin, the viscosity of water can be approximated as Korson et al. (1969)

𝜇(𝑐) = 𝑋 · 10
𝑌

𝑇−𝑍 (A.19)

where 𝑋 = 2.414 × 10−5 Pa sec, 𝑌 = 247.8 K, and 𝑍 = 140 K.

We will express 𝜇 as a Taylor series expanded about 𝐶. Since 𝑐′ is assumed small, we

will drop the terms non-linear in 𝑐′, yielding:

𝜇(𝐶 + 𝑐′) = 𝜇(𝐶) + 𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐′ (A.20)

𝑧-momentum:

𝜌

(︂
𝜕

𝜕𝑡
(𝑈 + 𝑢′) + (𝑈 + 𝑢′)

𝜕

𝜕𝑧
(𝑈 + 𝑢′) + (𝑉 + 𝑣′)

𝜕

𝜕𝑟
(𝑈 + 𝑢′) +

𝑤′

𝑟

𝜕

𝜕𝜃
(𝑈 + 𝑢′)

)︂
=𝑓𝑧 −

𝜕

𝜕𝑧
(𝑃 + 𝑝′) +

𝜕

𝜕𝑧

[︂
2

(︂
𝜇(𝐶) +

𝜕𝜇

𝜕𝑐

⃒⃒⃒⃒
𝐶

𝑐′
)︂

𝜕

𝜕𝑧
(𝑈 + 𝑢′)

]︂
+

1

𝑟

𝜕

𝜕𝑟

[︂
𝑟
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

𝜕

𝜕𝑧
(𝑉 + 𝑣′) +

𝜕

𝜕𝑟
(𝑈 + 𝑢′)

)︂]︂
+

1

𝑟

𝜕

𝜕𝜃

[︂(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕

𝜕𝜃
(𝑈 + 𝑢′) +

𝜕𝑤′

𝜕𝑧

)︂]︂
(A.21)

𝑟-momentum:

𝜌

(︂
𝜕

𝜕𝑡
(𝑉 + 𝑣′) + (𝑈 + 𝑢′)

𝜕

𝜕𝑧
(𝑉 + 𝑣′) + (𝑉 + 𝑣′)

𝜕

𝜕𝑟
(𝑉 + 𝑣′) +

𝑤′

𝑟

𝜕

𝜕𝜃
(𝑉 + 𝑣′) − 𝑤′2

𝑟

)︂
=𝑓𝑟 −

𝜕

𝜕𝑟
(𝑃 + 𝑝′) +

𝜕

𝜕𝑧

[︂(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

𝜕

𝜕𝑧
(𝑉 + 𝑣′) +

𝜕

𝜕𝑟
(𝑈 + 𝑢′)

)︂]︂
+

𝜕

𝜕𝑟

[︂
2
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁ 𝜕

𝜕𝑟
(𝑉 + 𝑣′)

]︂
+

1

𝑟

𝜕

𝜕𝜃

[︂(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕

𝜕𝜃
(𝑉 + 𝑣′) +

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

)︂]︂
+

2

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁[︂

𝜕

𝜕𝑟
(𝑉 + 𝑣′) − 1

𝑟

𝜕𝑤′

𝜕𝜃
− 𝑉 + 𝑣′

𝑟

]︂
(A.22)
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𝜃-momentum:

𝜌

(︂
𝜕𝑤′

𝜕𝑡
+ (𝑈 + 𝑢′)

𝜕𝑤′

𝜕𝑧
+ (𝑉 + 𝑣′)

𝜕𝑤′

𝜕𝑟
+

𝑤′

𝑟

𝜕𝑤′

𝜕𝜃
− (𝑉 + 𝑣′)

𝑤′

𝑟

)︂
=𝑓𝜃 −

1

𝑟

𝜕

𝜕𝜃
(𝑃 + 𝑝′) +

𝜕

𝜕𝑧

[︂(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕

𝜕𝜃
(𝑈 + 𝑢′) +

𝜕𝑤′

𝜕𝑧

)︂]︂
+

𝜕

𝜕𝑟

[︂(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕

𝜕𝜃
(𝑉 + 𝑣′) +

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

)︂]︂
+

1

𝑟

𝜕

𝜕𝜃

[︂
2

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

𝜕𝑤′

𝜕𝜃
+ 𝑉 + 𝑣′

)︂]︂
+

2

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁[︂

1

𝑟

𝜕

𝜕𝜃
(𝑉 + 𝑣′) +

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

]︂
(A.23)

Continuity:

𝜕

𝜕𝑧

(︀
𝑈 + 𝑢′

)︀
+

𝜕

𝜕𝑟

(︀
𝑉 + 𝑣′

)︀
+

1

𝑟

(︀
𝑉 + 𝑣′

)︀
+

1

𝑟

𝜕

𝜕𝜃
𝑤′ = 0 (A.24)

Concentration:

𝜕

𝜕𝑡

(︀
𝐶 + 𝑐′

)︀
+
(︀
𝑈 + 𝑢′

)︀ 𝜕

𝜕𝑧

(︀
𝐶 + 𝑐′

)︀
+
(︀
𝑉 + 𝑣′

)︀ 𝜕

𝜕𝑟

(︀
𝐶 + 𝑐′

)︀
+

1

𝑟
𝑤′ 𝜕

𝜕𝜃

(︀
𝐶 + 𝑐′

)︀
= 𝐷

(︂
𝜕2

𝜕𝑧2
(︀
𝐶 + 𝑐′

)︀
+

𝜕2

𝜕𝑟2
(︀
𝐶 + 𝑐′

)︀
+

1

𝑟

𝜕

𝜕𝑟

(︀
𝐶 + 𝑐′

)︀
+

1

𝑟2
𝜕2

𝜕𝜃2
(︀
𝐶 + 𝑐′

)︀)︂
+ 𝑅

(A.25)

A.3 Free Shear Approximation

Because we are concerned with free shear flows, we will the drop forcing terms 𝑓 and 𝑅.

As done in most investigations of free shear stability, we will simplify the calculations by

assuming the flow is locally parallel. This is a justifiable assumption in the region we are

looking at, near the nozzle exit, before the instability has grown to produce significant radial

and azimuthal flows (Cohen & Wygnanski (1987)). The assumption leads to the following

simplifications: 𝜕𝑈/𝜕𝑧 = 0, 𝜕𝜇/𝜕𝑧 = 0, 𝜕𝐶/𝜕𝑧 = 0, 𝑉 = 0.
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𝑧-momentum:

𝜌

(︂
𝜕𝑈

𝜕𝑡
+

𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑧
+ 𝑢′

𝜕𝑢′

𝜕𝑧
+ 𝑣′

𝜕𝑈

𝜕𝑟
+ 𝑣′

𝜕𝑢′

𝜕𝑟
+

𝑤′

𝑟

𝜕𝑢′

𝜕𝜃

)︂
= − 𝜕𝑝′

𝜕𝑧
+ 2

𝜕𝑢′

𝜕𝑧

𝜕

𝜕𝑧

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+ 2
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁ 𝜕2𝑢′

𝜕𝑧2

+
1

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

𝜕𝑣′

𝜕𝑧
+

𝜕𝑈

𝜕𝑟
+

𝜕𝑢′

𝜕𝑟

)︂
+

(︂
𝜕𝑣′

𝜕𝑧
+

𝜕𝑈

𝜕𝑟
+

𝜕𝑢′

𝜕𝑟

)︂
𝜕

𝜕𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

𝜕2𝑣′

𝜕𝑧𝜕𝑟
+

𝜕2𝑈

𝜕𝑟2
+

𝜕2𝑢′

𝜕𝑟2

)︂
+

1

𝑟

(︂
1

𝑟

𝜕𝑢′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑧

)︂
𝜕

𝜕𝜃

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+
1

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕2𝑢′

𝜕𝜃2
+

𝜕2𝑤′

𝜕𝑧𝜕𝜃

)︂

(A.26)

𝑟-momentum:

𝜌

(︂
𝜕𝑣′

𝜕𝑡
+ 𝑈

𝜕𝑣′

𝜕𝑧
+ 𝑢′

𝜕𝑣′

𝜕𝑧
+ 𝑣′

𝜕𝑣′

𝜕𝑟
+

𝑤′

𝑟

𝜕𝑣′

𝜕𝜃
− 𝑤′2

𝑟

)︂
= − 𝜕𝑃

𝜕𝑟
− 𝜕𝑝′

𝜕𝑟
+

(︂
𝜕𝑣′

𝜕𝑧
+

𝜕𝑈

𝜕𝑟
+

𝜕𝑢′

𝜕𝑟

)︂
𝜕

𝜕𝑧

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

𝜕2𝑣′

𝜕𝑧2
+

𝜕2𝑢′

𝜕𝑟𝜕𝑧

)︂
+ 2

𝜕𝑣′

𝜕𝑟

𝜕

𝜕𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+ 2
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁ 𝜕2𝑣′

𝜕𝑟2

+
1

𝑟

(︂
1

𝑟

𝜕𝑣′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

)︂
𝜕

𝜕𝜃

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+
1

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕2𝑣′

𝜕𝜃2
+

𝜕2𝑤′

𝜕𝑟𝜕𝜃
− 1

𝑟

𝜕𝑤′

𝜕𝜃

)︂
+

2

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁[︂

𝜕𝑣′

𝜕𝑟
− 1

𝑟

𝜕𝑤′

𝜕𝜃
− 𝑣′

𝑟

]︂

(A.27)
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𝜃-momentum:

𝜌

(︂
𝜕𝑤′

𝜕𝑡
+ 𝑈

𝜕𝑤′

𝜕𝑧
+ 𝑢′

𝜕𝑤′

𝜕𝑧
+ 𝑣′

𝜕𝑤′

𝜕𝑟
+

𝑤′

𝑟

𝜕𝑤′

𝜕𝜃
− 𝑣′

𝑤′

𝑟

)︂
= − 1

𝑟

𝜕

𝜕𝜃
𝑝′ +

(︂
1

𝑟

𝜕𝑢′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑧

)︂
𝜕

𝜕𝑧

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕2𝑢′

𝜕𝜃𝜕𝑧
+

𝜕2𝑤′

𝜕𝑧2

)︂
+

(︂
1

𝑟

𝜕𝑣′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

)︂
𝜕

𝜕𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+
(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

1

𝑟

𝜕2𝑣′

𝜕𝜃𝜕𝑟
− 1

𝑟2
𝜕𝑣′

𝜕𝜃
+

𝜕2𝑤′

𝜕𝑟2
− 1

𝑟

𝜕𝑤′

𝜕𝑟
+

𝑤′

𝑟2

)︂
+

2

𝑟2

(︂
𝜕𝑤′

𝜕𝜃
+ 𝑣′

)︂
𝜕

𝜕𝜃

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

+
2

𝑟2

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁(︂

𝜕2𝑤′

𝜕𝜃2
+

𝜕𝑣′

𝜕𝜃

)︂
+

2

𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁[︂

1

𝑟

𝜕𝑣′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

]︂

(A.28)

Continuity:
𝜕𝑢′

𝜕𝑧
+

𝜕𝑣′

𝜕𝑟
+

1

𝑟
𝑣′ +

1

𝑟

𝜕𝑤′

𝜕𝜃
= 0 (A.29)

Concentration:

𝜕𝐶

𝜕𝑡
+
𝜕𝑐′

𝜕𝑡
+𝑈

𝜕𝑐′

𝜕𝑧
+𝑢′

𝜕𝑐′

𝜕𝑧
+𝑣′

𝜕𝐶

𝜕𝑟
+𝑣′

𝜕𝑐′

𝜕𝑟
+

1

𝑟
𝑤′𝜕𝑐

′

𝜕𝜃
= 𝐷

(︂
𝜕2𝑐′

𝜕𝑧2
+

𝜕2𝐶

𝜕𝑟2
+

𝜕2𝑐′

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
+

1

𝑟

𝜕𝑐′

𝜕𝑟
+

1

𝑟2
𝜕2𝑐′

𝜕𝜃2

)︂
(A.30)

Note that the 𝑟 derivative of the 𝜇 terms can be expanded as follows:

𝜕

𝜕𝑟

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

=
𝜕

𝜕𝑟
𝜇(𝐶) +

𝜕

𝜕𝑟

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

=
𝜕

𝜕𝑟
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝑟
+ 𝑐′

𝜕

𝜕𝑟

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
=

𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟
+ 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝑟
+ 𝑐′

𝜕

𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁ 𝜕𝐶

𝜕𝑟

(A.31)

Similarly, the derivatives with respect to 𝑧 and 𝜃 are:

𝜕

𝜕𝜃

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

=
𝜕𝜇

𝜕𝐶�
��

𝜕𝐶

𝜕𝜃
+ 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝜃
+ 𝑐′

𝜕

𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
�
��

𝜕𝐶

𝜕𝜃
𝜕

𝜕𝑧

(︁
𝜇(𝐶) + 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶
𝑐′
)︁

=
𝜕𝜇

𝜕𝐶�
��

𝜕𝐶

𝜕𝑧
+ 𝜕𝜇

𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝑧
+ 𝑐′

𝜕

𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
�
��

𝜕𝐶

𝜕𝑧

(A.32)
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Since we are assuming small fluctuations, we drop the higher order fluctuating terms.

Additionally, we subtract the equations for mean flow, yielding

𝑧-momentum:

𝜌

(︂
𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑧
+ 𝑣′

𝜕𝑈

𝜕𝑟

)︂
= − 𝜕𝑝′

𝜕𝑧
+ 2𝜇(𝐶)

𝜕2𝑢′

𝜕𝑧2

+
1

𝑟

(︂
𝜇(𝐶)

𝜕𝑣′

𝜕𝑧
+

𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐′ + 𝜇(𝐶)

𝜕𝑢′

𝜕𝑟

)︂
+

𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟

𝜕𝑣′

𝜕𝑧
+

𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟

𝜕𝑢′

𝜕𝑟
+

𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝑟
+

𝜕𝑈

𝜕𝑟

𝜕

𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁ 𝜕𝐶

𝜕𝑟
𝑐′

+ 𝜇(𝐶)
𝜕2𝑣′

𝜕𝑧𝜕𝑟
+

𝜕2𝑈

𝜕𝑟2
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐′ + 𝜇(𝐶)

𝜕2𝑢′

𝜕𝑟2

+
1

𝑟

(︂
1

𝑟
𝜇(𝐶)

𝜕2𝑢′

𝜕𝜃2
+ 𝜇(𝐶)

𝜕2𝑤′

𝜕𝑧𝜕𝜃

)︂

(A.33)

𝑟-momentum:

𝜌

(︂
𝜕𝑣′

𝜕𝑡
+ 𝑈

𝜕𝑣′

𝜕𝑧

)︂
= − 𝜕𝑝′

𝜕𝑟
+

𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝑧
+ 𝜇(𝐶)

𝜕2𝑣′

𝜕𝑧2
+ 𝜇(𝐶)

𝜕2𝑢′

𝜕𝑟𝜕𝑧

+ 2
𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟

𝜕𝑣′

𝜕𝑟
+ 2𝜇(𝐶)

𝜕2𝑣′

𝜕𝑟2

+
1

𝑟

(︂
1

𝑟
𝜇(𝐶)

𝜕2𝑣′

𝜕𝜃2
+ 𝜇(𝐶)

𝜕2𝑤′

𝜕𝑟𝜕𝜃
− 1

𝑟
𝜇(𝐶)

𝜕𝑤′

𝜕𝜃

)︂
+

2

𝑟

(︂
𝜇(𝐶)

𝜕𝑣′

𝜕𝑟
− 1

𝑟
𝜇(𝐶)

𝜕𝑤′

𝜕𝜃
− 𝜇(𝐶)

𝑣′

𝑟

)︂
(A.34)
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𝜃-momentum:

𝜌

(︂
𝜕𝑤′

𝜕𝑡
+ 𝑈

𝜕𝑤′

𝜕𝑧

)︂
= − 1

𝑟

𝜕

𝜕𝜃
𝑝′ +

1

𝑟
𝜇(𝐶)

𝜕2𝑢′

𝜕𝜃𝜕𝑧
+ 𝜇(𝐶)

𝜕2𝑤′

𝜕𝑧2

+
𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟

(︂
1

𝑟

𝜕𝑣′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

)︂
+ 𝜇(𝐶)

(︂
1

𝑟

𝜕2𝑣′

𝜕𝜃𝜕𝑟
− 1

𝑟2
𝜕𝑣′

𝜕𝜃
+

𝜕2𝑤′

𝜕𝑟2
− 1

𝑟

𝜕𝑤′

𝜕𝑟
+

𝑤′

𝑟2

)︂
+

2

𝑟2
𝜇(𝐶)

(︂
𝜕2𝑤′

𝜕𝜃2
+

𝜕𝑣′

𝜕𝜃

)︂
+

2

𝑟
𝜇(𝐶)

(︂
1

𝑟

𝜕𝑣′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

)︂
(A.35)

Continuity:
𝜕𝑢′

𝜕𝑧
+

𝜕𝑣′

𝜕𝑟
+

1

𝑟
𝑣′ +

1

𝑟

𝜕𝑤′

𝜕𝜃
= 0 (A.36)

Concentration:

𝜕𝑐′

𝜕𝑡
+ 𝑈

𝜕𝑐′

𝜕𝑧
+ 𝑣′

𝜕𝐶

𝜕𝑟
= 𝐷

(︂
𝜕2𝑐′

𝜕𝑧2
+

𝜕2𝑐′

𝜕𝑟2
+

1

𝑟

𝜕𝑐′

𝜕𝑟
+

1

𝑟2
𝜕2𝑐′

𝜕𝜃2

)︂
(A.37)

By rearranging the terms of each momentum equation, we can group terms such that

the continuity equation allows us to eliminate them.

𝑧-momentum:

𝜌

(︂
𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑧
+ 𝑣′

𝜕𝑈

𝜕𝑟

)︂
= − 𝜕𝑝′

𝜕𝑧
+

1

𝑟

(︂
𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐′ + 𝜇(𝐶)

𝜕𝑢′

𝜕𝑟

)︂
+

𝜕2𝑈

𝜕𝑟2
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐′

+
𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟

(︂
𝜕𝑣′

𝜕𝑧
+

𝜕𝑢′

𝜕𝑟

)︂
+

𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝑟
+

𝜕𝑈

𝜕𝑟

𝜕

𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁ 𝜕𝐶

𝜕𝑟
𝑐′

+ 𝜇(𝐶)

(︂
𝜕2𝑢′

𝜕𝑧2
+

𝜕2𝑢′

𝜕𝑟2
+

1

𝑟2
𝜕2𝑢′

𝜕𝜃2

)︂
+ 𝜇(𝐶)

𝜕

𝜕𝑧((((
((((

((((
(((︂

𝜕𝑢′

𝜕𝑧
+

𝜕𝑣′

𝜕𝑟
+

1

𝑟
𝑣′ +

1

𝑟

𝜕𝑤′

𝜕𝜃

)︂
(A.38)
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𝑟-momentum:

𝜌

(︂
𝜕𝑣′

𝜕𝑡
+ 𝑈

𝜕𝑣′

𝜕𝑧

)︂
= − 𝜕𝑝′

𝜕𝑟
+

𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐′

𝜕𝑧
+ 2

𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟

𝜕𝑣′

𝜕𝑟

+ 𝜇(𝐶)

(︂
𝜕2𝑣′

𝜕𝑧2
+

𝜕2𝑣′

𝜕𝑟2
+

1

𝑟2
𝜕2𝑣′

𝜕𝜃2
− 2

𝑟2
𝜕𝑤′

𝜕𝜃
− 𝑣′

𝑟2
+

1

𝑟

𝜕𝑣′

𝜕𝑟

)︂
+ 𝜇(𝐶)

𝜕

𝜕𝑟((((
((((

(((
(((

(︂
𝜕𝑢′

𝜕𝑧
+

𝜕𝑣′

𝜕𝑟
+

1

𝑟
𝑣′ +

1

𝑟

𝜕𝑤′

𝜕𝜃

)︂
(A.39)

𝜃-momentum:

𝜌

(︂
𝜕𝑤′

𝜕𝑡
+ 𝑈

𝜕𝑤′

𝜕𝑧

)︂
= − 1

𝑟

𝜕

𝜕𝜃
𝑝′ +

𝜕𝜇

𝜕𝐶

𝜕𝐶

𝜕𝑟

(︂
1

𝑟

𝜕𝑣′

𝜕𝜃
+

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟

)︂
+ 𝜇(𝐶)

(︂
𝜕2𝑤′

𝜕𝑧2
+

𝜕2𝑤′

𝜕𝑟2
+

1

𝑟2
𝜕2𝑤′

𝜕𝜃2
+

2

𝑟2
𝜕𝑣′

𝜕𝜃
+

1

𝑟

𝜕𝑤′

𝜕𝑟
− 𝑤′

𝑟2

)︂
+

𝜇(𝐶)

𝑟

𝜕

𝜕𝜃((((
((((

(((
(((

(︂
𝜕𝑢′

𝜕𝑧
+

𝜕𝑣′

𝜕𝑟
+

1

𝑟
𝑣′ +

1

𝑟

𝜕𝑤′

𝜕𝜃

)︂
(A.40)

A.4 Assumed Form of Fluctuating Parts

We will represent the fluctuating components as wavelike solutions of the form

𝑢′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑢̄(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)} (A.41a)

𝑣′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑣(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)} (A.41b)

𝑤′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑤̄(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)} (A.41c)

𝑝′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑝(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)} (A.41d)

𝑐′(𝑧, 𝑟, 𝜃, 𝑡) = 𝑐(𝑟)exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)} (A.41e)

After substituting, the equations are simplified by dividing by exp {𝑖 (𝛼𝑧 + 𝑛𝜃 + 𝜔𝑡)}, which

is common to every term. The resulting equations are:
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𝑧-momentum:

𝜌
(︀
𝑖𝜔𝑢̄ + 𝑖𝛼𝑈𝑢̄ + 𝜕𝑈

𝜕𝑟 𝑣
)︀

= −𝑖𝛼𝑝 + 𝜇(𝐶)
(︁
𝜕2𝑢̄
𝜕𝑟2

+ 1
𝑟
𝜕𝑢̄
𝜕𝑟 − 𝛼2𝑢̄− 𝑛2

𝑟2
𝑢̄
)︁

+ 𝜕𝜇
𝜕𝐶

𝜕𝐶
𝜕𝑟

(︀
𝑖𝛼𝑣 + 𝜕𝑢̄

𝜕𝑟

)︀
+ 𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐
𝜕𝑟 + 𝜕𝑈

𝜕𝑟
𝜕
𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟 𝑐 + 𝜕2𝑈

𝜕𝑟2
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐 + 1

𝑟
𝜕𝑈
𝜕𝑟

𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐

(A.42)

𝑟-momentum:

𝜌 (𝑖𝜔𝑣 + 𝑖𝛼𝑈𝑣)

= −𝜕𝑝
𝜕𝑟 + 𝑖𝛼𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐 + 2 𝜕𝜇

𝜕𝐶
𝜕𝐶
𝜕𝑟

𝜕𝑣
𝜕𝑟

𝜇(𝐶)
(︁
−𝛼2𝑣 + 𝜕2𝑣

𝜕𝑟2
− 𝑛2

𝑟2
𝑣 − 2𝑖 𝑛

𝑟2
𝑤̄ − 1

𝑟2
𝑣 + 1

𝑟
𝜕𝑣
𝜕𝑟

)︁ (A.43)

𝜃-momentum:

𝜌 (𝑖𝜔𝑤̄ + 𝑖𝛼𝑈𝑤̄)

= − 𝑖𝑛𝑟 𝑝 + 𝜕𝜇
𝜕𝐶

𝜕𝐶
𝜕𝑟

(︀
𝑖𝑛𝑟 𝑣 + 𝜕𝑤̄

𝜕𝑟 − 𝑤̄
𝑟

)︀
+ 𝜇(𝐶)

(︁
−𝛼2𝑤̄ + 𝜕2𝑤̄

𝜕𝑟2
− 𝑛2

𝑟2
𝑤̄ + 2𝑖 𝑛

𝑟2
𝑣 + 1

𝑟
𝜕𝑤̄
𝜕𝑟 − 1

𝑟2
𝑤̄
)︁ (A.44)

Continuity:

𝑖𝛼𝑢̄ + 𝜕𝑣
𝜕𝑟 + 1

𝑟𝑣 + 𝑖𝑛1
𝑟 𝑤̄ = 0 (A.45)

Concentration:

𝑖𝜔𝑐 + 𝑖𝛼𝑈𝑐 + 𝑣 𝜕𝐶
𝜕𝑟 = 𝐷

(︁
−𝛼2𝑐 + 𝜕2𝑐

𝜕𝑟2
+ 1

𝑟
𝜕𝑐
𝜕𝑟 −

1
𝑟2
𝑛2𝑐

)︁
(A.46)
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A.5 Linearization in 𝛼

In order to remove the nonlinearity in 𝛼2, we will define new variables:

𝑢𝛼 = 𝛼𝑢̄ (A.47a)

𝑣𝛼 = 𝛼𝑣 (A.47b)

𝑤𝛼 = 𝛼𝑤̄ (A.47c)

𝑐𝛼 = 𝛼𝑐 (A.47d)

Substitute 𝑢𝛼, etc:

𝑧-momentum:

𝜌
(︀
𝑖𝜔𝑢̄ + 𝑖𝑈𝑢̄𝛼 + 𝜕𝑈

𝜕𝑟 𝑣
)︀

= − 𝑖𝛼𝑝 + 𝜇(𝐶)
(︁
𝜕2𝑢̄
𝜕𝑟2

+ 1
𝑟
𝜕𝑢̄
𝜕𝑟 − 𝛼𝑢̄𝛼 − 𝑛2

𝑟2
𝑢̄
)︁

+ 𝜕𝜇
𝜕𝐶

𝜕𝐶
𝜕𝑟

(︀
𝑖𝑣𝛼 + 𝜕𝑢̄

𝜕𝑟

)︀
+ 𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐
𝜕𝑟 + 𝜕𝑈

𝜕𝑟
𝜕
𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟 𝑐 + 𝜕2𝑈

𝜕𝑟2
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐 + 1

𝑟
𝜕𝑈
𝜕𝑟

𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐

(A.48)

𝑟-momentum:

𝜌 (𝑖𝜔𝑣 + 𝑖𝑈𝑣𝛼)

= −𝜕𝑝
𝜕𝑟 + 𝑖𝜕𝑈𝜕𝑟

𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐𝛼 + 2 𝜕𝜇

𝜕𝐶
𝜕𝐶
𝜕𝑟

𝜕𝑣
𝜕𝑟

𝜇(𝐶)
(︁
−𝛼𝑣𝛼 + 𝜕2𝑣

𝜕𝑟2
− 𝑛2

𝑟2
𝑣 − 2𝑖 𝑛

𝑟2
𝑤̄ − 1

𝑟2
𝑣 + 1

𝑟
𝜕𝑣
𝜕𝑟

)︁ (A.49)

𝜃-momentum:

𝜌 (𝑖𝜔𝑤̄ + 𝑖𝑈𝑤̄𝛼)

= − 𝑖𝑛𝑟 𝑝 + 𝜕𝜇
𝜕𝐶

𝜕𝐶
𝜕𝑟

(︀
𝑖𝑛𝑟 𝑣 + 𝜕𝑤̄

𝜕𝑟 − 𝑤̄
𝑟

)︀
+ 𝜇(𝐶)

(︁
−𝛼𝑤̄𝛼 + 𝜕2𝑤̄

𝜕𝑟2
− 𝑛2

𝑟2
𝑤̄ + 2𝑖 𝑛

𝑟2
𝑣 + 1

𝑟
𝜕𝑤̄
𝜕𝑟 − 1

𝑟2
𝑤̄
)︁ (A.50)

For convenience, we will multiply the continuity equation by 𝑖𝛼:

𝑖𝜕𝑣𝛼𝜕𝑟 + 𝑖1𝑟𝑣𝛼 − 𝑛1
𝑟𝑤𝛼 = 𝛼𝑢𝛼 (A.51)
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Concentration:

𝑖𝜔𝑐 + 𝑖𝑈𝑐𝛼 + 𝑖𝑣 𝜕𝐶
𝜕𝑟 = 𝐷

(︁
−𝛼𝑐𝛼 + 𝜕2𝑐

𝜕𝑟2
+ 1

𝑟
𝜕𝑐
𝜕𝑟 −

1
𝑟2
𝑛2𝑐

)︁
(A.52)

Future matrix definitions and calculations will be simplified if each equation has only

a single term containing 𝛼. The 𝑧-momentum equation needs to be modified to have only

the pressure term multiplied by 𝛼. The 𝛼𝑢𝛼 term can be eliminated by substituting the

continuity equation, making the 𝑧-momentum equation:

𝜌
(︀
𝑖𝜔𝑢̄ + 𝑖𝑈𝑢̄𝛼 + 𝜕𝑈

𝜕𝑟 𝑣
)︀

= − 𝑖𝛼𝑝 + 𝜇(𝐶)
(︁
𝜕2𝑢̄
𝜕𝑟2

+ 1
𝑟
𝜕𝑢̄
𝜕𝑟 − 𝑖 𝜕

𝜕𝑟𝑣𝛼 − 𝑖1𝑟𝑣𝛼 + 𝑛
𝑟 𝑤̄𝛼 − 𝑛2

𝑟2
𝑢̄
)︁

+ 𝜕𝜇
𝜕𝐶

𝜕𝐶
𝜕𝑟

(︀
𝑖𝑣𝛼 + 𝜕𝑢̄

𝜕𝑟

)︀
+ 𝜕𝑈

𝜕𝑟
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕𝑐
𝜕𝑟 + 𝜕𝑈

𝜕𝑟
𝜕
𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟 𝑐 + 𝜕2𝑈

𝜕𝑟2
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐 + 1

𝑟
𝜕𝑈
𝜕𝑟

𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐

(A.53)

We will rearrange all the equations, such that the lone term multiplied by 𝛼 appears

along on the right hand side of the equation. This yields:

𝑧-momentum:(︁
𝑖𝜔𝜌 + 𝜇(𝐶)𝑛

2

𝑟2
− 𝜇(𝐶)1𝑟

𝜕
𝜕𝑟 − 𝜇(𝐶) 𝜕2

𝜕𝑟2
− 𝜕𝜇

𝜕𝐶
𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
𝑢̄ + 𝑖𝜌𝑈𝑢̄𝛼

+ 𝜌𝜕𝑈
𝜕𝑟 𝑣 +

(︁
𝑖𝜇(𝐶) 𝜕

𝜕𝑟 + 𝑖𝜇(𝐶)1𝑟 − 𝑖 𝜕𝜇𝜕𝐶
𝜕𝐶
𝜕𝑟

)︁
𝑣𝛼 − 𝜇(𝐶)𝑛𝑟 𝑤̄𝛼

−
(︁
𝜕𝑈
𝜕𝑟

𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

𝜕
𝜕𝑟 + 𝜕𝑈

𝜕𝑟
𝜕
𝜕𝐶

(︁
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟 + 𝜕2𝑈

𝜕𝑟2
𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

+ 1
𝑟
𝜕𝑈
𝜕𝑟

𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝑐

= − 𝑖𝛼𝑝

(A.54)

𝑟-momentum:(︁
𝑖𝜔𝜌 + 𝜇(𝐶)𝑛

2+1
𝑟2

− 𝜇(𝐶)1𝑟
𝜕
𝜕𝑟 − 𝜇(𝐶) 𝜕2

𝜕𝑟2
− 2 𝜕𝜇

𝜕𝐶
𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
𝑣 + 𝑖𝜌𝑈𝑣𝛼

+ 2𝑖𝜇(𝐶) 𝑛
𝑟2
𝑤̄ − 𝑖𝜕𝑈𝜕𝑟

𝜕𝜇
𝜕𝑐

⃒⃒⃒
𝐶
𝑐𝛼 + 𝜕

𝜕𝑟𝑝

= −𝜇(𝐶)𝛼𝑣𝛼

(A.55)
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𝜃-momentum:(︁
−𝑖𝑛𝑟

𝜕𝜇
𝜕𝐶

𝜕𝐶
𝜕𝑟 − 2𝑖𝜇(𝐶) 𝑛

𝑟2

)︁
𝑣 + 𝑖𝑛𝑟 𝑝

+
(︁
𝑖𝜔𝜌 + 𝜕𝜇

𝜕𝐶
𝜕𝐶
𝜕𝑟

1
𝑟 −

𝜕𝜇
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟 − 𝜇(𝐶) 𝜕2

𝜕𝑟2
+ 𝜇(𝐶)𝑛

2+1
𝑟2

− 𝜇(𝐶)1𝑟
𝜕
𝜕𝑟

)︁
𝑤̄ + 𝑖𝜌𝑈𝑤̄𝛼

= −𝜇(𝐶)𝛼𝑤̄𝛼

(A.56)

Concentration:

𝜕𝐶
𝜕𝑟 𝑣 +

[︁
𝑖𝜔 −𝐷

(︁
𝜕2

𝜕𝑟2
+ 1

𝑟
𝜕
𝜕𝑟 −

𝑛2

𝑟2

)︁]︁
𝑐 + 𝑖𝑈𝑐𝛼 = −𝛼𝐷𝑐𝛼 (A.57)

To be consistent with the right hand sides of the previous equations, we will multiply the

continuity equation by 𝑖𝛼. This allows us to have 𝛼𝑢𝛼 as the only term in 𝛼 after converting

all of the other terms to their 𝑢𝛼, 𝑣𝛼, 𝑤𝛼 counterparts:

𝑖 𝜕
𝜕𝑟𝑣𝛼 + 𝑖1𝑟𝑣𝛼 − 𝑛1

𝑟𝑤𝛼 = 𝛼𝑢𝛼 (A.58)
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A.6 Non-dimensionalization

Before continuing, we will non-dimensionalize the equations. Non-dimensionalized values

will be represented with (̂ ); definitions are:

𝑈̂ = 𝑈
𝑈𝑗

𝑟 = 𝑟
𝑅

𝐶 = 𝐶
𝐶𝑗

𝜇̂ = 𝜇
𝜇𝑗

𝛼̂ = 𝛼𝑅

𝜔̂ = 𝜔𝑅
𝑈𝑗

ˆ̄𝑢 = 𝑢̄
𝑈𝑗
, ˆ̄𝑢𝛼 = 𝑢̄𝛼𝑅

𝑈𝑗

ˆ̄𝑣 = 𝑣
𝑈𝑗
, ˆ̄𝑣𝛼 = 𝑣𝛼𝑅

𝑈𝑗

ˆ̄𝑤 = 𝑤̄
𝑈𝑗
, ˆ̄𝑤𝛼 = 𝑤̄𝛼𝑅

𝑈𝑗

ˆ̄𝑐 = 𝑐
𝐶𝑗

, ˆ̄𝑐𝛼 = 𝑐𝛼
𝐶𝑗

ˆ̄𝑝 = 𝑝
𝜌𝑈2

𝑗

𝑅𝑒 =
𝜌𝑈𝑗𝑅
𝜇𝑗

𝑆𝑐 =
𝜇𝑗

𝐷

(A.59)

We will non-dimensionalize the momentum equations by multiplying all terms by 𝑅
𝜌𝑈2

𝑗
:

(︁
𝑖𝜔̂ − 1

𝑅𝑒
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟 + 1

𝑅𝑒 𝜇̂(𝐶)
(︁
𝑛2

𝑟2
− 1

𝑟
𝜕
𝜕𝑟 −

𝜕2

𝜕𝑟2

)︁)︁
ˆ̄𝑢 + 𝑖𝑈̂ ˆ̄𝑢𝛼

+ 𝜕𝑈̂
𝜕𝑟

ˆ̄𝑣 + 1
𝑅𝑒

(︁
𝑖𝜇̂(𝐶) 𝜕

𝜕𝑟 + 𝑖𝜇̂(𝐶)1𝑟 − 𝑖 𝜕𝜇̂𝜕𝐶
𝜕𝐶
𝜕𝑟

)︁
ˆ̄𝑣𝛼 − 1

𝑅𝑒 𝜇̂(𝐶)𝑛𝑟 ˆ̄𝑤𝛼

− 1
𝑅𝑒

(︁
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

𝜕
𝜕𝑟 + 𝜕𝑈̂

𝜕𝑟
𝜕
𝜕𝐶

(︁
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟 + 𝜕2𝑈̂

𝜕𝑟2
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 1
𝑟
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

)︁
ˆ̄𝑐

= − 𝑖𝛼̂ ˆ̄𝑝

(A.60)
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(︁
𝑖𝜔̂ + 1

𝑅𝑒 𝜇̂(𝐶)
(︁
𝑛2+1
𝑟2

− 1
𝑟

𝜕
𝜕𝑟 −

𝜕2

𝜕𝑟2

)︁
− 2 1

𝑅𝑒
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
ˆ̄𝑣

+ 𝑖𝑈̂ ˆ̄𝑣𝛼 + 2𝑖 1
𝑅𝑒 𝜇̂(𝐶) 𝑛

𝑟2
ˆ̄𝑤

− 𝑖 1
𝑅𝑒

𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

ˆ̄𝑐𝛼 + 𝜕
𝜕𝑟

ˆ̄𝑝

= − 1
𝑅𝑒 𝜇̂(𝐶)𝛼̂ˆ̄𝑣𝛼

(A.61)

− 𝑖 1
𝑅𝑒

𝑛
𝑟

(︁
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟 + 2𝜇̂(𝐶)1𝑟

)︁
ˆ̄𝑣

+
(︁
𝑖𝜔̂ + 1

𝑅𝑒 𝜇̂(𝐶)
(︁
𝑛2+1
𝑟2

− 1
𝑟

𝜕
𝜕𝑟 −

𝜕2

𝜕𝑟2

)︁
+ 1

𝑅𝑒
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

1
𝑟 −

1
𝑅𝑒

𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
ˆ̄𝑤

+ 𝑖𝑈̂ ˆ̄𝑤𝛼 + 𝑖𝑛𝑟 ˆ̄𝑝

= − 1
𝑅𝑒 𝜇̂(𝐶)𝛼̂ ˆ̄𝑤𝛼

(A.62)

We will non-dimensionalize by multiplying both sides of the concentration equation by

𝑅
𝑈𝑗𝐶𝑗

:

𝜕𝐶
𝜕𝑟

ˆ̄𝑣 +
[︁
𝑖𝜔̂ − 1

𝑆𝑐
1
𝑅𝑒

(︁
𝜕2

𝜕𝑟2
+ 1

𝑟
𝜕
𝜕𝑟 −

𝑛2

𝑟2

)︁]︁
ˆ̄𝑐 + 𝑖𝑈̂ ˆ̄𝑐𝛼 = − 1

𝑆𝑐
1
𝑅𝑒 𝛼̂ˆ̄𝑐𝛼 (A.63)

We will non-dimensionalize the continuity equation by multiplying both sides with 𝑅2

𝑈𝑗
:

𝑖 𝜕
𝜕𝑟

ˆ̄𝑣𝛼 + 𝑖1𝑟 ˆ̄𝑣𝛼 − 𝑛1
𝑟

ˆ̄𝑤𝛼 = 𝛼̂ ˆ̄𝑢𝛼 (A.64)

Our last set of operations aim to isolate the right hand sides as simply 𝛼 times the

relevant fluctuating part. Our final system of equations (sans equations (A.47a)-(A.47d)) is

as follows:
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𝑧-momentum:(︁
−𝜔̂ − 𝑖 1

𝑅𝑒
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟 + 𝑖 1

𝑅𝑒 𝜇̂(𝐶)
(︁
𝑛2

𝑟2
− 1

𝑟
𝜕
𝜕𝑟 −

𝜕2

𝜕𝑟2

)︁)︁
ˆ̄𝑢− 𝑈̂ ˆ̄𝑢𝛼

+ 𝑖𝜕𝑈̂𝜕𝑟 𝑣 + 𝑖 1
𝑅𝑒

(︁
𝜇̂(𝐶) 𝜕

𝜕𝑟 + 𝜇̂(𝐶)1𝑟 −
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

)︁
ˆ̄𝑣𝛼 − 𝑖 𝜇̂(𝐶)

𝑅𝑒
𝑛
𝑟

ˆ̄𝑤𝛼

+ 𝑖 1
𝑅𝑒

(︁
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

𝜕
𝜕𝑟 + 𝜕2𝑈̂

𝜕𝑟2
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 1
𝑟
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 𝜕𝑈̂
𝜕𝑟

𝜕
𝜕𝐶

(︁
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟

)︁
ˆ̄𝑐

= 𝛼̂ ˆ̄𝑝

(A.65)

𝑟-momentum: (︁
−𝑖𝜔̂ 𝑅𝑒

𝜇̂(𝐶) −
𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
+ 2 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
ˆ̄𝑣

− 𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

ˆ̄𝑣𝛼 − 2𝑖 𝑛
𝑟2

ˆ̄𝑤

+ 𝑖 1
𝜇̂(𝐶)

𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

ˆ̄𝑐𝛼 − 𝑅𝑒
𝜇̂(𝐶)

𝜕
𝜕𝑟

ˆ̄𝑝

= 𝛼̂ˆ̄𝑣𝛼

(A.66)

𝜃-momentum:

𝑖𝑛𝑟

(︁
1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟 + 21

𝑟

)︁
ˆ̄𝑣

+
(︁
−𝑖𝜔̂ 𝑅𝑒

𝜇̂(𝐶) −
𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
− 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

1
𝑟 + 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

)︁
ˆ̄𝑤

− 𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

ˆ̄𝑤𝛼 − 𝑖𝑛𝑟
𝑅𝑒
𝜇̂(𝐶)

ˆ̄𝑝

= 𝛼̂ ˆ̄𝑤𝛼

(A.67)

Concentration:

−𝑃𝑒𝜕𝐶𝜕𝑟 ˆ̄𝑣 −
[︁
𝑖𝜔̂𝑃𝑒−

(︁
𝜕2

𝜕𝑟2
+ 1

𝑟
𝜕
𝜕𝑟 −

𝑛2

𝑟2

)︁]︁
ˆ̄𝑐− 𝑖𝑃𝑒𝑈̂ ˆ̄𝑐𝛼 = 𝛼̂ˆ̄𝑐𝛼 (A.68)

Continuity:

𝑖 𝜕
𝜕𝑟

ˆ̄𝑣𝛼 + 𝑖
𝑟
ˆ̄𝑣𝛼 − 𝑛1

𝑟
ˆ̄𝑤𝛼 = 𝛼̂ˆ̄𝑢𝛼 (A.69)

A.7 Matrix Form

In order to begin to tackle the problem computationally, it behooves us to rewrite the system

of equations as a matrix system, now with equations (A.47a) through (A.47d) included, in
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the form:

𝐴𝑥 = 𝛼̂𝐵𝑥 (A.70)

The matrices are defined as follows. The right hand side is simpler and expands as:

𝛼̂𝐵𝑥 = 𝛼̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ̄𝑢

ˆ̄𝑢𝛼

ˆ̄𝑣

ˆ̄𝑣𝛼

ˆ̄𝑤

ˆ̄𝑤𝛼

ˆ̄𝑐

ˆ̄𝑐𝛼

ˆ̄𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.71)

The matrix 𝐴 on the left hand side is considerably more complicated. Its definition is:

𝐴𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0

0 0 0 𝐴24 0 𝐴26 0 0 0

0 0 0 1 0 0 0 0 0

0 0 𝐴43 𝐴44 𝐴45 0 𝐴47 0 𝐴49

0 0 0 0 0 1 0 0 0

0 0 𝐴63 0 𝐴65 𝐴66 0 0 𝐴69

0 0 0 0 0 0 0 1 0

0 0 𝐴83 0 0 0 𝐴87 𝐴88 0

𝐴91 𝐴92 𝐴93 𝐴94 0 𝐴96 𝐴97 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ̄𝑢

ˆ̄𝑢𝛼

ˆ̄𝑣

ˆ̄𝑣𝛼

ˆ̄𝑤

ˆ̄𝑤𝛼

ˆ̄𝑐

ˆ̄𝑐𝛼

ˆ̄𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.72)
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where

𝐴24 = 𝑖 𝜕
𝜕𝑟 + 𝑖1𝑟

𝐴26 = −𝑛1
𝑟

𝐴43 = −𝑖𝜔̂ 𝑅𝑒
𝜇̂(𝐶) −

𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
+ 2 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

𝐴44 = −𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

𝐴45 = −2𝑖 𝑛
𝑟2

𝐴48 = 𝑖 1
𝜇̂(𝐶)

𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

𝐴49 = − 𝑅𝑒
𝜇̂(𝐶)

𝜕
𝜕𝑟

𝐴63 = 𝑖𝑛𝑟

(︁
1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟 + 21

𝑟

)︁
𝐴65 = −𝑖𝜔̂ 𝑅𝑒

𝜇̂(𝐶) −
𝑛2+1
𝑟2

+ 1
𝑟

𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2
− 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

1
𝑟 + 1

𝜇̂(𝐶)
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟

𝐴66 = −𝑖𝑈̂ 𝑅𝑒
𝜇̂(𝐶)

𝐴69 = −𝑖𝑛𝑟
𝑅𝑒
𝜇̂(𝐶)

𝐴83 = −𝑃𝑒𝜕𝐶𝜕𝑟

𝐴87 = −𝑖𝜔̂𝑃𝑒 +
(︁

𝜕2

𝜕𝑟2
+ 1

𝑟
𝜕
𝜕𝑟 −

𝑛2

𝑟2

)︁
𝐴88 = −𝑖𝑃𝑒𝑈̂

𝐴91 = −𝜔̂ − 𝑖 1
𝑅𝑒

𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟

𝜕
𝜕𝑟 + 𝑖 1

𝑅𝑒 𝜇̂(𝐶)
(︁
𝑛2

𝑟2
− 1

𝑟
𝜕
𝜕𝑟 −

𝜕2

𝜕𝑟2

)︁
𝐴92 = −𝑈̂

𝐴93 = 𝑖𝜕𝑈̂𝜕𝑟

𝐴94 = 1
𝑅𝑒

(︁
𝜕𝜇̂
𝜕𝐶

𝜕𝐶
𝜕𝑟 − 𝜇̂(𝐶) 𝜕

𝜕𝑟 − 𝜇̂(𝐶)1𝑟

)︁
𝐴96 = −𝑖 𝜇̂(𝐶)

𝑅𝑒
𝑛
𝑟

𝐴97 = 𝑖 1
𝑅𝑒

(︁
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

𝜕
𝜕𝑟 + 𝜕2𝑈̂

𝜕𝑟2
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 1
𝑟
𝜕𝑈̂
𝜕𝑟

𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

+ 𝜕𝑈̂
𝜕𝑟

𝜕
𝜕𝐶

(︁
𝜕𝜇̂
𝜕𝑐

⃒⃒⃒
𝐶

)︁
𝜕𝐶
𝜕𝑟

)︁

(A.73)
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