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Chapter 1

INTRODUCTION

Someone has a stroke every 40 seconds in the United States and every four minutes

someone dies from one. Stroke is the third highest cause of death in the US, behind heart

disease and cancer, and places a huge cost on the heath care system with an estimate of $74

billion in 2010 [6]. Gaining a better understanding of the causes of stroke has the potential

to save lives and significantly reduce the burden on the health care system.

1.1 Types of Stroke

The National Institutes of Health define stroke as an interruption of the blood supply to any

part of the brain [25]. There are two types of stroke, hemorrhagic and ischemic. Hemorrhagic

stroke occurs when blood vessels in the brain become weak and rupture, causing loss of

blood into the brain. Ischemic stroke occurs when blood flow is stopped due to a blood

clot. The clot may be formed locally by a thrombosis (thrombotic stroke), a narrowing of

the artery wall, or a clot upstream in the circulation may break off and occlude a smaller

artery downstream near to or in the brain (embolic stroke). 87% of strokes are ischemic.

A common origin for embolic blood clots is the carotid artery bifurcation. Atherosclerosis

affects this region more frequently than anywhere else in the vasculature, except perhaps

the coronary arteries. Atherosclerotic plaque ruptures and produces blocking in a smaller

diameter vessel in ther cerebral circulation.

1.2 The Carotid Arteries

The carotid arteries are a paired set of arteries, one for each side of the body, that supply

blood to the head and neck. The arterial structure consists of a common carotid artery

(CCA), internal carotid artery (ICA), and external carotid artery (ECA). The CCA branches
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Figure 1.1: Sketch of carotid artery bifurcation and branches 1

into the ICA and ECA at the carotid artery bifurcation, see Figure 1.2. The ICA has a

localized dilation at its carotid artery bifurcation (CAB) origin. This dilation is known

as the carotid sinus or bulb. The combination of bifurcation, curvature, pulsatility, and

sudden change in arterial diameter causes the flow to be highly complex with recirculation

regions and secondary flows. It is in areas of complex or disturbed flow that atherosclerosis

is prominent in the vasculature.

1.3 Atherosclerosis

Atherosclerosis is the thickening and hardening of the arterial wall due to build up of fatty

materials. It starts with the deposition of lipids into the arterial wall and progresses through

a complex inflammatory response involving white blood cells (WBC) and smooth muscle
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cells (SMC). Low density lipoproteins (LDL) enter the intima through the endothelium.

Macrophages and T-lymphocytes, types of white blood cells, enter to wall to neutralize

the oxidized LDL. Macrophages and LDL combine to form foam cells, named as such for

their large size and lipid content. Groups of foam cells form fatty streaks, a first indicator of

atherosclerosis. SMCs migrate from the media and form a barrier between the plaque region

and the arterial lumen. The SMCs form a fibrous cap around the lesion and, as they die,

the cap hardens and becomes calcified. As the fibrous cap grows, the artery wall thickens

and the lumen narrows. With time, the foam cells within the fibrous cap die from lack

of nutrients and a necrotic core develops. The fibrous cap may rupture with time due to

exposure of hemodynamic stresses or decreased cell health. This can lead to a thrombosis,

a clotting of the artery at the rupture site, or an embolism, a clotting further downstream.

1.4 Literature Review

1.4.1 Flow Characterization

Early work completed by McDonald, Womersley and others [30] in the 1950s provided knowl-

edge of pressure waveforms and provided evidence of flow reversal within the circulation of

rabbits and dogs. Womersley, in his 1955 paper [30], introduced an analytical solution to

the velocity profile of fully developed flow in a circular tube when the pressure gradient

is pulsatile. The Womersley profile, as it is now known, is used extensively to generate

suitable boundary conditions for use in computational simulations. Caro et al. [8] hypoth-

esized that atherosclerosis is found in regions of low wall shear stress (WSS), a hypothesis

that was later confirmed from in vitro examinations of CAB plaques. Experimental studies

in blown glass models of the CAB were conducted in the 1980s by Ku, Giddens, Zarins

and others [14, 15, 32]. These studies used averaged geometries measured from autopsy or

bi-planar angiogram. Averaged geometries allow for general flow features common to most

CABs to be identified and also for easier construction of experimental models. Steady and

pulsatile inlet conditions were used, and comparisons of shear stress statistics to intimal wall

thickness were made. The general flow found in the CAB was characterized by permanently

separated flow in the carotid sinus region, with the detachment point moving through the
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cardiac cycle, and secondary flows caused by the bifurcation. Secondary flows can also be

caused by curvature in the arterial geometry which early CAB studies did not include. High

WSS was found at the apex of the bifurcation where the flow from the CCA impinges and

forms secondary vorticies in the ECA and ICA. Low and oscillating WSS was found in the

carotid sinus, which is caused by the recirculation and moving attachment and detachment

points. Intimal thickening was found to be positively correlated with regions of low and

oscillating shear, further reinforcing Caro’s hypothesis. Ku [14] introduced the Oscillating

Shear Index (OSI), a measure of the degree to which shear stress changes direction at a

given point. It is still commonly used today. High values of OSI are found in connection

with low values of WSS.

As computational resources grew and medical imaging techniques improved, use of com-

putational fluid dynamics grew rapidly in cardiovascular simulations. Patient specific ge-

ometries and realistic pressure waveforms were studied by Milner and Steinman [20] using

geometries reconstructed from MRI imaging. The large variability of CAB geometry and

thus flow characteristics was studied by Lee et al. [16] and large variations in regions with

low WSS and high OSI were found. Various geometry factors were investigated for correla-

tions to low WSS and OSI. Early averaged geometry studies were limited to small parameter

spaces and focused on bifurcation angle, planarity, and ICA:CCA cross sectional area ratio.

In his work, Lee suggested using the proximal area ratio, the ratio between the carotid sinus

and the CCA diameters, as it achieved a higher correlation to low WSS and high OSI than

the geometry factors used in earlier bifurcation studies. Another strength in Lee’s study was

the parameter space investigated was obtained from patient specific, not idealized, averaged

geometries.

Early computational mass transfer studies focused on idealized geometries like those

found the early CAB experimental studies. Two dimensional models were initially used to

minimize the computational, as the low diffusion coefficients typical for chemical species in

the blood lead to sharp gradients where mass transfer occurs [11]. These models can only

capture the detachment found at the carotid sinus and not the secondary flows caused by the

bifurcation. Early 3D models used symmetry conditions, only solving half the geometry,

and used steady inlet conditions. The study by Ma et al. [24] found a thickened mass
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boundary layer in the carotid sinus, caused by separation in the region. The location of

minimum mass transfer did not match that of minimum shear stress, although both were

highly correlated with intimal thickness.

1.4.2 Cell Response

The endothelial cell response to hemodynamic forces plays an important role in under-

standing atherosclerosis. The effect of shear stress on endothelial cell function is still not

fully understood. Work by Levesque and Nerem [19] found that endothelial cells are highly

aligned and elongated when exposed to directional shear stress. It has been shown that in

areas of recirculation, or low and oscillating shear stress, endothelial cells lose their align-

ment and organization [9]. This has been found to lead to higher cell apoptosis. Tricot [28]

measured a seven fold increase in cell apoptosis in the downstream section of an arterial

narrowing by atherosclerotic plaque. Endothelial cells in “disturbed” flow regions, such as

those in the CAB, lack organization of the cytoskeleton and intercellular junctions leading

to increased macromolecular permeability [9]. This can lead to increased mass transfer of

LDL into the arterial wall.

Reactive oxygen species (ROS) are another key factor in atherosclerosis. Nitric oxide

(NO) is involved in vascular tone, regulation of blood pressure, inhibits adhesion of platelets

and WBCs, and other protective responses towards atherosclerosis [22, 29]. NO also oxidizes

LDL which allows the LDL to enter the intima. NO is produced in part by endothelial cells.

In a review by Boo [7], two mechanisms for NO production by the endothelial cells are

introduced. A burst production is found in sharp increases in shear stress, and there is a

low sustained production for constant shear stress. This suggests that regions of blood flow

that are separated throughout the cardiac cycle, such as flow in the carotid sinus, have a

deficiency of NO. The role of NO and other ROS is still not fully understood. Clearly the

mass transfer of species such as ROS, LDL, and WBC play a key role in atherosclerosis,

but more quantitative relations to flow statistics are required.
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1.5 Objectives of this Thesis

The main objectives of this thesis are listed below:

• Develop methodology to reconstruct patient-specific arterial geometries.

• Develop numerical methods to resolve the steep mass transfer at the arterial walls.

• Compare results from shear stress and scalar transport and explore potential links to

atherosclerosis.



7

Chapter 2

GEOMETRY RECONSTRUCTION

Reconstruction of arterial geometry from medical images must be completed before

CFD simulations or flow phantom studies can be conducted. An overview of geometry

construction methods are given in this chapter and the specific workflow used in this work

is described in detail.

2.1 Methods

Generating 3D geometries from medical images requires three basic steps: data acquisition,

image segmentation, and reconstruction of the 3D geometry. The data acquisition step

consists of obtaining medical images from the various technologies available. Ultrasound

(US) was the imaging technology used in this thesis.

The last two steps are implemented in a way that is dependent on the method used for

construction of the 3D geometry. Two main methods are in use: lofting and deformable

parametric models. Lofted geometries are created from segmented 2D cross section contours

by sweeping a surface through guide splines where tangency conditions are met [20]. The

guide splines are longitidinal contours defining the arterial lumen extracted from the medi-

cal image data. This can be accomplished through forming b-splines from operator-chosen

points [13, 20] or through active contours called snakes[31]. Snakes are dynamic curves

that can move and change shape according to specified forces defined from the snake itself

(typically curvature or elasticity) or from the medical image data (gradient of a potential

function). This dynamic nature allows for an automated segmentation of the lumen ge-

ometry. Deformable parametric models allow for the geometry process to be nearly fully

automated. The 3D parametric models are akin to the 2D counterpart, snakes, and are

often called balloons. Although the process is almost fully automated, the use of 3D para-

metric models require a much longer development time for creating the geometry creation
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tool, whereas lofting can be implemented using commercial products such as SolidWorks

with little upfront development time. For this reason lofting was the chosen method for the

work presented in this thesis.

2.2 Pre-Processing the Medical Imaging Data

The geometries created for this work used data from the Center for Industrial and Medical

Ultrasound (CIMU) at the Applied Physics Lab (UW). Patient scans were obtained by

Dr. Dan Leotta and collaborators at CIMU with a magnetic 3D registration [18, 17]. The

data received contained three dimensional coordinates for discrete points that delineate the

segmented contours of the arterial lumen. This data was imported into MATLAB to pre-

process before being exported into SolidWorks for solid model generation. The workflow of

the MATLAB pre-processing is outlined below. Appendix A contains the scripts used. The

procedure is described in more detail below.

1. Import 3D coordinates

2. Calculate centroids of the CCA contours

3. Translate data so the first CCA contour is centered at the origin

4. Estimate the centerline of the CCA

5. Rotate data so that the CCA centerline is aligned with the x-axis of the coordinate

system

6. Calculate hydraulic diameter of CCA inlet

7. Create Flow extension contour

8. Export new coordinates for the lumen cross section to SolidWorks
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2.2.1 Centerline Estimation

In order to align the CCA with the x-axis, an estimate of the CCA centerline must be made.

This was accomplished using cubic spline interpolation, which produces a smooth (in first

and second derivatives sense) and continuous curve. MATLAB has pre-built functions for

implementing cubic splines, but the general framework is described here:

Cubic splines are piecewise polynomials with the form [3]

Si = ai + bi(x̂− xi) + ci(x̂− xi)2 + di(x̂− xi)3 for x ∈ [xi, xi+1] (2.1)

For a spline with n centroids there are n−1 cubic polynomials that have a total of 4n−4

unknowns. Continuity constraints account for 2n− 2 unknowns:

Si(xi) =ai (2.2a)

Si(xi+1) =Si+1(xi+1) = ai+1 (2.2b)

Smoothness in the first and second derivatives for the interior curves acount for another

2n− 4 unknowns:

S′i(xi+1) =S′i+1(xi+1) (2.3a)

S′′i (xi+1) =S′′i+1(xi+1) (2.3b)

The last two constraints are handled in MATLAB with the “Not-a-Knot” constraint.

This constraint is applied at the first two or last two cubic curves and matches the third

derivatives of the paired polynomials:

S′′′1 (x2) =S′′′2 (x2) (2.4a)

S′′′n−2(xn−2) =S′′′n−1(xn−2) (2.4b)
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2.2.2 Rotation Matrix

With the estimate of the CCA centerline calculated, the geometry data can be rotated to

align the CCA with the x-axis. In order to rotate the geometry data a rotation matrix must

be constructed. Equation 2.5 is a generalized rotation matrix

R =


u2

1 + (1− u2
1)c u1u2(1− c)− u3s u1u3(1− c) + u2s

u1u2(1− c) + u3s u2
2 + (1− u2

2)c u2u3(1− c) + u1s

u1u3(1− c)− u2s u2u3(1− c) + u1s u2
3 + (1− u2

3)c

 (2.5)

where

c =cosθ (2.6a)

s =sinθ (2.6b)

and u = (u1, u2, u3) is the axis of rotation and θ is the angle of rotation. In the case of

aligning the CCA with the x-axis u is determined by the cross product between the slope of

the centerline estimate at the first CCA contour, −→n , and the unit vector along the x-axis,
−→x . The angle is determined by using the four-quadrant inverse tangent, atan2 function.

This allows for accurate calculation of the angle of rotation even when the two vectors are

nearly parallel.

2.2.3 Hydraulic Diameter and Flow Extensions

The coordinates of the points from the original segmented images were defined on a Carte-

sian coordinate system far away from the origin. The contours were translated and rotated

to have the first contour of the common carotid artery (CCA) centered on the origin and

the centerlines of the geometry were estimated to allow for the CCA to be aligned with the

x-axis. The hydraulic diameter of the CCA was calculated to create flow extension with

a circular inlet. This allows for an easier description of the inlet boundary conditions and
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also allows the flow to develop to the patient specific geometry. The hydraulic diameter is

defined in Equation 2.7 and the MATLAB script used is found in Appendix A

Dh =
4A
P

(2.7)

where A is the cross-sectional area and P is the wetted perimeter.

The flow extensions created are three to five hydraulic diameters in length. This length

was chosen to allow for a smooth transition to the irregular cross-section of the arterial

lumen during the lofting process. The flow extensions also allow the flow to develop to the

patient-specific geometry. The lofting process was completed in SolidWorks and is discussed

in the next section.

2.3 Solid Model Generation with SolidWorks

Once the pre-processing in MATLAB is completed, the data is exported to SolidWorks

for reconstruction of the arterial geometry. The geometry data is imported into SolidWorks

through a macro file generated by the MATLAB script ultrasound2.mat (found in Appendix

A. The macro imports each arterial contour individually using the Curve through XYZ

Points feature (see Figure 2.1). Next, the three arterial branches (CCA, ECA, and ICA)

are formed by lofting surfaces through the curves (see Figure 2.2). Depending on the dataset,

certain curves may be left out of the loft in order to reduce wiggle in the geometry that is

not anatomically correct. This wiggle is caused by errors in the original data acquisition

and is attributed to slight movements by the patient during the scan.

With the arterial branches lofted, the task of reconstructing the bifurcation region is

started. This is the area that represents the highest level of uncertainty in the reconstruction.

This is unfortunate as this is also the region of highest interest in terms of the hemodynamic

factors. This uncertainty is due to the orientation of the medical scans. The scans are mainly

perpendicular to the axial direction of the arterial geometry. While this provides a good

description of the geometry in the arterial branches, the apex of the bifurcation has almost

no detail. A few scans that are parallel to the axial directions at the bifurcation would
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Figure 2.1: Contours imported into SolidWorks from MATLAB

Figure 2.2: Lofted arterial branches after removing patient wiggle

provide the information necessary to have higher confidence in the reconstruction of the

bifurcation region.

The medical images used for this thesis only included scans perpendicular to the axial

flow. To form an estimate of the bifurcation region the following workflow was used:

1. Generate face-curves on the arterial branches parallel to the axial direction of the

flow. See Figure 2.3

2. Create guide curves in the bifurcation region by connecting face-curves with 3D-curves

matching tangency and, where possible, curvature. See Figure 2.4

3. Loft 3 surfaces connecting the 3 arterial branches. See Figure 2.5

• CCA to ICA

• CCA to ECA
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• ICA to ECA (apex of bifurcation)

4. Finish geometry reconstruction by filling in remaining gaps in geometry using surface-

fill feature. See Figures 2.6 and 2.7

The highest uncertainty in the workflow comes from the generation of the guide curves

used to create the bifurcation apex. These curves connect face-curves of the ICA and ECA

branches. While tangency conditions can be applied at the connection of the face-curves and

guide curves, a curvature condition would at times create unrealistic shapes. On account

of this, the curvature of the guide curves are typically defined by hand and this has a large

impact on the overall shape of the bifurcation apex. It is recommended for future work to

include scan data in the plane of the bifurcation so there is less uncertainty in the geometry

reconstruction of the bifurcation apex.

2.4 Future Work

The workflow described was designed to allow for quick geometry reconstruction while us-

ing off-the-self modeling tools (SolidWorks). The process typically takes one to three hours

per geometry depending on the complexity of the bifurcation region. This time constraint

quickly becomes a problem for studies requiring a large number of patient scans. It is recom-

mended to move towards a fully automated process. Parametric models are a good candidate

for this development. Similar models are currently being used by Steinman and Antiga

[4, 16, 5] through their open-source Vascular Modeling Toolkit (http://www.vmtk.org/).

Their process currently works directly with the DICOM images from medical imaging sys-

tems, which were not available for this work. Parametric models using already segmented

images, such as the data used in this thesis, could be created using methods similar to work

done by Cohen [10].
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Figure 2.3: Generating face curves on arterial branches

Figure 2.4: 3D guide curves used to connect arterial branches. The guide curves have
tangency conditions with the face curves on the arterial branches
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Figure 2.5: Surface Lofts connecting arterial branches
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Figure 2.6: The surface fill feature fills the areas not lofted by the guide curves

Figure 2.7: Finished geometry reconstruction



17

Chapter 3

VALIDATION OF THE NUMERICAL SOLUTION TO THE MASS
TRANSFER PROBLEM

The high Peclet numbers found in cardiovascular flows makes the study of the mass

transfer in large arteries and veins challenging and computationally expensive. The mass

boundary layers develop much more slowly than its velocity counterpart which can lead to

sharp gradients in the scalar fields that require a much finer mesh to resolve. This has led

many past studies to be under-resolved, which causes the solution to have a lower effective

Peclet number and underestimate the effects of flow features on the concentration field. In

order to maximize the computational resources available for this thesis, a validation study

was completed to determine the grid resolution required to resolve the mass transfer near

the arterial wall.

A simplified geometry was investigated because analytic solutions can be obtained for

use as a benchmark for the computational results. Two wall conditions were explored,

constant wall flux and constant wall concentration.

3.1 Constant Wall Flux

The validation study compares the results of analytic and computational solutions to a sim-

plified geometry representative of arterial flow. The analytic solution is used as a benchmark

for determining the accuracy of the computational simulation.

3.1.1 Simplified Geometry

The mesh resolution in the radial direction was validated using the simplified case of flow

through a circular straight pipe with constant cross section and a fully-developed velocity

profile. The scalar profile is uniform for z < 0 and there is no mass flux (
dφ

dr
= 0) at the

walls. For z > 0 there is a constant scalar flux q1. These simplifications allow for analytic
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Figure 3.1: Cylinder geometry for scalar validation study

solutions to be calculated and used as the benchmark for comparison to CFD simulations

conducted with various grid spacings using FLUENT. Figure 3.1.1 outlines the simplified

geometry used in the benchmark problem.

3.1.2 Governing Equations

The constitutive equations are the Navier-Stokes equations, continuity, and the convection-

diffusion equation for scalar transport. Assuming axisymmetric, fully-developed flow in a

pipe, the Navier-Stokes and continuity is reduced to Poiseuille flow:

vz = vmax

[
1−

( r
R

)2
]

(3.1)

The scalar-transport equations takes the following form in cylindrical coordinates:

vz
∂φ

∂z
= D

[
1
r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2

]
(3.2)

where r is the radial distance from the centerline, z is the axial distance measured from

the step in wall flux, φ is the scalar concentration, and D is the scalar diffusivity.
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3.1.3 Analytical Solution1

Typically, for high Peclet number flows, the scalar diffusion in the z-direction is much

smaller than the convective transfer. This is exactly true when scalar transport becomes

fully-developed. Assumming negligible axial scalar diffusion and plugging in equations 3.1

for the velocity field simplifies the scalar equation to:

vmax

[
1−

( r
R

)2
]
∂φ

∂z
=
D

r

∂

∂r

(
r
∂φ

∂r

)
(3.3)

with the following boundary conditions:

r =0 φ = finite (3.4a)

r =R −Dρ∂φ
∂r

=q1 (constant) (3.4b)

z =0 φ =φ0 (for all r) (3.4c)

It is helpful to non-dimensionalize equations 3.3 and 3.4. The following non-dimensional

variables are used:

Θ =
φ− φ0

q1R

ρD

(3.5a)

ξ =
r

R
(3.5b)

ζ =
zD

vmaxR2
=
[ z
R

] 1
Pe

(3.5c)

where Pe is the Peclet number and is defined as Pe = Re · Sc or the Reynold’s number

multiplied by the Schmidt number. Plugging equation 3.5 into equation 3.3 yields:

(1− ξ2)
∂Θ
∂ζ

=
1
ξ

∂

∂ξ

(
ξ
∂Θ
∂ξ

)
(3.6)

with the following boundary conditions:

1This derivation is based on the heat transfer counterpart found in Bird et. al. [2]
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ξ =0 Θ = finite (3.7a)

ξ =1 −∂Θ
∂ξ

=1 (3.7b)

ζ =0 Θ =0 (3.7c)

The profile of the scalar concentration far downstream will become fully developed and

can be expected to have the following form:

Θ∞ = C0ζ + ψ(ξ) (3.8)

where C0 is a constant.

Substituting equation 3.8 into 3.6 yields:

1
ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
= C0

(
1− ξ2

)
(3.9)

Integrating twice with respect to ξ and plugging in the boundary conditions to solve for

the constants of integration yields the fully-developed solution:

Θ∞(ξ, ζ) =
7
24
− 4ζ − ξ2 +

ξ4

4
(3.10)

While the fully-developed solution is useful for problems concerning scalar transport in

long straight pipes, the arterial system is changing direction too often for this solution to be

useful. Instead, the entry length solution of the problem described above is used to validate

the scalar transport.

The exact solution of the scalar profile can be expected to have the following form:

Θ(ξ, ζ) = Θ∞(ξ, ζ)−Θd(ξ, ζ) (3.11)

Θd must decay to zero as ζ →∞ in order for equation 3.11 to hold true. When solving

for Θd, it must satisfy equation 3.9 and the boundary conditions are now:
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ξ =0
∂Θd

∂ξ
=0 (3.12a)

ξ =1
∂Θd

∂ξ
=0 (3.12b)

ζ =0 Θd =Θ∞(ξ, 0) (3.12c)

The solution of Θd(ξ, ζ) is expected to have the following form:

Θd(ξ, ζ) = Ξ(ξ)Z(ζ) (3.13)

Plugging this into equation 3.9 and separating variables, results in the following two

ordinary differential equations:

∂Z

∂ζ
= −c2Z (3.14a)

1
ξ

∂

∂ξ

(
ξ
∂Ξ
∂ξ

)
+ c2

(
1− ξ2

)
Ξ = 0 (3.14b)

Equation 3.14a is a Sturm-Liouville problem on account of the boundary conditions in

equation 3.12. Thus, we know that an infinite number of eigenvalues ci and corresponding

eigenfunctions Ξi exist. The solution must have the following form:

Θ = Θ∞(ξ, ζ)−
∞∑
i=1

Aie
−ciζΞi(ξ) (3.15)

with

Ai =

∫ 1
0 Θ∞(ξ, 0)Ξi(ξ)

(
1− ξ2

)
ξdξ∫ 1

0 Ξi(ξ)2 (1− ξ2)
(3.16)

The problem is now solving for the eigenvalues and eigenfunctions of equation 3.14a. A

shooting method was employed to solve for the first 1000 eigenvalues and eigenfunctions.

The details of the shooting method can be found in Appendix B.

The eigenfunction solution is feasible for moderate Peclet numbers (10,000s) but higher

Peclet numbers require a much larger number of eigenfunctions to accurately describe the
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solution near the step in wall flux. A more efficient solution for high Peclet number flows

is an asymptotic solution for short distances near the step in scalar flux at the wall. The

following assumptions are made:

1. The effect of curvature may be neglected and the problem is treated as scalar transport

over a flat wall.

2. A new axial variable is defined, s = R− r, with domain (0,∞)

3. The velocity profile is treated as linear. The slope is given by the true slope at the

wall:

vz(s) = v0
s

R
where v0 = vmax2

r

R

The result of these assumptions is a function for Θ that contains gamma functions. The

derivation of the result can be found in Bird et al. [2] and the resulting solution is shown

in Equation 3.17.

Θ = 3

√
9
2
ζ

 e−χ
3

Γ
(

2
3

) − χ
1−

Γ
(

2
3
, χ3

)
Γ
(

2
3

)

 (3.17)

where

χ =
1− ξ
3

√
9
2
ζ

(3.18)

Γ
(

2
3

)
is a complete gamma function; Γ

(
2
3
, χ3

)
is an incomplete gamma function; ξ

and ζ are the same as in the eigenvalue solution.

3.1.4 Computational Simulation

The computational solution was conducted using 2D-axisymmetric and 3D geometries within

FLUENT. The simulation was set to match the fluid properties and boundary conditions

of the analytical solutions. The simulations were started on a coarse mesh and repeated
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Table 3.1: List of mesh sizes used in 2D validation study

Mesh Cell Size
(

∆r
D

)
1 0.05

2 0.025

3 0.0125

4 0.00625

on subsequently refined meshes until the result of the simulation matched the analytical

solution. Two-dimensional simulations were used to determine the radial resolution of the

mesh required to resolve the scalar transport. Three-dimensional simulations were then

conducted to verify the 2D findings and to develop scripts for use in the patient-specific

geometry simulation.

3.1.5 Results

The 2D simulation consisted of four mesh resolutions. The mesh resolution was non-

dimensionalized by the diameter of the tube. Figure 3.2a shows the analytic profile for

the eigenvalue solution for a Peclet number of Pe = 4 · 104. There is a sharp gradient in

the scalar concentration near the step in scalar flux at the wall. Figure 3.2b shows the

comparison of the four mesh sizes, listed in Table 3.1 to the eigenvalue solution. The coarse

mesh of
∆r
D

= 0.05 is unable to capture the sharp gradients near the step in flux through

the wall, leading to 10% error for the scalar concentration. The two finest resolutions,
∆r
D

= 0.0125 or 0.00625 accurately capture the sharp gradient and only have 2% error near

the step in flux. The good agreement between the 2D simulation and the analytical results

validated FLUENT’s scalar transport equation used in the patient-specific simulations.

3D simulations were validated using higher Peclet numbers, Pe = 1.2 · 106. The re-

sults are shown in Figure 3.3 comparing the eigenvalue solution, the asymptotic gamma

function solution, and two computational mesh sizes. The two mesh sizes were
∆r
D

=

0.003 and 0.0003. The mass transfer results have been non-dimensionalized by using the
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(a) Eigenvalue solution
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(b) 2D simulations

Figure 3.2: Comparing eigenvalue and 2D numerical solutions for Re = 400 and Sc = 100

Sherwood number:

Sh =
Ns2R

ρD (ws − w∞)
(3.19)

where Ns is the species wall flux, R is the cylinder radius, ws is the species concentration

at the wall, and w∞ is the species concentration at the inlet. The Sherwood number

asymptotes to infinity as the step in scalar flux at the wall is approached, where ws = w∞.

Note that for the higher Peclet number, the eigenvalue solution has an inadequate number

of eigenvalues and eigenfunctions. The asymptotic gamma function solution is a better

metric to use for comparison here. Both mesh resolutions compared well to the analytic

solution with less than 10% error near the step in flux. The mesh resolution used for the

patient-specific geometries was
∆r
D

= 0.003. This will provide highly resolved scalar fields

for Sc = 100 in the range of Reynolds numbers seen in the CAB. The scalar fields for species

with Sc = 1000 will be potentially under-resolved, especially at the bifurcation apex, but

using a radial resolution of
∆r
D

= 0.003 already pushes the limits of the computational

resources available.
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Figure 3.3: Comparison of wall concentrations for 3D simulations; eigenvalue solution; and
asymptotic solution
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Chapter 4

NUMERICAL METHODS

4.1 Meshing

The numerical discretization process was a key part of this thesis. As mentioned earlier,

the high Peclet numbers found in cardiovascular flows lead to steep species concentration

gradients. High resolution in the radial direction near the arterial wall is required to resolve

the mass transfer accurately. To keep the mesh cell count at a manageable level, various

strategies are implemented. High aspect ratios in the arterial branches away from the

bifurcation, a fast growing boundary layer, and surface mesh resolution studies were used.

The following workflow was used for the meshing process:

1. Import arterial geometry from SolidWorks into GAMBIT

2. Break the domain into four parts: 3 arterial branches and a bifurcation region

3. Generate a surface mesh of the geometry

4. Generate 3D meshes for the arterial branches

5. Export mesh into TGrid

6. Generate boundary / prism layer in bifurcation region

7. Import back into GAMBIT

8. Generate 3D mesh of remaining interior of bifurcation region

9. Set up boundary conditions and export mesh to FLUENT
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4.1.1 Meshing Tools

The process involves two meshing programs: GAMBIT and TGrid. GAMBIT is used

for generating surface meshes from the SolidWorks geometry and creating volume meshes

for the arterial branches. TGrid is used to create the prismatic boundary layer in the

bifurcation region. GAMBIT is a geometry creation and mesh generation tool for both 2D

and 3D geometries. Although it can mesh boundary layers easily for a simpler geometry, it

can be challenging to generate structured boundary layers for complex geometries like an

arterial bifurcation. Structured meshes are meshes that are made solely of hexagonal and

prismatic cells instead of tetrahedral cells. Structured meshes benefit from better numerical

properties. This includes less numerical diffusion and lower cell counts than unstructured

meshes for the same resolution. TGrid is a mesh generation tool specifically designed for

growing prism layers from surface meshes and can handle complex geometries. TGrid is

limited in that it cannot create geometry or surface meshes on its own so an additional

surface meshing tool such as Gambit is always required. TGrid also allows for a user to

manually clean up the quality of the mesh. Specifically, it allows the user to select specific

node points and move them to improve various mesh quality quantities, such as skewness.

This step is completed after a 3D mesh has been generated and there are highly skewed

elements still remaining after generation.

4.1.2 Breaking Up the Domain

After importing the geometry from SolidWorks the domain is broken up into four parts: the

three arterial branches (CCA, ICA, and ECA) and a bifurcation region as shown in Figure

4.1. The break-lines were made perpendicular to the axial direction to minimize skewness

of elements near the arterial wall. The bifurcation region is sized such that it protrudes into

each of the branches three diameters. The cubic spline estimation of centerlines, described

in Section 2.2.1 was used to estimate the normal vectors used to create the break-lines.
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Figure 4.1: The four regions the geometry was broken into: CCA, ICA, ECA, and Bifurca-
tion regions

4.1.3 Surface Meshing

With the domain split into branches and a bifurcation, the surface of each region must

be meshed. The three branches were meshed with an aspect ratio (AR) of 1:1 near the

bifurcation region and slowly grown with a size function to an AR of 5:1, see Figures 4.2

and 4.3. The AR is described as the ratio between the axial length and circumferential length

of an element (axial:circumferential). The bifurcation region was meshed with rectangular

elements near the arterial branches and a band of triangular elements in the complex region

of the bifurcation apex. Figures 4.3 and 4.4 show this in more detail. The AR is 1:1

throughout the bifurcation region. This was done for two reasons. First, the bifurcation

is where the most complex, secondary flows originate and care was taken to capture the

mass transport and shear in high detail in this region. Second, the interior mesh of the

bifurcation region consists of mostly tetrahedral elements (not including the prism boundary

layer created by TGrid) and low surface aspect ratios are required to have low skewness in

the volume mesh.

The circumferential resolution was chosen after conducting a short surface resolution

study. The study compared two meshes of the carotid geometry using a steady flow rate

matching the Reynolds number used at peak systole (Re = 900) for this simulation. The
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Figure 4.2: Surface mesh near the bifurcation region

Table 4.1: Parameters for boundary layer size and growth

first cell height
∆r
D

= 0.003

Growth Rate 1.18

# of Rows 10

two resolutions compared had 250 or 350 points discretizing the circumferential direction.

The two axial resolutions used the methodology described earlier and the radial resolution

was identical in the two cases. A comparison of maxima and average quantities of scalar

concentration and flux through the wall showed a percent difference of 5% or less for the

two meshes. The circumferential resolution of 250 points was chosen to keep the cell count

at a manageable level for the transient simulation. This reduced the number of elements in

the final volume by half.

4.1.4 Volume Meshing

The results from the validation study are used in meshing the volumes of the arterial

branches. A boundary layer is defined using the parameters shown in Table 4.1

The inlets and outlets are meshed using the pave algorithm. A size function is used to
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Figure 4.3: Surface mesh of CCA and bifurcation region. Red box highlights where the
CCA and bifurcation meet and the 1:1 apsect ratio begins for the bifurcation region

Figure 4.4: Surface mesh in the bifurcation region. Red box is highlighting the region where
there is triangular elements in the surface mesh.
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continue growing the size of the elements after the boundary layer elements, although in a

less structured way. The ICA mesh is shown in Figure 4.5. The branch volumes are then

meshed using the Cooper scheme. This scheme treats the grid as a cylinder and then maps

it onto the volume. The arterial branches are an ideal geometry for this algorithm.

The mesh is exported to TGrid to generate the boundary layer in the bifurcation region.

The parameters are the same as in the branches, detailed in Table 4.1. The mesh is then

imported back into Gambit for meshing of the remainder of the bifurcation region with

tetrahedral elements. A size-function with a growth rate of 1.18, the same rate used for

the boundary layer, is used to continue growing the elements away from the arterial wall.

After this step is completed the arterial geometry has a complete 3D mesh. The final

mesh contained 7 million elements with most located in the bifurcation region. The mesh

quality is good considering the high aspect ratio due to the fine radial resolution near the

wall. 95% of the cells had skewness below 0.5. 28 cells are in the range of 0.8 to 0.9 and

considered to have high skew. These cells are located near the wall where the bifurcation

region connects with the branches. The high skewness in this region is due to the mesh

converting from hexagonal to tetrahedral in both the axial and radial directions. High

skewness can potentially increase error in the simulation or cause the simulation to diverge.

With so few highly skewed cells however, this was not considered a significant problem.

4.2 FLUENT Setup

The commercial finite volume solver FLUENT, was used to solve continuity, the Navier-

Stokes equations, and the advection-diffusion equation for scalar transport. For incompress-

ible flow continuity is:

∇ · v = 0 (4.1)

The Navier-Stokes equations take the form:

∂v
∂t

+ v · ∇v = −∇p
ρ

+ ν∇2v (4.2)

where v is the velocity (m/s), p is the static pressure (Pa), ρ is the fluid density
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Figure 4.5: Left: surface mesh of the CCA inlet; Right: close up of boundary layer region

(kg/m3),and ν is the kinematic viscosity (m2/s). The scalar transport equation takes the

form:

∂φk
∂t

+∇vφk = D∇2φk (4.3)

where φk is the scalar concentration and D is the scalar diffusion coefficient (m2/s). The

spatial discretization uses second order central differencing and the temporal discretiza-

tion uses a second order implicit method. The PISO method was used for the pressure-

velocity coupling. The PISO method is a pressure-based segregated algorithm that uses the

predictor-corrector approach for convergence. It also has a correction for cells with high

skewness and is recommended for transient problems. More specific details can be found in

the FLUENT manual [1].

4.2.1 Boundary Conditions

Accurate and adequate boundary conditions are an important part of any CFD simulation.
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Velcocity Boundary Conditions

The pulsatile, axial flow rates of the CCA can accurately be obtained through medical

imaging techniques, however secondary flows that arise from upstream curvature and bi-

furcations are often an order of magnitude smaller that the axial flow and this makes their

measurement difficult. As a result, secondary velocities are often neglected in prescribing

velocity inlets and outlets for cardiovascular flows. A study by Moyle et. al. [21] investi-

gated the effect of including secondary velocities to WSS and OSI statistics. In the study,

the Womersley velocity profile [30] is prescribed at the inlet and various inlet extensions

including a straight tube and helices of various curvature and torsion. It was found that

there is about 13% variance in the WSS and OSI statistics when adding the secondary

flows to an inlet compared to just a Womersley profile. Although this may seem high, it

was also shown that there is greater variability from the geometry uncertainty, about 48%.

The CCA branch length and flow extensions used in this thesis are comparable to the work

done by Moyle. This will make the error, introduced by neglecting the secondary flows,

of the same order of that caused by the geometric reconstruction. The profile used was a

15 term representation, and Figure 4.6 shows the axial velocity profile at peak systole, end

of systole, and at rest during diastole. Figure 4.6 also shows the volume flowrate over the

cardiac cycle.

For this thesis, there was no data for the CCA inlets or the ICA and ECA outlets from

the specific patient scan. A typical CCA flow rate waveform was used, scaled to provide

the peak and mean Reynolds numbers, as well as the desired Womersley number. The ICA

and ECA outlets were prescribed for a flowsplit of 80:20 and 60:40, the same used from

other studies by Ku et. al. [15]. For future studies, if the outlet flowrates are known, the

time-dependent RC model developed by Grinberg and Karniadakis [12] is recommended.

Scalar Boundary Conditions

The effect of WSS and species concentration on wall permeability and mass transfer rates

is currently known on a qualitative level. Profiles of species concentration are almost im-

possible to obtain, although bulk concentrations can be measured. On account of these
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Figure 4.6: Axial Velocity for CCA inlet at specified times during the cardiac cycle

limitations, simplified scalar transport boundary conditions are used. A constant concen-

tration of 100 was used at the CCA inlet and a no diffusive flux condition was prescribed

at the ICA and ECA outlets. Three boundary conditions were implemented at the arterial

wall. A no-flux boundary condition was used for a “flush test” to estimate residence times

and highlight areas of recirculation. A constant wall flux of ±1
1
m2

and constant wall con-

centration of 0 were used to look at mass transfer patterns of NO and other ROSs, oxygen,

LDL, etc. The simplified boundary conditions used in this thesis allow us to identify regions

where the mass-transfer is inhibited or enhanced by the flow effects.

4.2.2 Time Step Convergence

10,000 time steps per cardiac cycle were used in the simulations. Larger time step sizes

attemped caused the solution to diverge during systole. This is likely due to the fine

resolution in the boundary layer near the apex of the bifurcation, where the highest velocities

of the CCA impinge. This causes the CFL condition to be highest in this region. The CFL

is defined as:

CFL =
vi∆t
∆xi

(4.4)
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Figure 4.7: Iso-surface of RMS difference (1% error) between scalar results for difference
timestep sizes

where vi is the velocity (m/s) in the ith direction, ∆t is the time step size (s), and ∆xi

is the length of the finite volume cell in the ith direction. For the 10,000 time step case, the

maximum CFL was 27 during peak systole and the average CFL was around 10.

A timestep convergence study was completed to ensure that the scalar transport was

fully resolved in time. Three timestep sizes were investigated: 10,000, 20,000, and 40,000

timesteps over the cardiac cycle. Each case was run until it reached peak systole and the

RMS scalar difference between the various timestep was computed. The maximum error

was found to be 3% in the region of the bifurcation when the 10,000 and 40,000 timestep

cases were compared. Figure 4.7 shows the iso-surface of 1% error when comparing the

10,000 and 40,000 case. The error is mostly located in the bifurcation region, and only a

small fraction of the computational domain is affected. With small and localized error, the

timestep of 10,000 per cardiac cycle was chosen for use in the simulations.

4.2.3 Startup Transience

The flow field was initialized using a steady flow solution matching the Reynolds number for

the start of the cardiac flowrate waveform (Re = 323), see Figure 4.6. The time dependent

simulation was then iterated until the startup transience had damped away. The maximum
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Figure 4.8: Plots showing decay of startup transience for maximum WSS and minimum
scalar concentration along the arterial wall

WSS and minimum scalar concentration for constant wall flux were tracked at the end of

each cardiac cycle. Figure 4.8 shows the results of the startup decay. The startup transience

was determined to be cleared after six cardiac cycles. The data was then changed to save

100 timesteps per cardiac cycle instead of just 1. It was then noticed that the maximum

WSS jumped between the sixth and seventh cycle, while the scalar concentration remained

unchanged. The difference of the WSS was computed for the entire arterial surface and

found to be less than 0.2 Pa everywhere except at the apex of the bifurcation, as shown

in Figure 4.9. The localized difference in the apex of the bifurcation will not influence the

analysis as the main regions of interest are in the carotid sinus.
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Figure 4.9: RMS difference of WSS between end of 6th cycle and 7th cycle; Most of domain
has error less than 0.2 Pa (2 dynes/cm2)
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Chapter 5

RESULTS

This section covers the results from analysis of the momentum and scalar transport in

the carotid artery bifurcation numerical model described in the previous chapter. Typical

velocity profiles found in the CAB are described and results from the patient-specific ge-

ometry used in this thesis are given. Shear stress statistics are calculated with results from

specific times in the cardiac cycle as well as cycle-averaged values. The scalar transport is

analyzed using three different tests. The first case imposed constant flux out of the arterial

wall and measures the resulting surface concentration. This can be used as an approxi-

mation for species that are consumed at the wall (i.e. O2 or ROS) or if the direction of

the flux is inverted, NO generation at the wall. The second case imposes a constant scalar

concentration at the wall and measures the resulting flux at the surface. The last case is

a “flush” test, which initializes the domain with constant scalar value and captures the

dynamics of how the CAB geometry is cleared out. There is no scalar flux at the walls,

only a zero concentration value is set at the CCA inlet. This test captures regions of long

fluid residence times and regions of recirculation. Lastly, comparisons between patterns

in the shear and scalar transport are made and a simple thresholding technique is imple-

mented. This highlights differences between the two mechanisms for flow-induced effects on

atherosclerosis origin and progression.

5.1 Velocity Profiles

The velocity profiles found in branching geometries can be qualitatively described easily

[23]. The flow is split into two streams at the apex of the bifurcation, where new boundary

layers must develop on the inner walls of the branches. The localized high pressure region

caused by the stagnation point at the bifurcation produces secondary velocities similar to

Dean flow. The peak velocity profiles are skewed towards the inner wall and separation
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regions are possible depending on the geometry.

The velocity profiles in the carotid artery bifurcation region for two different flow splits,

80:20 and 60:40, are shown in Figure 5.1. The results agree with the expected qualitative

predictions and show that the size of the separated region in the carotid sinus is not sensitive

to the flow split.

5.2 Shear Stress

The WSS seen in the CAB has large temporal and spatial variability. The maximum WSS

occurs at the bifurcation apex, where the flow from the CCA impinges. The lowest WSS is

found in the carotid sinus, where the flow separates and forms a recirculation bubble. The

maximum WSS was 52 Pa during peak systole, while the lowest was 0.0012 Pa at the end

of diastole.

5.2.1 Time Averaged Wall Shear Stress

The large timescales associated with atherosclerosis suggest that phase-average values of

WSS during the cardiac cycle could be important in understanding the interplay between

shear and disease origin and progression. One such WSS statistic is the time-averaged

magnitude of wall shear stress (TAWSS), which is defined as:

τ̂ =
1
T

∫ T

0
|τi|dt (5.1)

where T is a multiple of the cardiac period and |τi| is the magnitude of WSS at a specific

point in time. The TAWSS is shown in Figure 5.2. The maximum is again at the bifurcation

apex and has a value of 17 Pa. The minimum TAWSS is in the carotid sinus and has a

value of 0.16 Pa. Figure 5.3 shows the region where the TAWSS is below 0.25 Pa. Only the

carotid sinus region has TAWSS values in this range.

5.2.2 Oscillatory Shear Index

The oscillatory shear index (OSI), introduced by Ku et al. [14], is a WSS-related quantity

that measures how often the WSS vector changes direction over the cardiac cycle. The
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(a) 60:40 flow split

(b) 80:20 flow split

Figure 5.1: Velocity profiles during the resting period following diastole for two different
flow splits
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Figure 5.2: Time averaged wall shear stress (Pa)

Figure 5.3: Region where TAWSS is below 0.25 Pa (2.5 dynes/cm2)
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formulation used in this thesis is the same used by Talor et al. [27]:

OSI =
1
2

(
1− τ̄

τ̂

)
(5.2)

where τ̂ is the TAWSS described earlier and τ̄ is given by:

τ̄ = | 1
T

∫ T

0
τidt| (5.3)

The OSI can vary from 0, when the WSS vector is always aligned in the same direction,

and 0.5, which occurs when the WSS has a zero average over the cardiac cycle, for example

with a sinusoidal time dependency.

The OSI calculated over four cardiac cycles is shown in Figure 5.4. It is highest in

the region of the carotid sinus were the flow is separated throughout the cardiac cycle.

The highest values, where OSI > 0.49, are located at the regions of flow detachment and

reattachment. The OSI is lowest in the arterial branches, where the WSS vector is mainly

aligned with the axial flow direction.

The OSI correlates well with regions of low WSS. The region of TAWSS < 0.25 Pa,

shown in Figure 5.3, matches the region of moderate to high OSI. A key difference can be

noted, as the OSI is high at the region of reattachment where the TAWSS is above 2.5 Pa.

5.3 Scalar Transport

5.3.1 Constant Wall Flux

The surface species concentration for the case with constant flux out of the fluid domain is

shown in Figure 5.5. This condition is an approximation for transport of species that are

consumed uniformly by the endothelial layer or are transported at a constant rate into the

arterial wall. In the region of the carotid sinus there is a deficiency of 20 concentration units

with respect to the value at the core. This is due to the separation in the sinus region, which

slows transport to the wall. Low transport to or away from the arterial walls in the carotid

sinus have the potential to create regions of scalar concentrations detrimental to endothelial

cell health. Inhibited mass transfer prevents species from entering the sinus region. The

lowest regions of scalar concentration highly correlate with the regions of high OSI except
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(a) Laterial view

(b) Posterior view

Figure 5.4: OSI averaged over four cardiac cycles
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at the reattachment region. This high correlation between mass transfer and OSI patterns

has the potential to allow for qualitative mass transfer studies to be completed using coarser

discretization that can correctly resolve the flow but would under-resolve the high Schmidt

number species transport. Care must be taken however, due to the OSI being high at regions

of both flow detachment and reattachment while the mass transfer is inhibited or enhanced

in these regions respectively.

The scalar concentration along the arterial wall does not change significantly throughout

the cardiac cycle. This is shown in Figure 5.6, which shows the scalar concentration at

three different times within in the cardiac cycle. This occurs even though there can be large

changes in the species concentration in the core of the flow during the cardiac cycle, as seen

in Figure 5.8. This is largely due to the low diffusion time scales associated with species in

blood. An estimate of the diffusion response time, tdiff , can be given by:

tdiff =
h2
MBL

D
(5.4)

where hMBL is the height of the mass boundary layer (MBL) and D is the species diffu-

sivity in blood. The thickened MBL in Figure 5.7b has a response time of tdiff ≈ 16s. For

tdiff >> T (the period of the cardiac cycle) the scalar transport occurs too slowly through

the boundary layer and the changes in bulk concentration are averaged over the cardiac

cycle. Thus, the surface concentration does not respond to the large changes in the bulk

flow occuring at a “short” period or “fast” frequency. The slow diffusion times potentially

allow for quantitative mass transfer studies to be completed with steady simulations. The

pulsatility of the cardiac cycle has a large effect on the shear stress statistics, but there

is little variation within the mass transfer. Conducting steady simulations significantly re-

duces the computational requirements for conducting mass transfer studies. It must be

noted however, that the parameter range explored in this thesis is small and a larger range

of Sc and Re numbers must be explored before the use of steady state simulations can be

definitively advised.

The thickened MBL shown in Figure 5.7b is caused by the detachment in the carotid sinus

region, and the vorticity generated by the separation, seen in Figure 5.7c, pulls chemical
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species away from the wall.

5.3.2 Constant Wall Concentration

The constant concentration case can be used as a first approximation for species whose

concentration is regulated by the physiology of the arterial wall or for mass transfer processes

where the wall-side resistance is negligible. The results are skewed by the flow impinging at

the apex of the bifurcation and the flux at the apex is significantly higher than the rest of the

domain (40-50x). Figure 5.9 shows the species flux out of the fluid domain, into the arterial

wall. Note that the patterns seen in low WSS and high OSI and low species concentration

are qualitatively similar. The agreement between mass transfer and OSI breaks down again

at the point of flow reattachment, but correlate better than with low TAWSS upstream in

the CCA. The regions of high OSI and low species flux both have a meandering “tail” that

protrudes upstream of the carotid sinus.

5.3.3 Flush Test

The last mass transfer simulation was a “flush test”. The test is useful for identifying

regions of long residence times and high recirculation. The test was initialized with a species

concentration of 100 for the entire domain and the inlet was prescribed a uniform profile

of 0. The process of how the CAB was “flushed” clean was observed. Figure 5.10 show

different points in time for the test. The CCA is slowly flushed out as the inlet condition

of 0 works its way through the boundary layer. The domain interior is flushed much more

quickly due to the higher velocities. The bifurcation apex is cleared after one cardiac cycle

due to the impinging flow from the CCA, see Figure 5.10a. The secondary vortices formed

by the bifurcation and pulsatile flow quickly clear the ECA and ICA wall regions. The region

upstream of the carotid sinus is cleared after the end of the fifth systole, see Figure 5.11.

Most importantly, the carotid sinus is still not cleared after six systoles, see Figure 5.11. A

very slow process by which the vortex generated at the bifurcation during deceleration after

systole entrains a “whiff” of high concentration fluid from the recirculation bubble in the

carotid sinus is the only mechanism for convective exchange between the core flow and the
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(a) Lateral view

(b) Posterior view

Figure 5.5: Scalar concentration at arterial wall; constant flux out of fluid
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(a) Peak Systole

(b) End of Systole

(c) Rest

Figure 5.6: Scalar concentration at arterial wall; Comparison between different times within
the cardiac cycle
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(a) Position of slice

(b) Scalar concentration (c) Vorticity magnitude

Figure 5.7: Comparison of scalar concentration and vorticity magnitude in carotid sinus
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(a) Peak Systole (b) End of Systole

(c) Peak Diastole (d) Rest

Figure 5.8: Scalar concentration in carotid sinus for various times within cardiac cycle
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(a) Lateral view

(b) Posterior view

Figure 5.9: Scalar flux at arterial wall; constant concentration at arterial wall
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(a) (b)

(c) (d)

Figure 5.10: Flushing of carotid artery over six cardiac cycles

sinus. The time of fluid residence in that region is, therefore, orders of magnitude longer

than the rest of the arterial lumen. This has implications towards atherosclerosis in that

species within the carotid sinus have orders of magnitude longer times to enter the arterial

wall, or to create adverse environments for endothelial cells.

5.4 Thresholding

A simple thresholding technique was implemented to highlight discrepancies between the

shear and mass transport. Figure 5.12 compared the result of WSS < 0.25 Pa (shown in
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(a) (b)

(c) (d)

Figure 5.11: Continuation of Figure 5.10
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blue) and the region of reduced scalar concentration (φ < 90), shown in yellow. The region

where the two thresholds overlap is shown in green. There is a large amount of overlap

between the two, but some differences can be seen. The inhibited mass transfer starts

upstream of the carotid sinus while the low WSS extends further into the ICA.

This technique is highly sensitive to the values used in the cutoff for the various mass

transport or shear parameters. However, the analysis is a useful way to combine with future

results from cell culture studies that may give more insights on specific thresholds of interest.

One example would be the WSS at which endothelial cells become well aligned or values

bellow which endothelial permeability is significantly enhanced. This will allow for isolation

of regions prone to atherosclerotic processes from the rest of the domain.
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(a) Anterior view

(b) Lateral view

(c) Posterior view

Figure 5.12: Threshold of WSS and Scalar concentration; Blue: WSS < 0.25Pa; Yellow:
φ < 90; Green: The two thresholds overlap
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Chapter 6

CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS

The fluid flow and scalar transport within the carotid artery bifurcation was solved

for patient specific geometries and realistic velocity waveforms. Simplified scalar transport

boundary conditions were used due to the limited quantitative knowledge of the species

transport through the arterial walls. The simplified boundary conditions allowed for first

order estimates of the flow effects of species transport.

Within the carotid sinus region, high levels of OSI, low TAWSS, and inhibited scalar

transport was found. The mass transfer regions correlate highly with the regions of high

OSI except at the point of flow reattachment within the internal carotid artery, where the

OSI would give a false positive. In future studies, the OSI could be used as an approxima-

tion for regions of inhibited mass transfer (as long as the regions of reattachment are not

included) instead of resolving the mass transfer gradients near the arterial wall. This would

significantly reduce the computational requirements for future qualitative mass transfer

studies.

The scalar transport was found to vary little throughout the cardiac cycle, unlike the

WSS. This is attributed to the high Schmidt numbers found in cardiovascular flows which

leads to long diffusion times. Future quantitative mass transfer studies could implement

steady state inflow and outflow conditions, which would reduce computational expense. It

must be noted that the parameter range explored in this thesis was limited. A wider range

of Reynolds and Schmidt numbers must be explored before making a definitive statement

regarding the scalar variation at the wall.

A flush test was completed to highlight long residence times and poor mass transfer

between the separated region and the rest of the flow. The main mode of scalar transfer

into the sinus region occurred during the end of systole when a vortex would sweep fluid

from the core of the flow into the separated region. This, coupled with the long diffusion
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times, inhibits the mass transfer within the carotid sinus.

6.1 Future Work

There is still a large number of unknowns for the mass transfer process within cardiovascu-

lar flows. One of the main limitations of this thesis was the small parameter space inves-

tigated. Expanding the parameter space would allow for more concrete statements on the

scalar variability at the wall as mentioned earlier and also confirm the methods of reducing

computational expense for qualitative and quantitative mass transfer studies. Introducing

complex species boundary conditions at the arterial wall is another region that requires more

work. How the arterial wall reacts to shear stress and species concentrations potentially has

big implications for macromolecular transport into the arterial wall and overall endothelial

cell health. One potential suggestion would be to introduce a mass-spring-damper system

to allow for the wall flux to change based on WSS or species concentration at the wall.

The species within the blood are constantly reacting with each other. The reaction-

rates and source terms are not well defined at the time of writing this thesis, but adding

reaction kinetics to mass transfer studies of ROS or other reactive species would improve

the accuracy of flow side mass transfer effects.

Larger macromolecules such as LDL could also be modeled using particle tracking in-

stead of scalar transport. The larger molecules have increasing larger Schmidt numbers,

causing the numerical requirements to increase. Using particle tracking would reduce the

computational resources required although it may require the use of computationally ex-

pensive Monte-Carlo techniques. More research is required to determine the computational

savings.
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Appendix A

MATLAB SCRIPTS

ultrasound3.m

Main geometry pre-processing file. Imports data, estimates centerlines, rotates data, exports

to SolidWorks.

1 %

2 % Ultrasound Data Analysis File

3 % −reads mesh file "filename.msh"

4 % −determines centriod of contours

5 % −finds equation for axial vector

6 % −determines rotation matrix to place the inlet

7 % parrellel with x−axis

8 % −shifts contours to place inlet centriod at the origin

9 % Required Files:

10 % align x.m

11 % centriod.m

12 % hydraulic dia.m

13 % plotcountours.m − if you want to look at the resulting curves

14 close all;

15 clear all;

16 clc;

17

18

19 %% Read mesh file

20 % − 3D coordinates of contours

21

22 files = 3;

23 cd Carotid 2

24 fname=(['/sccor car01b cca s.msh';'/sccor car01b eca s.msh';...
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25 '/sccor car01b ica s.msh']);

26

27

28 for h = 1:files

29 % disp('Select mesh file');

30 % [mfile, ipath] = uigetfile('*.msh', 'Select mesh file');

31

32

33 %++++++++++++++++++++++++++++++++++++++++++++++++++++++

34 % read re−sampled contours

35 % fname = mfile;

36

37

38 % file format:

39 % [number of contours]

40 % [image number, number of points]

41 % [x y z]

42

43 % fid = fopen(fname);

44 fid = fopen(fname(h,:));

45 [n image(h,1)] = fscanf(fid, '%i', 1);

46 im list = zeros(n image(h,1),1);

47

48 for i = 1:n image(h,1)

49 [a] = fscanf(fid, '%i %i', 2);

50 im list(i) = a(1);

51 n lines = a(2);

52

53 if i == 1 && h == 1

54 poly = zeros(n lines+1,3,n image(h,1),files);

55 end

56

57 for j = 1:n lines

58 [b] = fscanf(fid, '%f %f %f', 3);

59 poly(j,:,i,h) = b';

60 end
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61

62 poly(n lines+1,:,i,h) = poly(1,:,i,h);

63 end

64 fclose(fid);

65 end

66 clear fid

67 clear fname

68 clear a

69 clear ans

70 clear b

71

72 cd('..')

73 %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++

74

75

76 % Next the geometry will be shifted to have the first curve centered on

77 % the origin. It also finds the centriod of each contour and stores them

78 % in an array.

79

80 centriods = zeros(n image(h,1),3);

81 origin = centriod(poly(:,:,1,1));

82

83 for h = 1:files

84 for i = 1:n image(h,1)

85 for j = 1:n lines+1

86 poly(j,:,i,h) = poly(j,:,i,h) − origin;

87 end

88

89 if h == 1

90 centriods(i,:) = centriod(poly(:,:,i,1));

91 end

92 end

93 end

94

95 centriods(1,:) = [0,0,0];

96
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97 % Cubic Spline estimation on the centerlines

98 pp = spline(centriods(:,1),transpose([centriods(:,2), centriods(:,3)]));

99

100 % Calculating Derivative of centerline estimation

101 ppder = pp;

102 ppder.coefs = ppder.coefs*diag([3 2 1],1);

103

104 %xx = centriods(9);

105 xx = centriods(1);

106 yy = ppval(pp,xx);

107 yyder = ppval(ppder,xx);

108

109

110

111 % Finding the Rotation Matrix required to align the normal vector of the

112 % curve fit at the origin with the x−axis

113

114 RM = align x([1; yyder]);

115 %%

116 % Rotating the Data Set

117 poly shift = zeros(n lines+1,3,n image(h,1),files);

118 centriods shift = zeros(n image(h,1),3,files);

119

120 for h = 1:files

121 for i = 1:n image(h,1)

122 poly shift(:,:,i,h)=transpose(RM*transpose(poly(:,:,i,h)));

123 centriods shift(i,:,h) = centriod(poly shift(:,:,i,h));

124 end

125 end

126

127

128 centriods shift(1,:,1) = [0,0,0];

129

130 curves = 4;

131 x = zeros(curves,3,files);

132 dia = zeros(files,1);
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133 axial = zeros(3,files);

134 for h = 1:files

135 for i = 1:(curves+1)

136 if h 6= 1

137 x(i,1,h) = centriods shift(i,1,h);

138 x(i,2,h) = centriods shift(i,2,h);

139 x(i,3,h) = centriods shift(i,3,h);

140 else

141 % slice = n image(h);

142 slice = 5;

143 x(i,1,h) = centriods shift(slice−curves+i−1,1,h);

144 x(i,2,h) = centriods shift(slice−curves+i−1,2,h);

145 x(i,3,h) = centriods shift(slice−curves+i−1,3,h);

146 end

147 end

148

149 if h == 1

150 dia(h) = hydraulic dia(poly shift(:,:,1,1),...

151 [1,x(:,1,h)\x(:,2,h),x(:,1,h)\x(:,3,h)]);

152 else

153 dia(h) = hydraulic dia(poly shift(:,:,5,h),...

154 [1,x(:,1,h)\x(:,2,h),x(:,1,h)\x(:,3,h)]);

155 end

156

157 axial(:,h) = [1,x(:,1,h)\x(:,2,h),x(:,1,h)\x(:,3,h)];

158 end

159

160 %*************************************************************

161

162 Exporting to SolidWorks

163

164 Adjust the code to keep number of curves below 30 per macro file

165

166 for h = 1:files

167 %++++++++++++++++++++++++++++++++++++++++++++++++++++++

168 output the data in a way Solidworks can read.
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169 file=sprintf(['ultrasound ' num2str(h) '.swp']);

170 fid2=fopen(file,'w');

171 %++++++++++++++++++++++++++++++++++++++++++++++++++

172 Beginging of Solidworks Macro

173

174 fprintf(fid2,'Dim swApp As Object\n');

175 fprintf(fid2,'Dim Part As Object\n');

176 fprintf(fid2,'Dim SelMgr As Object\n');

177 fprintf(fid2,'Dim boolstatus As Boolean\n');

178 fprintf(fid2,'Dim longstatus As Long, longwarnings As Long\n');

179 fprintf(fid2,'Dim Feature As Object\n');

180 fprintf(fid2,'Sub main()\n\n');

181 fprintf(fid2,'Set swApp = Application.SldWorks\n\n');

182 fprintf(fid2,'Set Part = swApp.ActiveDoc\n');

183 fprintf(fid2,'Set SelMgr = Part.SelectionManager\n');

184 %++++++++++++++++++++++++++++++++++++++++++++++++++++++

185

186

187 file format:

188 [number of contours]

189 [image number, number of points]

190 [x y z]

191

192 for i = 1:n image(h)

193

194 fprintf(fid2,'Part.InsertCurveFileBegin\n');

195

196 for j = 1:n lines

197 fprintf(fid2,['Part.InsertCurveFilePoint '...

198 num2str(poly shift(j,1,i,h),'%8.4f') ', '...

199 num2str(poly shift(j,2,i,h),'%8.4f') ', '...

200 num2str(poly shift(j,3,i,h),'%8.4f') '\n']);

201 end

202

203 fprintf(fid2,['Part.InsertCurveFilePoint '...

204 num2str(poly shift(1,1,i,h),'%8.4f') ', '...
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205 num2str(poly shift(1,2,i,h),'%8.4f') ', '...

206 num2str(poly shift(1,3,i,h),'%8.4f') '\n']);

207

208 fprintf(fid2,'Part.InsertCurveFileEnd\n');

209

210 end

211

212 fprintf(fid2,'End Sub\n');

213 end

214

215 fclose('all');

216

217 %**********************************************************

align x.m

File used to align CCA inlet with X-axis.

1 %

2 % Align with X−axis

3 %

4

5 function R = align x(A)

6 % ALIGN−X

7 % ALIGN−X(A) outputs the rotation matrix required to align the inputed

8 % vector with the x−axis. This done by completeing two rotations. The

9 % first aligns the vector on the xy−plane by rotating about the z−xis by

10 % the Yaw angle. The second rotation aligns the vector on the xz−plane

11 % by rotating about the y−axs by the Pitch angle.

12 %

13 % The vector, A, must have the size: [3,1]

14

15 % Calculating the Yaw angle and rotating the vector

16 yaw = 2*pi − atan2(A(2),A(1));

17 R z = [cos(yaw),−sin(yaw),0;sin(yaw),cos(yaw),0;0,0,1];

18 A2 = R z*A;

19
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20 % Calculating Pitch angle

21 pitch = atan2(A2(3),A2(1));

22 R y = [cos(pitch),0,sin(pitch);0,1,0;−sin(pitch),0,cos(pitch)];

23

24 % Outputing the Rotation matrix

25 R = R y*R z;

26 end

centriod.m

Calculates the centroid of a given data set

1 %

2 % Centriod Calculation

3 % − 3D coordinates of contours

4

5 function r = centriod(A)

6 % CENTRIOD Matrix centriod.

7 % CENTRIOD(A) provides the centriod of the points in stored in the

8 % matrix. The centriod is calculated assuming "m" points and "n"

9 % dimensions in a m x n matrix.

10 [m,n] = size(A);

11

12 if A(1,:) == A(m,:)

13 r = (sum(A) − A(1,:))/(m − 1);

14 else

15 r = sum(A)/m;

16 end

17 end
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circle3.m

Creates a circle in any 3D orientation and size. Used in creating flow extensions.

1 function circ = circle3(center,radius,points,normal, distance)

2 %

3 % circle(v,r,n)

4 %

5 % Creates a circle with specified radius, center and orientation

6 %

7 % c − center (either 2 or 3 dimensional vector)

8 % d − normal vector

9 % r − radius; default = 1

10 % n − number of plot points; default = 20

11 %

12

13 th = linspace(0,2*pi,points);

14 rr = radius*ones(1,points);

15 [xx,yy] = pol2cart(th,rr);

16

17 normal = normal/norm(normal);

18 a = [0;0;1];

19

20 axis = cross(a,normal);

21 axis = axis/norm(axis);

22 if norm(axis) 6= 0

23 angle = atan2(1,dot(a,normal));

24 c = dot(a,normal);

25 cc = 1−c;

26 s = sin(angle);

27

28 R = [axis(1)ˆ2 + (1−axis(1)ˆ2)*c, axis(1)*axis(2)*cc − axis(3)*s,...

29 axis(1)*axis(3)*cc + axis(2)*s;

30 axis(1)*axis(2)*cc + axis(3)*s, axis(2)ˆ2 + (1−axis(2)ˆ2)*c,...

31 axis(2)*axis(3)*cc − axis(1)*s;

32 axis(1)*axis(3)*cc − axis(2)*s, axis(2)*axis(3)*cc + axis(1)*s,...
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33 axis(3)ˆ2 + (1−axis(3)ˆ2)*c];

34

35 circ = R*[xx; yy; zeros(1,points)];

36 else

37 circ = [xx; yy; zeros(1,points)];

38 end

39

40 circ(1,:) = circ(1,:) + center(1) + distance*normal(1);

41 circ(2,:) = circ(2,:) + center(2) + distance*normal(2);

42 circ(3,:) = circ(3,:) + center(3) + distance*normal(3);

43

44 end

hydraulic dia.m

Calculates the hydraulic diameter of a given contour projected onto a given plane.

1 %

2 % Calcuates the Hydraulic Diameter

3 %

4

5 function D h = hydraulic dia(A,B)

6 % HYDRAULIC DIA

7 % HYDRAILIC DIA(A,B) outputs the hyrdaulic diameter for the given contour

8 % data (A). The vector (B) is the axial vector to calculate the D h

9 % from. A projection of the contour data onto the axial plane is

10 % completed before calculating the area and perimeter to find the D h.

11 %

12 % The vector, B, must have the size: [3,1]

13

14 % For testing purposes

15

16 [m,n] = size(B);

17 if (m ==1 && n == 3)

18 B = B';

19 end

20
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21 [m,n] = size(B);

22

23 if (m == 3 && n == 1)

24

25 % Centering the countour at the Origin

26 origin = centriod(A(:,:));

27 for j = 1:length(A)

28 A(j,:) = A(j,:) − origin;

29 end

30

31 % The Rotation matrix

32 R = align x(B);

33

34 % Rotating the contour to align with the X−axis

35 A rotated(:,:)=transpose(R*transpose(A(:,:)));

36

37 % Projecting onto the Y−Z plane

38 A projected(:,:)=A rotated(:,:)*[0,0,0;0,1,0;0,0,1];

39

40 % Calculating the Area and Perimeter of the Curve

41 area = polyarea(A projected(:,2),A projected(:,3));

42

43 points = length(A);

44 lengths = zeros(24,1);

45

46 for i = 1: points − 1

47 segment = A projected(i,:) − A projected(i+1,:);

48 lengths(i) = norm(segment);

49 end

50

51 perimeter = sum(lengths);

52

53 % Hydraulic Diameter

54 D h = 4*area/perimeter;

55 else

56 error('Axial Vector,B, must be a 3x1 or 1x3 vector')
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57 end

plotcontours2.m

Used for plotting results of rotation, flow extensions, etc.

1 % Plot the centriod line and the curves

2 close all;

3 hold on;

4 grid on;

5 % for h = 1:files

6 % for i = 1:n image(h,1)

7 % plot3(poly(:,1,i,h),poly(:,2,i,h),poly(:,3,i,h),'−r');

8 % end

9 % end

10

11 % Plotting CCA countours

12

13 CCAs = 9;

14

15 for i = 1:n image(1,1)

16 plot3(poly shift(:,1,i,1),poly shift(:,2,i,1),...

17 poly shift(:,3,i,1),'c−−');

18 daspect([1 1 1])

19 end

20

21 for i = CCAs:n image(1,1)

22 plot3(poly shift(:,1,i,1),poly shift(:,2,i,1),...

23 poly shift(:,3,i,1),'b−');

24 end

25

26 % Plotting ECA countours

27

28 ECAe = 4;

29

30 for i = 1:n image(2,1)

31 plot3(poly shift(:,1,i,2),poly shift(:,2,i,2),...
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32 poly shift(:,3,i,2),'c−−');

33 end

34

35 for i = 1:ECAe

36 plot3(poly shift(:,1,i,2),poly shift(:,2,i,2),...

37 poly shift(:,3,i,2),'b−');

38 end

39

40

41 % Plotting ICA countours

42

43 ICAe = 12;

44

45 for i = 1:n image(3,1)

46 plot3(poly shift(:,1,i,3),poly shift(:,2,i,3),...

47 poly shift(:,3,i,3),'c−−');

48 daspect([1 1 1])

49 end

50

51 for i = 1:ICAe

52 plot3(poly shift(:,1,i,3),poly shift(:,2,i,3),...

53 poly shift(:,3,i,3),'b−');

54 daspect([1 1 1])

55 end

56

57

58 %% Calculating Centerlines of CCA and plotting it

59 CCA pp = spline(centriods shift(1:end−2,1,1),...

60 transpose([centriods shift(1:end−2,2,1),...

61 centriods shift(1:end−2,3,1)]));

62

63 CCA ppder = CCA pp;

64 CCA ppder.coefs = CCA ppder.coefs*diag([3 2 1],1);

65

66 CCA xx = 0:0.01:35;

67 CCA yy = ppval(CCA pp,CCA xx);
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68 CCA yyder = ppval(CCA ppder,CCA xx(1:200:end));

69

70 plot3(CCA xx,CCA yy(1,:),CCA yy(2,:));

71 quiver3(CCA xx(1:200:end),CCA yy(1,1:200:end),...

72 CCA yy(2,1:200:end),1,CCA yyder(1,:),CCA yyder(2,:),0.5);

73

74

75 % Calculating Centerlines of ECA and plotting it

76 ECA pp = spline(centriods shift(1:end−2,1,2),...

77 transpose([centriods shift(1:end−2,2,2),...

78 centriods shift(1:end−2,3,2)]));

79

80 ECA ppder = ECA pp;

81 ECA ppder.coefs = ECA ppder.coefs*diag([3 2 1],1);

82

83 ECA xx = 40:0.01:60;

84 ECA yy = ppval(ECA pp,ECA xx);

85 ECA yyder = ppval(ECA ppder,ECA xx(1:200:end));

86

87 plot3(ECA xx,ECA yy(1,:),ECA yy(2,:));

88 quiver3(ECA xx(1:200:end),ECA yy(1,1:200:end),...

89 ECA yy(2,1:200:end),1,ECA yyder(1,:),ECA yyder(2,:),0.5);

90

91

92 % Calculating Centerlines of ICA and plotting it

93 ICA pp = spline(centriods shift(1:end−2,1,3),...

94 transpose([centriods shift(1:end−2,2,3),...

95 centriods shift(1:end−2,3,3)]));

96 ICA ppder = ICA pp;

97 ICA ppder.coefs = ICA ppder.coefs*diag([3 2 1],1);

98

99 ICA xx = 40:0.01:60;

100 ICA yy = ppval(ICA pp,ICA xx);

101 ICA yyder = ppval(ICA ppder,ICA xx(1:200:end));

102

103 plot3(ICA xx,ICA yy(1,:),ICA yy(2,:));
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104 quiver3(ICA xx(1:200:end),ICA yy(1,1:200:end),...

105 ICA yy(2,1:200:end),1,ICA yyder(1,:),ICA yyder(2,:),0.5);

106

107

108 %% Adding Flow extention

109 center = centriods shift(CCAs,:,1);

110 normal = [1 ; ppval(CCA ppder,center(1))];

111 dia = hydraulic dia(poly shift(:,:,CCAs,1),normal)

112

113 CCAinlet = circle3(center ,dia/2 , 24, normal, −dia*3);

114 plot3(CCAinlet(1,:),CCAinlet(2,:),CCAinlet(3,:));

115 hydraulic dia(transpose(CCAinlet),normal)

116

117

118 center = centriods shift(ECAe,:,2);

119 normal = [1 ; ppval(ECA ppder,center(1))];

120 dia = hydraulic dia(poly shift(:,:,ECAe,2),normal)

121

122 ECAoutlet = circle3(center ,dia/2 , 24, normal, dia*3);

123 plot3(ECAoutlet(1,:),ECAoutlet(2,:),ECAoutlet(3,:));

124 hydraulic dia(transpose(ECAoutlet),normal)

125

126

127 center = centriods shift(ICAe,:,3);

128 normal = [1 ; ppval(ICA ppder,center(1))];

129 dia = hydraulic dia(poly shift(:,:,ICAe,3),normal)

130

131

132 ICAoutlet = circle3(center ,dia/2 , 24, normal, dia*3);

133 plot3(ICAoutlet(1,:),ICAoutlet(2,:),ICAoutlet(3,:));

134 hydraulic dia(transpose(ICAoutlet),normal)

135

136 %% Writing Flow Extentions curves to txt files

137

138 dlmwrite('CCAinlet.txt', transpose(CCAinlet)*1000, 'precision', '%.6f', ...

139 'delimiter', '\t', 'newline', 'pc')
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140

141 dlmwrite('ECAoutlet.txt', transpose(ECAoutlet)*1000, 'precision', '%.6f', ...

142 'delimiter', '\t', 'newline', 'pc')

143

144 dlmwrite('ICAoutlet.txt', transpose(ICAoutlet)*1000, 'precision', '%.6f', ...

145 'delimiter', '\t', 'newline', 'pc')

shooting.m

Shooting method used to determine eigenvalues and eigenfunctions in Chapter 3 and Ap-

pendix B

1 %%% Shooting Method for solving step in wall flux problem

2

3 %% Initialization

4

5 clc

6 clear all;

7 close all;

8

9 L = 1;

10 tol = 10ˆ(−8); % Tolerance level for shooting algorithm

11 col = ['y','m','c','r','b','g','k']; % colors for eigenfunctions

12

13 ∆X = 0.0001;

14 XSPAN = [∆X:∆X:L]; % Span of Domain

15 phi start = 1;

16

17 %% System Parameters

18

19 Re = 400; % Reynolds number based off of mean velocity

20 Sc = 100; % Schmidt number

21 Pe = Re*Sc;% Peclet number

22

23 flux = 1; % [scalar / mˆ2]

24 R = 0.005615; % [m]



76

25 rho = 1000; % [kg/mˆ3]

26 Te = 100; % entrance scalar value

27 visc = 2.63e−6; % kinematic viscosity [mˆ2/s]

28

29 D = visc/Sc; % scalar diffusivity [mˆ2/s]

30 k = D*rho;

31 Umax = 2*Re*visc/(2*R); % max velocity [m/s]

32

33 %% Main Program − Shooting with Secant

34 n = 10; % number of eigenvectors to find

35 epsl start = 28; % Initial guess for the eigenvalue

36 epsl storage = zeros(1,n); % Matrix to store converged eigenvalues

37 y storage = zeros(L/∆X,n);

38

39 for modes=1:n

40

41 epsl=epsl start;

42 secant= zeros(2,2);

43

44 for j=1:100

45 BC=[1 0]; % Initial Conditions to start the shooting method

46 [t,y]=ode45(@(t,y)shoot2(t,y,epsl),XSPAN,BC,10ˆ(−8));

47

48 if abs(y(end,2)) < tol

49 norm=trapz(t,y(:,1).*y(:,1));

50 epsl storage(modes) = epsl;

51 y(:,:)=y(:,:)/sqrt(norm);

52 y storage(:,modes) = y(:,1);

53 break

54 end

55

56 if j>1

57 secant(1,1) = secant(2,1);

58 secant(2,1) = epsl;

59 secant(1,2) = secant(2,2);

60 secant(2,2) = y(end,2);
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61

62 epsl = epsl − (epsl−secant(1,1))/...

63 (secant(2,2)−secant(1,2)+ eps)*secant(2,2);

64

65 else

66 secant(2,1) = epsl;

67 secant(2,2) = y(end,2);

68 epsl = ((4*(modes+1)+4/3)ˆ2 − epsl)/10 + epsl;

69 end

70 end

71

72 epsl start= (4*(modes+1) + 4/3)ˆ2;

73 subplot(2,2,1)

74 plot(t,y(:,1)); hold on

75 title('Eigenfunctions')

76 end

77

78 %% Calculating Solution

79 axial length = 10; % dimensionless length of axial direction [z/D]

80 points = 100;

81 zeta length = axial length*2/Pe;

82 ZSPAN = [0:zeta length/points:zeta length];

83

84 [Z,X] = meshgrid(ZSPAN,XSPAN);

85

86 Theta inf = −4*Z − X.ˆ2 + 1/4*X.ˆ4 + 7/24;

87

88

89 B = zeros(1, n);

90 Theta d = zeros(length(XSPAN),points+1);

91

92 for i = 1:n

93 B(i) = trapz(XSPAN,(−XSPAN.ˆ2 + 1/4*XSPAN.ˆ4 +7/24).*...

94 transpose(y storage(:,i)).*(1−XSPAN.ˆ2).*XSPAN) / ...

95 trapz(XSPAN,transpose(y storage(:,i).ˆ2).*((1−XSPAN.ˆ2).*XSPAN));

96
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97 Theta d = Theta d + B(i)*exp(−epsl storage(i)*Z).*...

98 (y storage(:,i)*ones(1,points+1));

99 end

100

101 Theta = Theta inf − Theta d;

102

103

104 T = Theta*flux*R/k + Te;

105

106 Zd = Z*Pe/2;

107

108

109 %% Plotting Solution

110

111 subplot(2,2,3)

112 % contourf(X,Zd,real(T))

113 pcolor(X,Zd,real(T))

114 shading interp

115 title('Temperature Recontruction')

116

117

118 subplot(2,2,4)

119 plot(Zd(1,:),T(end,:))

120 title('Wall Temperature')

121

122 subplot(2,2,2)

123 plot(epsl storage, '−o')

124 title('eigenvalues')
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shoot2.m

This file contains the structure of system of ODEs to be solved by the shooting method in

shooting.m.

1 %% shoot2.m function

2

3

4 function rhs = shoot2(t,y,epsl)

5 rhs = [y(2) ; −(epsl*(1−t.ˆ2)*y(1) + 1/t*y(2))];
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Appendix B

SHOOTING METHOD

A shooting method was used to solve the Sturm-Liouville problem in Chapter 3. Equa-

tion 3.14a is reproduced here:

1
ξ

∂

∂ξ

(
ξ
∂Ξ
∂ξ

)
+ c2

(
1− ξ2

)
Ξ = 0 (B.1a)

∂Ξ
∂ξ

= 0 for ξ = 0, 1 (B.1b)

Shooting methods solve boundary value problems like the one described in Equation

B.1 by transforming the problem to an initial value problem. This is done transforming the

PDE found in Equation B.1 to a system of ODEs. Equation B.2 shows the result of the

transformation.

Ξ̇

Ξ̈

 =

 0 1

−C2
n(1− ξ2)

−1
ξ


Ξ

Ξ̇

 (B.2)

A time-stepping algorithm is then used to advance the problem from one boundary to

the next. This provides the eigenfunction, Ξm, for a given eigenvalue C2
n. Implementing

shooting methods initial values for Ξ and Ξ̇ and guesses for C2
n are required. The guess for

Ξ is not important as the eigenfunctions calculated are normalized to make
∫ 1

0 Ξndξn = 1.

Ξ̇ is defined by the boundary conditions given in Equation B.1. The initial guess for C2
n

was determined using the limiting value of Cn for large n given by Cn = 4n +
4
3

[26]. A

fourth order Runge-Kutta scheme was used to advance through the domain and a secant

method was used to quickly converge on the correct value of C2
n. There is a challenge in

the discretization of ξ in that if 0 is included in the solved domain the shooting method

will give an error due to a divide by zero error. An easy way to get around this is to use

an extremely fine discretization for ξ and set Ξ̇ = 0 at the first step after zero. This will
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introduce a small error but it was not significant for the number of eigenvalues solved in this

thesis. The scripts used in the shooting method are found in Appendix A under shooting.m

and shoot2.m. The first 1000 eigenvalues where found.


