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Nature provides inspiration for designing materials and systems, which derive their
functions from highly organized structures. Biological hard tissues are hybrid materials
having both inorganics within a complex organic matrix, the molecular scaffold
controlling inorganic structures. Biocomposites incorporate both biomacromolecules
such as proteins, lipids and polysaccharides, and inorganic materials, such as
hydroxyapatite, silica, magnetite and calcite. The ordered organization of hierarchical
structures in organisms begins via the molecular recognition of inorganics by proteins
that control interactions and followed by the highly efficient self-assembly across scales.
Following the molecular biological principle, proteins could also be used in controlling
materials formation in practical engineering via self-assembled, hybrid, functional
materials structures. In molecular biomimetics, material-specific peptides could be the
key in the molecular engineering of biology-inspired materials. With the recent
developments of nanoscale engineering in physical sciences and the advances in
molecular biology, we now combine genetic tools with synthetic nanoscale constructs
to create a novel methodology. We first genetically select and/or design peptides with
specific binding to functional solids, tailor their binding and assembly characteristics,
develop bifunctional peptide/protein genetic constructs with both material binding and
biological activity, and use these as molecular synthesizers, erectors and assemblers.
Here, we give an overview of solid-binding peptides as novel molecular agents coupling
bio- and nanotechnology.

Keywords: bioinspiration; material-specific peptides; molecular recognition;
biological materials evolution; binding and assembly; bionanotechnology
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1. Introduction

(a ) Inspiration and lessons from biology

Nature provides inspiration for engineering structural and processing design
criteria for the fabrication of practical materials to perform life’s functions
(Sarikaya et al. 1990; Sarikaya 1994; Mann & Calvert 1998). During the last two
decades, the realization that nanoscale inorganic materials have interesting
physical characteristics based on their nanometre-scale size (1–100 nm)-driven
promises and expectations from nanotechnology with potential applications in
both engineering and medical systems. Although there have been significant
advances in the applications of nanotechnology, there have also been serious
limitations mostly based on the problems associated with the assembly of
nanoscale objects. These stem from the limitations in nanotechnological systems
in controlling surface forces, inability to synthesize homologous sizes or shapes,
and limitations in their higher scale, controlled organizations. In biological
systems, on the other hand, inorganic materials are always in the form of
nanometre-scale objects, which are self-assembled into ordered structures for full
benefits of their function, that derive from their controlled size, morphology and
organization into two- and three-dimensional constructions. Recently, this
realization, therefore, brought biomimetics back into the forefront for renewed
inspiration for solving nanotechnological problems (Sarikaya 1999; Ball 2001;
Seeman & Belcher 2002). Biological materials are highly organized from the
molecular to the nano-, micro- and the macroscales, often in a hierarchical
manner with intricate nanoarchitectures that ultimately make up a myriad of
different functional elements, soft and hard tissues (Alberts et al. 2008). Hard
tissues such as bones, dental tissues, spicules, shells, bacterial nanoparticles are
examples that all have one or more protein-based organic components that
control structural formation as well as become an integral part of the biological
composites (Lowenstam & Weiner 1989; Sarikaya & Aksay 1995). These include
slaffins and silicateins in silica-based structures, amelogenin in enamel and bone
morphogenesis proteins or collagen in mammalian bone-, calcite- or aragonite-
forming proteins in mollusc shells and magnetite-forming proteins in magneto-
tactic bacteria (Berman et al. 1988; Cariolou & Morse 1988; Schultze et al. 1992;
Paine & Snead 1996). The inorganic component could be of various types of
materials (traditionally called ‘minerals’) with highly regular morphologies and
three-dimensional organizations. These include piezoelectric aragonite platelets
in nacre (figure 1a), precipitation-hardened single-crystal calcite with a complex
architecture in sea urchin spines (figure 1b), optically transparent silica layers in
sponge spicules (figure 1c) and superparamagnetic nanoparticles in magnetotac-
tic bacteria (figure 1d ).

The types of inorganics chosen by the organism have precursors or raw
ingredients that are either in the soil, water or air that can relatively easily be
accessed to (Lowenstam & Weiner 1989; Sarikaya & Aksay 1995; Mann 1996).
In addition to the intrinsic physical properties, the overall function and
performance of the biological material, therefore, is derived by the high degree
of control that the organisms have over the formation of the structure of the
material produced. The traditionally used term, ‘biomineralization’, therefore, is
misnomer, as the inorganics produced are not minerals but are materials with
RSTA 20090018—31/1/2009—19:31—PARANDAMAN—324119—XML RSA – pp. 1–24
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Figure 1. Examples of biologically fabricated, hierarchically structured (proteinCinorganic solid)
Q1
Q2
Q3 hybrid, functional nanomaterials. (a) Layered nanocomposite: growth edge of nacre (mother-of-pearl)

of abalone (Haliotis rufescens). Nacre is made of aragonite platelets separated by a thin film of
organic matrix. (b) Sea urchin spine is a single-crystal calcite with complex architecture containing
internal nanometre-scale MgCO3 precipitates. (c) Sponge spicule (Rosella) is an optical fibre made of
layered amorphous silica with the central proteinaceous core. The apex of the spicule is a star-shaped
lens, a light collector. (d ) Magnetotactic bacteria (Aquaspirillum magnetotacticum) contain
superparamagnetic magnetite (Fe3O4) particles aligned to form a nano-compass that senses the
Earth’s magnetic field.
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‘unique’ architectures with detailed micro- and nanostructures, including the
defect structures such as dislocations and mechanical or crystallographic twins,
all specific to the organism that is producing them (Sarikaya 1994). For example,
even in the case of mother-of-pearl, each of the organisms, e.g. pinctada, nautilus
or abalone, producing it has different single-crystal aragonite platelets that are
different from each other and each different from that of geological aragonite
single crystal, both in term of the crystal itself, morphology and, more
significantly, intrinsic physical property, such as elastic modulus. From this
point of view, these materials fabrication processes could be called biomater-
ialization to give the true meaning to the biological processes. The biological
processing or fabrication (different from bioprocessing or biomimetic processing)
is accomplished at ambient conditions of (near) room temperature, pH
approximately 7.0 and in aqueous environments (Lowenstam & Weiner 1989;
Coelfen & Antonietti 2008).
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As we see in figure 1a, nacre has a brick-and-mortar architecture that is a
layered segmented aragonitic (orthorhombic CaCO3) tiles separated by an organic
matrix. The organics is in the form of a 10 nm or thinner film that contains both
proteins and polysaccharides, such as chitin. Either within the layer or on the
surface of the organic film or within the particles themselves, the proteins possibly
nucleate the inorganic, aragonite, establish its crystallography and control the
growth. The resultant architecture, mother-of-pearl, is one the most durable hybrid
composites with excellent specific toughness/strength combinations (Mayer &
Sarikaya 2002). In figure 1b, sea urchin spines are single crystals of calcites
(rhombohedral CaCO3) with complex architectures. The spicule has high
toughness and elastic modulus, unusual for a mineral calcite. Despite its single
crystallinity, excellent mechanical property combinations in the spicule is probably
due to the presence of nanoscale MgCO3 precipitates, of which each associated with
a strain field, toughening the, otherwise, brittle calcite matrix through microcrack
closure (H. Fong & M. Sarikaya 2008, unpublished data). Both the formation of
the complex architecture of the calcite and the presence of precipitates must, again,
be due to the control that proteins have over these essential structural formations.
Another example (figure 1c), the spicules of the sponge species, Rosella are known
to have excellent light collection (via the lens-shaped tip) and transmission (via the
stem) properties with interesting layered structure made up of non-crystalline silica
(Sarikaya et al. 2001), all controlled by the silica-binding proteins known as
silicatein (Morse 1999; Muller 2001). Finally, in magnetotactic bacteria (figure 1d ),
superparamagnetic single particles of magnetite (Fe3O4) form a string of particles
aligned to sense the Earth’s magnetic field, aligning the bacteria and directing its
motion via magnetotaxis (Frankel & Blakemore 1991). Each of the magnetite
particles forms within a proteinacous magnetosome membrane, a component of
which directs the magnetite formation (Sakaguchi et al. 1993).

In each of the examples above, through materialization, the resultant hybrid
composite structures, incorporating inorganic and proteinaceous components, are
organized at the nanometre and higher dimensions, resulting in viable
mechanical, magnetic and optical devices and each offer unique design, not yet
seen in man-made engineered systems. These functional biological systems are
simultaneously self-organized, dynamic, complex, self-healing and multifunc-
tional, and have characteristics difficult to achieve in purely synthetic systems
even with the recently developed bottom-up processes that use molecules and
nanocomponents. Under genetic control, biological tissues are synthesized in
aqueous environments in mild physiological conditions using biomacromolecules,
primarily proteins but also carbohydrates and lipids. Proteins both collect and
transport raw materials, and consistently and uniformly self- and co-assemble
subunits into short- and long-range ordered nuclei and substrates (Tamerler &
Sarikaya 2007). Whether in controlling tissue formation or being an integral part
of the tissue in its biological functions and physical performance, proteins are an
indispensable part of the biological structures and systems. A simple conclusion
is that any future biomimetic system, whether for biotechnology or nanotech-
nology, should include protein(s) in its assembly and, perhaps, in its final hybrid
structure (Sarikaya et al. 2003).

In traditional materials systems, the final product is a result of a balance of
interactions, dictated by the kinetics and thermodynamics of the system, that are
often achieved through ‘heat-and-beat’ approaches of the traditional materials
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science and engineering, which provide the energy for structural formations
(Kingery 1976; Reed-Hill 1991). In biological systems, on the other hand, the
same balance, and the energy, is achieved through evolutionary selection
processes that result in the emergence of a specific molecular recognition using
peptides and proteins (Pauling 1946). As we discussed below, and throughout the
paper with examples, our approach is to engineer peptides with materials
selectivity and use these as molecular building blocks in organizing functional
materials systems in practical proof-of-principle demonstrations. Availability of
new platforms will bring to the forefront new materials functionalities provided
by the solid-binding peptides that will extend current technology via coupling
nanoentities using the principles of biosorption beyond those provided by the
traditional chemisorption or physisorption.
(b ) Molecular biomimetics pathways to nano- and bionanotechnology

Molecular biomimetics is using biology’s molecular ways in genetic selection or
design of proteins and peptides that can control the synthesis of nanoscale
objects and self-assembly of higher ordered multifunctional materials systems
(Sarikaya et al. 2003). In the development of the molecular biomimetics protocols
in nanotechnology, therefore, one uses solid-binding peptides and control the
formation, assembly and organization of functional nanoentities towards building
useful technologies. To accomplish the overarching task, we integrate recent
developments in molecular- and nanoscale engineering in physical sciences
(nanoparticle formation, nano- and micropatterning such as dip-pen nanolitho-
graphy and microcontact printing, and self and directed assemblies), and the
advances in molecular biology, genetics and bioinformatics towards materials
fabrication all at the molecular and nanometre scales (Sarikaya 1999; Sarikaya
et al. 2003). Using closely controlled molecular, nano- and microstructures
through molecular recognition, templating and self-assembly properties in
biology, this field is evolving from the true marriage of physical and biological
sciences towards providing practical application platforms (Niemeyer 2001;
Sarikaya et al. 2004). The advantage of the new approach for nanotechnology is
that inorganic surface-specific proteins could be used as couplers, growth
initiators and modifiers, bracers and molecular erector sets, i.e. simply as
building blocks for the self-assembly of materials with controlled organization
and desired functions from the bottom-up.

The realization of heterofunctional nanostructure materials and systems could
be at three levels (Sarikaya et al. 2004), all occurring simultaneously with a
closely knit feedback similar to the biological materials formation mechanisms
(Alberts et al. 2008). The first is that the inorganic-specific peptides are identified
and peptide/protein templates are designed at the molecular level through
directed evolution using the tools of molecular biology. This ensures the
molecular scale and up processing for nanostructural control at the lowest
practical dimensional scale possible. The second is that these peptide building
blocks can be further engineered to tailor their recognition and assembly
properties similar to the biology’s way of successive cycles of mutation and
generation can lead to progeny with improved features eventually for their usage
as couplers or molecular erector sets to join synthetic entities, including
nanoparticles, functional polymers or other nanoentities on to molecular
RSTA 20090018—31/1/2009—19:31—PARANDAMAN—324119—XML RSA – pp. 1–24
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templates (molecular and nanoscale recognition). Finally, the third is that the
biological molecules self- and co-assemble into ordered nanostructures. This
ensures an energy-efficient robust assembly process for achieving complex
nano, and possibly hierarchical structures, similar to those found in biology
(self-assembly; Sarikaya et al. 2004).

In the following sections, we provide an overview of molecular biomimetics
approaches to achieve the premises of bionanotechnology with specific
applications, mostly, in medicine, and summarize their potentials and
limitations. Here, we first summarize the protocols, adapted from molecular
biology to materials science and engineering, for selecting polypeptides that
recognize and bind to solids, and describe the protocols of combinatorial biology
for identifying, characterizing and genetically engineering peptides for practical
use. We emphasize cell surface and phage display approaches that are well
adapted for the identification of solid material-specific peptides and to explain
ways to further tailor peptides using post-selection engineering and bioinfor-
matics pathways. The protocols, established over years in this group, are
presented in the quantitative binding characterization of the peptides using
various spectroscopic techniques. We also briefly discuss possible mechanisms
through which a given peptide might selectively bind to a material. Finally, we
present extensive practical examples of current achievements in the usage of the
solid-binding polypeptides as building blocks to demonstrate their wide range of
applications and, finally, discuss future prospects.
2. Genetic selection and directed evolution of solid-binding peptides

(a ) Biocombinatorial selection of peptides

Genetically engineered peptide for inorganics (GEPI) is selected through affinity-
based biopanning protocol (Sarikaya et al. 2003). Biopanning steps consist of
contacting the library with the material of interest, then washing out weak or
non-binders and repeating the process to enrich for tight binders to select a
subset of the original library exhibiting the ability to tightly interact with the
desired surface. During the biopanning step, a minimum of three to five cycles of
enrichment is usually performed. Generally in early rounds, low-affinity binders
can be accessed if the selection is performed under mild conditions. In later
rounds, as the conditions get harsher, tight binders are also recovered. Because
the chimera is encoded within the phage genome or on a plasmid carried by the
cell, the identity of the selected sequences (e.g. their amino acid compositions)
can be deduced by DNA sequencing (figure 2).

We selected peptides for a variety of materials including noble metals (such as
Au, Pt and Pd), metals (Ag and Ti), oxide and nitride semiconductors
(e.g. Cu2O, ITO, GaN, ZnO), minerals (such as mica, hydroxyapatite, calcite,
aragonite, sapphire and graphite) or biocompatible substrates (such as silica,
titania and alumina) that were selected by using either phage display
(specifically filamentous phage strain M13) or cell surface display (specifically
flagellar display) (Sarikaya et al. 2004). There are also a number sequences
selected for various materials by other groups. The ones selected via cell surface
display includes gold (Brown 1997) and zinc oxide (Kjærgaard et al. 2000),
whereas phage display selected ones are for their affinity towards gallium
RSTA 20090018—31/1/2009—19:31—PARANDAMAN—324119—XML RSA – pp. 1–24
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Figure 2. Standardized steps in the selection, binding characterization, designing/tailoring of solid-
binding peptides and their usefulness as bifunctional molecular constructs.
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arsenide (Whaley et al. 2000), silica (Naik et al. 2002a), silver (Naik et al.
2002b), zinc sulphide (Lee et al. 2002a,b), calcite (Li et al. 2002), cadmium
sulphide (Mao et al. 2003) and titanium oxide (Sano et al. 2005). Some of
biocombinatorially selected peptides have been used to assemble inorganic
particles (Whaley et al. 2000; Lee et al. 2002a,b; Mao et al. 2003) or to control
nucleation of the compounds that they were selected for (Li et al. 2002; Naik
et al. 2002a,b).

When one is focusing on the material-specific peptide interactions, finding a
consensus sequence might lead to a misleading result. This could be due to the
high potential that a genetic bias in the selection by the organism may produce
the same sequence without the diversity. As it is well known, the health of
genetic diversity leads to an assortment of sequences, which presumably reflects
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the heterogeneity of the inorganic substrates at the atomic, topographic,
chemical and crystallographic levels. Chemical diversity of the surfaces alone
could produce a variety of sequences due to the different binding strategies that
the peptide library could entail that are derived from the shape and lattice
complementarities, electrostatic interactions, van der Waal’s interactions or
various combinations of these mechanisms (Kulp et al. 2004; Evans et al. 2008;
Seker et al. in print). The ultimate robust usage of the inorganic-binding
peptides for the fabrication and assembly of hybrid materials and systems
requires fundamental studies towards better insights into peptide–solid
molecular interactions and their incorporation into the design of desired
material-specific peptides.
(b ) Structural design concepts: mutation, multimerization, conformational
constraints

Both the amino acid content (chemistry) as well as the sequence of the amino
acids (molecular conformation) in a given selected set of peptides could affect their
binding characteristics. We have recently demonstrated that the molecular
constraints can be used to tune the architectural features and, consequently, the
binding properties of the first generation of selected peptides. Specifically, we used
a high-affinity 7-amino acid Pt-binding sequence, PTSTGQA, to build two
different constructs: one is a Cys–Cys constrained ‘loop’ sequence (CPTSTGQAC)
that mimics the domain used in the pIII tail sequence of the phage library
construction, and the second is the linear form, a septapeptide, without the loop
(Seker et al. 2007). By incorporating surface plasmon resonance (SPR, measuring
binding) and circular dichroism (CD, determining molecular architecture), one is
able to analyse the consequence of the loop constraint on peptide adsorption and
kinetics and the conformation of peptides. These studies are related to each other
with a comparative approach (as determined in figure 2).

One may also modify the binding activity of a given selected peptide by simply
increasing the number of repeats of the original sequence. This multimerization
could be accomplished using the simple tandem repeat, i.e. sequential
attachment of the original sequence. We applied multiple-repeat-based strategy
on both phage display selected platinum and quartz binder (7 and 12 amino acid
sequences each, respectively) and cell surface selected gold binders (14 amino
acids each). One would expect that, as the number of repeats increased, there
would be an increase in the binding activity of a given peptide. Surprisingly,
however, not in all cases, the increase in the number of repeating peptide was
reflected in the enhancement of binding activity. In addition, material selectivity
behaviour of each of the single peptides also changed when they were used in
multiple-repeat forms. These results indicate that, rather than the amino acid
content in a given material-binding sequence, it is the molecular conformation
(secondary structure) that is more relevant, which dictates the solid-binding
function. These preliminary results, therefore, show that there is a correlation
between conformational instability (or adaptability) and binding ability (Seker
et al. in print). It is imperative that, in the next stage of multimerization studies,
one could incorporate designed linkers between successive sequences to
intentionally conform the overall multiple-repeat second-generation peptides
for desired binding and other biological functions.
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(c ) Binding and assembly of peptides on solids

In the design and assembly of functional inorganic solids, it is essential to
understand the nature of polypeptide recognition and binding on to solid materials.
Although considerable research has been directed in the literature towards
understanding peptide binding to solids, it is not yet clear how proteins recognize
an inorganic surface and how it could be manipulated to enhance or reduce this
binding activity. This problem is similar to protein–protein recognition in biology
(Pauling 1946); in the current hybrid systems, the problem reduces to one of
peptide–solid interface. Here, the peptide is relatively small, perhaps approximately
10 amino acids long (1 kD), and the inorganic solid is relatively flat but with
atomic and molecular features with mostly crystallographic lattice organization.
The specificity of a protein for a surface may originate from both chemical
(e.g. H-bonding, polarity and charge effects) and physical (conformation, size and
morphology) recognition mechanisms (Izrailev et al. 1997; Dai et al. 2000; Evans
2003; Evans et al. 2008). Recent studies have also demonstrated that the peptide
overall molecular architecture (i.e. constraint versus linear) plays a key role in the
solid recognition (Hnilova et al. 2008). For a given system, these mechanisms may
be all significant, but with varying degrees depending on the peptide sequence,
chemistry and topology of the solid surface, and the conditions of the solvent
(water). Therefore, each, with a certain degree, would contribute towards a
collective behaviour. Similar to the molecular recognition in biomacromolecular
systems, the major contribution, however, comes from amino acid sequences that
lead to a specific molecular conformation on the surface of the solid, and to a lesser
extent on composition and overall amino acid content of the peptide, as
demonstrated in the example below (see §2e).

(d ) Peptide binding to solids and kinetics

Among the experimental approaches to rapidly monitor the protein adsorption
and binding on inorganics is fluorescence microscopy (FM), which now become a
routine tool as a first step in the qualitative evaluation of these sequences with
respect to their affinity and selectivity (figure 3). The FM imaging is an essential
part of the screening protocol in our laboratory. However, this type of
characterization does not provide quantitative information of polypeptide
adsorption or detailed binding kinetics or mechanism(s). Another frequently
used technique in molecular biology binding assays is ELISA, an immuno-
fluorescence labelling detection using monoclonal antibody conjugated with
secondary antibody fragments (Brown 1992; Whaley et al. 2000; Naik et al. 2002;
Dai et al. 2004; Sarikaya et al. 2004). Although time consuming and statistically
less significant, scanning probe microscopy (SPM) protocols could also be used,
which require the integration of sample preparation, self-assembly, tip design,
observation conditions, data analysis and interpretations of specific polypeptides
binding on to inorganic surfaces (Whitesides et al. 1991). Both atomic force
microscopy (AFM) and scanning tunnel microscopy (STM) techniques have been
used to acquire static information of peptide binding to solids. The quantitative
data towards determining kinetic parameters of binding could, however, be
obtained using more established techniques such as quartz crystal microbalance
(QCM; Murray & Deshaires 2000; Bailey et al. 2002) and SPR spectroscopy
(Czenderna & Lu 1984; Homola et al. 1999).
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Figure 3. Material selectivity of inorganic-binding peptides (a) peptide alone, the case of quartz-Q4

binding peptide conjugated with a fluorescein molecule and (b) peptide displayed on the host
organism, i.e. Pt-mutant phage, PtBP1, fluorescently labelled. The contrast reversal, as visualized
using a fluorescence microscope in both cases, indicates the material specificity of QBP for silica
against Au or Pt, and PtBP for Pt against Si and Au, respectively.
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Both QCM and SPR (figure 2) have been successively used to quantitatively
analyse peptide adsorption kinetics under various protein concentrations, solution
properties, such as pHand salinity, and solid surface conditions (Sarikaya et al. 2004;
Sano et al. 2005; Seker et al. 2007; Hnilova et al. 2008). Recently, conventional
spectroscopy techniques, such as X-ray photoelectron spectroscopy and time-
of-flight-secondary ion mass spectroscopy techniques, have also proven to provide
the fingerprint of peptide adsorption on to the surfaces (Coen et al. 2001; Suzuki et al.
2007). Although difficult to carry out, the application of solid and liquid state NMR
could provide quantitative information of molecular conformations of peptides,
essential information towards the understanding of the mechanism of polypeptide
binding on to solids (Evans 2003). Finally,molecularmodelling that studies interface
interactions between a peptide and a solid will lead to rapid evaluations of various
types of hybrid interfaces. These studies, e.g. molecular dynamics, that make use of
computational chemistry, biology and physics, are still in their infancy, but are
expected toprovide protocols in thenear future through the implementationofmodel
experimental systems coupled with theoretical approaches (Evans et al. 2008).

A detailed understanding of the peptide recognition and assembly processes
will inevitably lead to better insights into the design of peptides for tailored
binding. A better knowledge of the mechanisms of the quantitative adsorption
may become possible through high-resolution surface microscopy (e.g. AFM and
STM), molecular spectroscopy and surface diffraction studies as well (such as
small angle X-ray diffraction). Many of these techniques, with their advantages
and pitfalls, have been discussed extensively in the literature; in this review, we
will discuss one technique, SPR, which provides the most practical information
on binding kinetics and materials selectivity of peptides for solid and, therefore,
frequently used in our research in the identification of the most promising
peptides that are in frequent use today for practical implementations (§3).
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Figure 4. Effect of GEPI conformation on binding, the case study with gold-binding peptides.Q5

(a,b) SPR studies of the binding of AuBP1 and AuBP2, constraint and linear, respectively, are
given ((a) (i) l-AuBP1, (ii) l-AuBP2, (iii) c-AuBP1, (iv) c-AuBP2; (b) (i) diamonds, l-AuBP1;
squares, c-AuBP1; (ii) diamonds, l-AuBP2; squares, c-AuBP2). (c,d ) Molecular architectures of
the linear and constraint forms, respectively, are given ((c) AuBP1, (d ) AuBP2). Note that the
linear and constraint forms of AuBP2 have the same molecular conformation and, therefore, the
same binding property while AuBP1 has two different conformations in two architectures and,
therefore, the binding strengths are different.
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(e ) Peptide adsorption via molecular architectural control

Most studies on the adsorption behaviour of combinatorially selected
inorganic-binding peptides on to solids have focused mainly on their amino
acid compositions (Naik et al. 2002; Mao et al. 2003). Only recently some studies
have addressed the peptide structural constraints on the adsorption behaviour
and affinity to solids (Tamerler et al. 2006a,b; Makrodimitris et al. 2007; Seker
et al. 2007; Gungormus et al. 2008; M. Gungormus, D. Khatayevich, C. So,
C. Tamerler & M. Sarikaya 2008, unpublished data). It is well known in protein
engineering that the protein molecular architecture affects its function (Alberts
et al. 2008). In this example, we hypothesized that the structure–function
relationship also persists in peptide binding to inorganic materials (figure 4).
To assess the hypothesis, we used two gold-binding peptides that were originally
selected in a cyclic form, i.e. constraint architecture, and compared their
adsorption and conformational behaviours to those of their linear, free, forms
using, respectively, SPR and CD spectroscopy and computational modelling. We
used two gold-binding sequences that were originally selected using the FliTrx
cell surface approach (Hnilova et al. 2008). These two peptides, AuBP1
(WAGAKRLVLRRE) and AuBP2 (WALRRSIRRQSY), were synthesized
using solid-state technique in an open dodecapeptide version, called linear
(l ) as well as in constraint form, i.e. through an 18-aa Cys–Cys constrained loops,
called cyclic (c), to mimic the original FliTrx displayed peptide conformations.
We first carried out the CD spectroscopy to assess the molecular conformations
and found that the cyclic versions of AuBPs have mainly random coil structures;
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however, the linear versions of AuBPs also have some degree of polyproline type
II (PPII) rigid structures in addition to the random coil structures (Hnilova
et al. 2008). The percentage of PPII structure in l-AuBP2 is greater than that in
l-AuBP1, and, thus, the structural differences between the l- and c-versions of
AuBP2 are much bigger than the structural differences between the l- and
c-versions of AuBP1.

The SPR analysis showed that both the linear and cyclic forms of AuBPs have
high affinities to gold (e.g. DGadsZK8.7 kcal molK1). We also found that both
the linear and cyclic forms of AuBPs have random coil and PPII structures,
which cooperatively promote unfolded, conformationally labile peptides that
may enhance their adaptability to interfacial features that exist on gold surfaces.
One would expect differences in the binding characteristics between the cyclic
and linear forms as the structure may change. In fact, we found that AuBP2 has
an order of magnitude higher affinity in the cyclic version than the linear one
(figure 4). This difference is consistent with the observation of significant
structural change in the molecular conformations of the cyclic and linear versions
of AuBP2 in solution. On the other hand, the binding affinities of AuBP1 in the
cyclic and linear forms are quite similar. In this case, the molecular structures of
this peptide in the two architectures are similar, as we show both experimentally
(CD) and via modelling. On the basis of all the evidence, we show that the
sequence of the amino acids in a given peptide and its molecular conformation
may be the key determinants that facilitate peptide-selective binding on solid
materials (Hinlova et al. 2008).

3. Implementations of solid-binding peptides in bionanotechnology

Once a bank of fully characterized solid-binding peptides becomes available, then
it could be used as a ‘molecular toolbox’ for a wide range of applications from
solid synthesis to molecular and nanoscale assemblies. Here, the peptide is not
only be useful in linking one nanomaterial to another, but a GEPI could also be
used for genetically fusing it on to another functional protein and use the system
as bifunctional molecular construct, where peptide would be the ligand.
Alternatively, a GEPI could be fused, chemically, on to a synthetic polymer,
to create multifunctional hybrid polymeric structures. Below, we will
demonstrate a few uses of various GEPIs in generating new functional materials
systems to understand their potential usage as molecular building blocks.

(a ) GEPI-assisted synthesis of nanoinorganics

Given that these genetically engineered peptides recognize and bind to
minerals, there may also be an inherent capability within the sequences to
influence the morphology of these minerals as well, a prospect that has not yet
been fully explored in great detail so far. Once this is achieved, peptide-based
molecular scaffolds developed may have great potential for applications in tissue
regeneration. An example from our recent work on biomineralization using
hydroxyapatite (HA)-binding peptides (Gungormus et al. 2008; M. Gungormus,
D. Khatayevich, C. So, C. Tamerler & M. Sarikaya 2008, unpublished data) is
shown in figure 5a,b. We demonstrated that the biocombinatorially selected
HA-binding peptides could offer a route for regulating calcium phosphate-based
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Figure 5. Peptide-assisted biomaterialization using GEPIs. (a,b) Hydroxyapatite synthesis in theQ6

presence of phage display selected HABP1 with respect to a control containing no peptide.
(c,d ) Au nanoparticle synthesis in the presence of AuBP with respect to a control prepared by a
non-specific peptide (a) control, (b) w/HABP1, (c) control, (d ) w/AuBP1.
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nanocrystal formation within a biomedical context. Specifically, a successful
generation of cysteine-constrained M13 bacteriophage heptapeptide library were
screened against HA powder. Using the library, we selected 49 sequences and two
were identified for further investigation. One of these peptides exhibited the highest
binding affinity (HABP1), and the other, a much lower binding affinity (HABP2) to
HA, for subsequent calcium phosphate formation and biophysical characterization
studies. Here, we were interested in learning whether HA-binding polypeptide
sequences could also regulate calcium phosphate formation in vitro, and likewise,
determine the contributions of primary sequence and secondary structural
properties that are associated with HA affinity as well as calcium phosphate
formation capability. We found that both peptides affected calcium
phosphate formation, with the former exhibiting a higher inhibitory activity over
the latter, inducing a desired morphology on the formed Ca-phosphate mineral
(figure 5a). The resulting nanoparticles are plate shaped, several 10s of nanometres
in length and only a few nanometres in thickness. These particles resemble
hydroxyapatite particles in dentine in human tooth (Fong et al. 2000). These results
reveal a possibility of peptides in controlling particle morphology that is the major
difference in differentiating the dental hard tissues (dentine, cementum and enamel)
as well as the bone architectures. Peptide-controlled morphogenesis of Hap
nanoparticles could be used in regulatingmaterialization in hard-tissue regeneration
or filler design for tissue restoration.
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Figure 6. (a–e) Targeted co-assembly of molecular functional entity (fluorescein attached to QBP1-Q7

bio, silica-binding peptide) and nanoparticle (a QD) functionalized with streptavidin targeting
biotinylated QBP on a microcontact-printed micropatterned Si substrate (containing native silicon
oxide) (a) (i) incubation, (ii) washing and drying, (iii) stamping, (iv) incubation; (c) (i) SA-QD
micropattern, (ii) self-assembly of QBP1-F, (iii) fluorescein and QD micropatterns on quartz.
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Another example is in the morphology control of gold particles using gold-
binding peptides (figure 5c,d ). Gold nanoparticles with 12 nm diameter monosize
can be formed at ambient conditions using the well-known Faraday’s technique
by reducing AuCl3 by Na-citrate (or other reducing agents; Turkevich et al.
1951). In the presence of peptide, reducing the gold concentration and lowering
temperature allow particle formation at a slower rate, giving the protein time to
interact with surfaces during the growth and provides conditions to examine the
effect of gold binding during colloidal gold formation. We conducted a search for
mutants that modulated the architecture, i.e. particle versus thin film, of gold
crystallites (Hnilova et al. 2008). The selection of mutants was based on the
change of colour of the gold colloid (from pale yellow to a red colloid), which was
related to altered rate of crystallization. Forty gold mutants were tested this
way, and the sequence analysis showed that two separate mutants that
accelerated the crystal growth also changed the particle shape from cubo-
octahedral (the usual shape of the gold particles under equilibrium growth
conditions) to flat, thin films (figure 6c,d ). This new observation is interesting
from the point of enzymatic effect of protein in crystal growth rather than
traditionally assumed templating effect. The polypeptides, in spite of being
slightly basic, may have caused the formation of gold crystals similar to those
formed in acidic conditions. This suggests that the role of the polypeptides in
gold crystallization is to act as an acid, a common mechanism in enzyme
function, and the protocol could be used to regulate the shape of metal
nanoparticles for photonic and electronic applications.

As demonstrated with the examples above, biocombinatorially selected
peptides can have enzymatic effects in the synthesis, morphogenesis and
fabrication of inorganic nanomaterials. Similar to biological systems, it may be
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expected that the solid-binding peptides may have further potential for size,
crystallography and mineral selectivity, with potential usage in a variety of
practical applications, from filler material in papers to paints, as well as
specialized coatings (Sarikaya et al. 2004).
(b ) Directed and mediated assembly of functional nanoentities

Protein microarray technologies, used in proteomics and clinical assays,
require efficient patterning of biomolecules on selected substrates (Gristina 1987;
Blawas & Reichert 1998; Chicurel & Dalma-Weiszhausz 2002; Cutler 2003;
Min & Mrksich 2004; Cretich et al. 2006), which is possible provided that the
proteins are spatially immobilized on solid substrate via various lithography
techniques, e.g. soft lithography (Xia & Whitesides 1998), dip-pen lithography
(Lee et al. 2002a,b) and photolithography (Revzin et al. 2001). Recently, protein
immobilization has become a key issue in bionanotechnology since immobili-
zation provides physical support to the molecule, resulting in improved stability
and activity and, furthermore, helps to separate proteins from solution,
rendering them reusable (Castner & Ratner 2002; Bornscheuer 2003) The
approaches for biomolecule immobilization on glass or metal (e.g. gold)
substrates generally require surface functionalization by self-assembled mono-
layers (SAMs) of bifunctional molecules, such as amino-terminated aminoalkyl-
alkoxysilanes for silica and carboxyl-terminated alkanethiols for gold
substrates (Mrksich & Whitesides 1996; Ostuni et al. 1999). Despite their
widespread usage, these traditionally available linkers have certain limitations,
such as causing random orientation of the protein on solid surface and requiring
multistep chemical reactions and, furthermore, the assembled monolayers can be
unstable during immobilization (Fujiwara et al. 2006; Park et al. 2006).
To overcome these limitations, it is preferable to have molecules as direct
linkers to the solid substrate of interest, which not only have all the desired
features of the conventional chemically prepared SAMs but also have specificity
to a given solid substrate and assemble on to it efficiently. In addition, the
molecule used as the linker could be amenable to genetic manipulation for
selecting the best linker site to the displayed protein or nanoentity without
causing any effect in reducing the binding activity. Solid-binding peptides can
provide the multifunctionality as a preferred linker with high structural stability
incorporating a target molecule aligned consistently to carry out a desired
function (Sarikaya et al. 2003).

Here we demonstrate the solid-binding peptide as a molecular assembler for
two different nanoentities, quantum dots (QDs) and fluorescent molecules, and
sequentially assemble them on a micropatterned surface using the material
specificity of the GEPI (Kacar et al. in press). In this case, directed
immobilization of the QDs is followed by the GEPI-mediated assembly of the
fluorescent molecule using the microcontact printing and self-assembly
procedures schematically illustrated in figure 6a. The directed immobilization
of SA-QD on a QBP1-biopatterned surface is shown in figure 6b as red stripes,
imaged with a fluorescent microscope using a QD605 filter, revealing red
fluorescent contrast. Here, the dark stripes represent the regions originally
unoccupied, exposing the bare quartz surface (figure 6a(i)). Next, following the
procedure in figure 6a, the assembly of the fluorescent molecule, i.e. fluorescein,
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is mediated using the QBP1-F molecular conjugate. The assembled conjugate
molecules are imaged in green, as shown in figure 6c, using a FITC filter. At this
step, the QBP1-F molecular conjugate diffuses towards the regions of the
substrate previously unoccupied, after the initial directed immobilization of QDs
(figure 6d ). Both images in figure 6e,c were recorded from the same area of the
sample, showing regular alternating lines of red and green stripes, corresponding
to the directed-assembled QDs and mediated-assembled fluorescein molecules,
respectively. This result demonstrates that the QBP1 is active as an efficient
molecular linker as well as a versatile PDMS ink. Furthermore, we demonstrate
here the co-assembly of two diverse nanoentities without the involvement of
complex surface modification, often involved in the silane-based traditional
procedures (Fujiwara et al. 2006). The patterning protocol developed here would
be useful as microscale platforms for wide range of applications from generating
photonic lattices to co-assembling multi-enzyme or multi-protein assays.
4. Future prospects of solid-binding peptides as molecular building
blocks in bionanotechnology

The joining of biology with materials requires an ability to design, engineer and
control interfaces at the materials/bio intersections as these sites are significant
in the implementation of nanotechnology, developments of new materials and
protocols in molecular engineering, and realization of bionanotechnology
(figure 7). Biology controls all interfaces between molecular materials, tissues
and organs using peptides and proteins which are also the agents of molecular
communication. In a sense, proteins are the workhorses in biology carrying out
the chemical, physical and biological functions of the organisms. Similar to
biology, in engineering and technological systems, we can genetically select
peptides with an ability to bind to inorganic materials to create a new
fundamental building block to couple bio and synthetic entities. As we describe
here, genetically engineered polypeptides for inorganics (GEPI) have short
amino acid sequences with material selective binding and self-assembling
properties. Once selected using combinatorial mutagenesis, GEPIs can be
further tailored to enhance/modify their binding ability and multifunctionality.
The multifunctionality could be introduced either using two or more material-
binding peptides to create novel ways of making dissimilar materials
thermodynamically compatible, or by genetically fusing a functional protein,
e.g. enzyme or an antibody, to develop heterofunctional molecular constructs.

Solid-binding peptides coupled with solid substrates form a new generation of
novel hybrid materials systems (Sarikaya et al. 2003). Genetic control of the
coupling and the resulting function of the hybrid material are new approaches
with potential to overcome limitations encountered in the progress of wide range
of applications in which traditionally synthetic linkers, such as either thiol or
silane, have been used. The attachment of biomolecules, in particular proteins,
on to solid supports is fundamental in the development of advanced biosensors,
bioreactors, affinity chromatographic separation materials and many diagnostics
such as those used in cancer therapeutics (Blawas & Reichert 1998; He et al.
2006; Behrens & Behrens 2008). Protein adsorption and macromolecular
interactions at solid surfaces play key roles in the performance of implants and
RSTA 20090018—31/1/2009—19:31—PARANDAMAN—324119—XML RSA – pp. 1–24

Phil. Trans. R. Soc. A



Q24

Q25

implant
surface

engineeringbone
and tooth

regeneration

bionano
technology

stem cell
molecular
matrices

NEMS/
MEMS

lab
-on-a-chip

phage and
cell sorting

probing and
drug

delivery

nano-
medicine

cancer
probing

multitargeted
assays

nano-
electronics

nano-
photonics

nano-
magnetics

nano-
technology

molecular
biomimetics
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hard-tissue regeneration (Gottlieb et al. 2008; Ma 2008). Proteins adsorbed
specifically on to probe substrates are used to build protein microarrays suitable
for modern proteomics (Cuttler 2003; Cretich et al. 2006). Enzyme immobili-
zation on substrates (e.g. nanoparticles in a colloid) will greatly enhance the
usage of industrial enzymes (Kasemo 2002). Designing bifunctional peptides
(e.g. attached to a probe) coupled to nanoparticles, e.g. QDs or fluorescent
molecules will provide new avenues for multicomponent biosensor design
(Li et al. 2007). The same (nanoparticle/GEPI-probe) platform, where the
probe is an antibody and the nanoparticle is a therapeutic or imaging entity, will
provide new molecular platform for cancer probing (Weissleder 2006; Tamerler
& Sarikaya 2007). The examples given above illustrate only a part of achievable
goals by these new classes of functional molecular linkers. All these and a wide
variety of other applications form the core of biological materials science and
engineering (Sarikaya et al. 2003) which can be designed and genetically
engineered (figure 7). Based on its recognition and self-assembly characteristics,
the role of GEPI in these hybrid structures would be to provide the essential
molecular linkage between the inorganic components, and, at the same time, be
an integral component of the overall structure providing to it the functional
(e.g. mechanical) durability. Owing to the intrinsic properties mimicked after
natural proteins, in the coming years and decades, we are likely to see engineered
inorganic-binding polypeptides to be used more and in wide range of applications
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from particles synthesis and assembly with genetically controlled physical and
chemical characteristics in materials science to probing for biological targets
in biology and medicine (Eisledder 2006; Sengupta & Sasisekharan 2007;
Tamerler & Sarikaya 2008).
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