
Converting CCGs into Typed Feature Structure Grammars∗

Hans-Ulrich Krieger and Bernd Kiefer
German Research Center for Artificial Intelligence (DFKI GmbH)

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
{krieger,kiefer}@dfki.de

Introduction
In this paper, we report on a transformation scheme that
turns a Categorial Grammar (CG), more specifically, a Com-
binatory Categorial Grammar (CCG; see (Baldridge 2002))
into a derivation- and meaning-preserving typed feature
structure (TFS) grammar. We describe the main idea which
can be traced back at least to work by (Karttunen 1986),
(Uszkoreit 1986), (Bouma 1988), and (Calder, Klein, & Zee-
vat 1988). We then show how a typed representation of com-
plex categories can be extended by other constraints, such
as modes, and indicate how the Lambda semantics of com-
binators is mapped into a TFS representation, using unifica-
tion to perform α-conversion and β-reduction (Barendregt
1984). We also present first findings concerning runtime
measurements, showing that the PET system, originally de-
veloped for the HPSG grammar framework, outperforms the
OpenCCG parser by a factor of more than 10.

Motivation
The Talking Robots (TR) group here at the LT Lab of
DFKI uses categorial grammars in several large EU projects
in order to communicate with robots in spoken language.
The grammars for English and Italian are written in the
OpenCCG dialect of CCG.

Faster Parser. The main rationale for our transformation
method is driven by the need that we are looking for a
reliable and trainable (C)CG parser that is faster than the
one which comes with the OpenCCG system. People from
the DFKI LT group have co-developed the PET system
(Callmeier 2000), a highly-tuned TFS parser written in C++,
which originally grew out of the HPSG community. In order
to use such a TFS parser in a CG setting, the (combinatory)
rules and lexicon entries need to be transformed into a TFS
representation.

Structured Language Model. Another major rationale
for the transformation comes from the fact that the CCG

∗The research described here has been partly financed by the
TAKE project (take.dfki.de), funded by the German Federal Min-
istry of Education and Research, and the European Integrated
projects CogX (cogx.eu), NIFTi (nifti.eu), and Aliz-e (aliz-e.org)
under contract numbers 01IW08003, FP7 ICT 215181, 247870,
and 248116. We would like to thank our reviewers for their useful
comments.

grammars are used for spoken language, operating on the
output of a speech recognizer. Although speech recognizers
are based on trained statistical models, modern recognizers
can be further tuned by supplying an additional structured
language model. Given a TFS grammar for the transformed
CCG grammar, we would like to use the corpus-driven ap-
proximation method described in (Krieger 2007) to generate
a context-free approximation of the deep grammar. This ap-
proximation then serves as our language model for the rec-
ognizer. Again, as is the case for PET, software can be
reused here, since the method described in (Krieger 2007)
is implemented for the external chart representation of the
PET system.

Cross-Fertilization. We finally hope that our experiment
provides insights on how to incorporate descriptive means
from CG (e.g., direct slash notation for categories) into the
HPSG framework, even though they are compiled out in the
end. Thus, specification languages for HPSG, such as TDL
(Krieger 1995), might be extended by some kind of macro
formalism, allowing a grammar writer to state such extended
rules. However, we will not speculate on this in the paper.

Categorial Grammar
Categorial grammar started with Bar-Hillel in 1953 who
adapts and extend Ajdukiewicz’s work by adding direction-
ality to what Ajdukiewicz (by referring to Husserl) called
“Bedeutungskategorie”. The grammatical objects in Bar-
Hillel’s system are called categories. The set of complex
categories C can be defined inductively by assuming a set of
atomic categories A (e.g., s or np) and a set of binary func-
tor symbols F2 (usually / and \ for one-dimensional binary
grammar rules):

1. if a ∈ A then a ∈ C

2. if c, c′ ∈ C and f ∈ F2 then cfc′ ∈ C

The system of categories in its simplest form is usually
equipped with two very fundamental binary rules (or better,
rule schemes), viz., forward (>) and backward (<) func-
tional application—this is called the AB calculus (for Aj-
dukiewicz & Bar-Hillel). Here and in the following, we
use the notation from (Baldridge 2002), originating from the
work of Mark Steedman:

(>A) X/Y Y ⇒ X

(<A) Y X\Y ⇒ X
Depending on the kind of slash, complex category sym-

bols in these rules look to the right (forward) or to the left
(backward) in order to derive a simpler category. Such a
framework is in the truest sense lexicalized, since the cate-
gories in these rules are actually category schemes: there is
no category X/Y, only instantiations, such as, for instance,
(s\np)/(s\np) for modal verbs. Furthermore, and very im-
portantly, concrete categories are only specified for lexicon
entries (` maps the word to its category):

defeat ` (s\np)/np
Not only are lexical entries equipped with a category, but

also with a semantics. Since Montague, categorial grammar-
ians have often used the Lambda calculus to make this ex-
plicit. Abstracting away from several important things such
as tense, we can define what is meant by the transitive verb
defeat (: is used to attach the semantic to a lexicon entry):

defeat ` (s\np)/np : λx.λy.defeat(y, x)
The above two rules for functional application in fact in-

dicate how the semantics is supposed to be assembled, viz.,
by functional application:

(>A) X/Y : f Y : a ⇒ X : fa
(<A) Y : a X\Y : f ⇒ X : fa
f in the above two rules actually abbreviates λx.fx, so

that the resulting phrase on the right-hand side is in fact fa
as a result of applying β-reduction to (λx.fx)(a).

Given these rule schemes, we can easily find a derivation
for sentences, such as Brazil defeats Germany:

np:Brazil (s\np)/np:λx.λy.defeat(y, x) np:Germany
np:Brazil s\np:λy.defeat(y,Germany)

s:defeat(Brazil,Germany)

A lot of linguistic phenomena can be perfectly handled by
the two application rules. However, many researchers have
argued that the AB calculus should be extended by rules that
have a greater combinatory potential. CCG, for instance,
employs rules for forward/backward (harmonic & crossed)
composition, substitution, and type raising (we only list the
forward versions):

Harmonic Composition (>B) X/Y Y/Z ⇒ X/Z

Crossed Composition (>B×) X/Y Y\Z ⇒ X\Z
Substitution (>S) (X/Y)/Z Y/Z ⇒ X/Z

Type Raising (>T) X ⇒ Y/(Y\X)

Related to these rules are the three combinators (e.g.,
higher-order functions) for composition B, subsitution S,
and type raising T (see (Steedman 2000)):

• Bfg ≡ λx.f(gx)
• Sfg ≡ λx.fx(gx)
• Tx ≡ λf.fx

In a certain sense, even functional application can be seen
as a combinator, since argument a can be regarded as a
nullary function:

• Afa ≡ λx.fx(a)
The three combinators above indicate how semantics

should be assembled within the categorial rules. Semantics
construction is addressed later when we move to the TFS
representation of the CCG rules.

Idea
The TFS encoding below distinguishes between atomic and
complex categories. Atomic categories such as s do not have
an internal structure. However, atomic categories in CCG
are usually part of a structured inheritance lexicon, quite
similar to HPSG. Atomic categories here do have a flat in-
ternal structure, encoding morpho-syntactical feature-value
combinations. Thus, atomic categories in our transformation
will be realized as typed feature structures to fully exploit
the potential of typed unification.

In contrast, the most general functor category type has
two subtypes / (slash) and \ (backslash) and defines three
appropriate features: 1ST (FIRST), 2ND (SECOND), and
MODE (for modalities, explained later). This encoding is
similar to the CUG encoding in (Karttunen 1986; Uszkor-
eit 1986); however, the DIR (direction) feature is realized
as a type, and the ARG (argument) and VAL (value) features
through features 1ST and 2ND. Our encoding is advanta-
geous in that it (i) makes a complex functor hierarchy possi-
ble, even multi-dimensional functors; (ii) allows for functors
of more than two arguments, thus going beyond the potential
of binary rules; and (iii) need not look at the directionality
of the functor in order to specify the proper values for ARG
and VAL (as is the case in Lambek’s notation).

Underspecified atomic categories in the CCG rules above
are realized through logic variables (coreferences) in the
TFS rules below. Moreover, a distinguished list-valued fea-
ture DTRS (daughters) is employed in the TFS representation
to model the LHS arguments of CCG rules.

Examples
We start with the TFS encoding of a proper noun, a transitive
verb, and a modal verb, followed by the basic representation
of the forward versions of the CCG rules, including a form
of Lambda semantics in order to indicate how the composi-
tional semantic approach of categorial grammars translates
into a TFS grammar.

Lexicon Entries
A proper noun, such as Germany ` np : Germany is
mapped to a flat feature structure with distinguished at-
tributes CAT and SEM:[

germany
CAT np
SEM Germany

]

Actually, Germany is represented as a nullary function
(i.e., a function with zero arguments), but this does not mat-
ter here. The value of SEM is either a function specification
(type f) with NAME and ARGS features, or the representation
of a Lambda term (type λ), encoded through VAR and BODY.
The body of a Lambda term might again be a Lambda term

or a function specification. Functional composition is en-
coded through an embedding of function specifications.

The representation of transitive verbs is a straightforward
translation of the one-dimensional CCG specification defeat
` (s\np)/np : λx.λy.defeat(y, x). Note that the de-curried
representation suggests that β-reduction for x happens be-
fore y. Note further that even though x is bound first, it is
the second argument of defeat.

defeat

CAT

/

1ST

[
\
1ST s
2ND np

]
2ND np

SEM

λ
VAR x

BODY

λ
VAR y

BODY

[
f
NAME defeat
ARGS

〈
y , x

〉
]

The representation of modal verbs is more complicated

because P in the complex Lambda term below is not an ar-
gument like x (or x and y above), but instead a function
that is applied to x—it might even be a Lambda term as
the example Brazil should defeat Germany shows. Here is
the categorial representation, followed by the TFS encoding:
should ` (s\np)/(s\np) : λP.λx.should(Px)

should

CAT

/

1ST

[
\
1ST s
2ND np

]

2ND

[
\
1ST s
2ND np

]

SEM

λ

VAR

[
λ
VAR x
BODY b

]

BODY

λ
VAR x

BODY

[
f
NAME should
ARGS

〈
b]
〉
]

Rules
Next comes the rule for Forward Functional Application:
(>A) X/Y : f Y : a ⇒ X : fa

>A
CAT X
SEM f

DTRS

〈
CAT

[
/
1ST X
2ND Y

]

SEM

[
λ
VAR a
BODY f

]
,
[

CAT Y
SEM a

]〉

Given this rule and the entries for should, defeat, and
Germany, the twofold application of (>A) yields the cor-
rect semantics for the VP should defeat Germany, viz.,
λx.should(defeat(x,Germany)), or as a TFS, constructed
via unification:

λ
VAR x

BODY

f
NAME should

ARGS

〈[
f
NAME defeat
ARGS 〈x , Germany〉

]〉

The TFS representation of the three rules to follow next
are Forward Harmonic Composition, Forward Substitu-
tion, and Forward Type Raising. The motivation for such
kind of rules, can, e.g., be found in (Baldridge 2002).

(>B) X/Y : f Y/Z : g ⇒ X/Z : λx.f(gx)

>B

CAT

[
/
1ST X
2ND Z

]

SEM

[
λ
VAR x
BODY f

[
ARGS|FIRST g

]
]

DTRS

〈 CAT

[
/
1ST X
2ND Y

]
SEM|BODY f

,

CAT

[
/
1ST Y
2ND Z

]
SEM

[
VAR x
BODY g

]

〉

(>S) (X/Y)/Z : f Y/Z : g ⇒ X/Z : λx.fx(gx)

>S

CAT

[
/
1ST X
2ND Z

]

SEM

[
λ
VAR x
BODY f

[
ARGS|REST|FIRST g

]
]

DTRS

〈

CAT

/

1ST

[
/
1ST X
2ND Y

]
2ND Z

SEM

[
λ
VAR x
BODY f

]

,

CAT

[
/
1ST Y
2ND Z

]

SEM

[
λ
VAR x
BODY g

]

〉

(>T) X : x ⇒ Y/(Y\X) : λf.fx

>T

CAT

/
1ST Y

2ND

[\
1ST Y
2ND X

]

SEM

λ
VAR f

BODY

[
f
NAME f
ARGS 〈 x 〉

]

DTRS

〈[
CAT X
SEM x

]〉

Extensions
In this section, we outline several extensions of the basic CG
system and show what their TFSs representation look like.

$-Convention & Generalized Forward Composition
The VP should defeat Germany from the rule section can
not only be analyzed by a twofold application of (>A), but
also by applying (>B) to should and defeat, followed by
(>A). Now, (>B) must be generalized in case we are even
interested in ditransitive verbs, or even VPs with further PP
attachments. Instead of describing every possible alterna-
tive, (Steedman 2000) devised a compact notation using $-
schemes to characterize functions of varying numbers of ar-
guments, or as (Baldridge 2002) puts it: “In essence, the $
acts as a stack of arguments that allows the rule to eat into a
category”. For example, the schema s/$ is a representative
for the infinite set {s, s/np, (s/np)/np, . . .}.

Formally, the expansion of a $-category can be induc-
tively defined as follows. Let C be the set of complex cate-
gories, as defined earlier, F2 the set of binary functor sym-
bols, and let c ∈ C and f ∈ F2. Define Cε := C∪{ε}, cfε :=
c, and cfCε := {cfd | d ∈ Cε}. Then cf$:= (cfCε)fCε.

Let us move on to the rule for generalized forward com-
position (>Bn) which employs $ and its TFS counterpart:
(>Bn) X/Y (Y/Z)/$ ⇒ (X/Z)/$

>Bn>1

CAT

/

1STn−1

[
/
1ST X
2ND Z

]
2ND $

DTRS

〈[
CAT

[
/
1ST X
2ND Y

]]
,

 CAT

/

1STn−1

[
/
1ST Y
2ND Z

]
2ND $

〉

The above TFS uses a “coordinated” path expression

1STn−1 at two places inside the rule structure and is, in a
certain sense, even worse than functional uncertainty (Ka-
plan & Maxwell III 1988), since it involves counting. To the
best of our knowledge, we are not aware of TFS formalisms

which offer such descriptive means. We thus understand the
above structure as a schema that can be compiled into k − 1
different concrete rules for 1 < n ≤ k. Another way to
carry over the meaning would be to add a unary and a binary
helper rule for each $-rule which together simulate the ex-
pansion of a $-category. We have opted for the first solution,
since the latter could blow up the search space of the parser.

We finally note that >B1 is equivalent to the original rule
>B. In case we define 1ST0 := ε and assume that 2ND

.
=

Z ∧ 2ND
.
= $ leads to Z = $ (features are functional

relations!), there is no need to specify >B1 separately.
In principle, other rule schemata might be generalized in

such a way, but at the expense of further uncertainty and
overgeneration during parsing.

Atomic Categories & Morpho-Syntax
As indicated earlier, atomic categories in CCG usually do
have a flat internal structure. For instance, the category si
refers to an inflection phrase (Baldridge 2002). The TFS
representation then uses si as a type, having the following
definition:

IP ≡

si
SPEC boolean
ANT boolean
CASE case
VFORM fin
MARKING unmarked

Words in CCG usually refer to these more specialized cat-

egories; for instance, the ECM verb believe ` (si\np)/sfin.
Given such specific category information, TFS unification
takes care that the additional constraints are “transported”
throughout the derivation tree.

Modes & Modalized CCG
Besides having more control through specialized atomic
categories as shown above, multi-modal CCG incorporates
means from Categorial Type Logic to provide a further fine-
grained lexical control through so-called modalities; see
(Baldridge & Kruijff 2003) for a detailed description. For
example, the complex category of the coordination particle
and ` (si\si)/si which can lead to unwanted analyses is
replaced by the modalized category (si\?si)/?si.

In principle, modes can be “folded” into subtypes of the
very general complex category types / and \. We have, how-
ever, opted for an additional feature MODE which takes val-
ues from the following atomic mode type hierarchy:

·
/ | \
? � ×

There are further modalities which are not of interest to us
here. Let us finally present the TFSs for and and the multi-
modal CCG forward type raising rule rule (>T) which even
enforces modes to be identical between the embedded and
the outer slash.

and

CAT

/

1ST

 \1ST si
2ND si
MODE ?

2ND si
MODE ?

>T

CAT

/
MODE M
1ST Y

2ND

 \MODE M
1ST Y
2ND X

DTRS 〈 [CAT X] 〉

First Measurements
We have compared the performance of the CCG parser and
the PET system on a MacBook Pro (2GHz Core Duo, 32 bit
architecture). The measurements were carried out against
a hand-crafted artificial test corpus of 5,000 sentences with
an average length of 7 and a maximal length of 12 words,
including sentences with heavy use of different kinds of co-
ordination, such as Brazil will meet and defeat Germany or
Brazil should defeat Germany and Italy and England.

We have switched off the semantics and have only com-
pared the syntactic coverage, using categorial information,
including modes. We have also switched off the type rais-
ing rules in both parsers, since the OpenCCG parser seems
to ignore them in analyses licensed by the grammar theory.
Packing in both parsers has been switched on, supertagging
switched off (in fact, PET does not provide a supertagging
stage).

We further note that we have obtained about twice as
much analyses for PET (approximately 15,000 analyses) as
the OpenCCG system, the reason for this currently unclear.
For instance, the CCG parser produces only one analysis for
the sentence Brazil should defeat Germany, even though a
careful inspection of the rules shows that two analyses are
possible (as is the case for PET), viz.,

[(<A)Brazil [(>A) should [(>A) defeat Germany]]]

[(<A)Brazil [(>A) [(>B) should defeat]Germany]]

Even though we double the number of analyses, PET is
about one magnitude faster (overall 2.67 vs. 28.9 seconds
for the full set of 5,000 sentences).

Both PET and the OpenCCG system have implemented
standard CYK parsers. We believe that the difference in the
running time is related to the choice of the programming
language (C++ vs. Java), but also to maintenance effort and
the still ongoing development of the PET system by an ac-
tive community, whereas the evolution of the core parsing
engine in the OpenCCG library seems to have ended several
years ago.

To some extend, the above mismatch is related to the fact
that certain “settings” in the CCG are realized through pro-
gram code, but not declaratively stated in the lingware. For
instance, the type raising rules can in principle be applied to
arbitrary categories, but, by default, the OpenCCG code lim-
its them to NPs only. Given our treatment, such a restriction
can be easily stated in the TFSs for the type raising rules,
and we think that this is the right place to do so:

>T

CAT

/
1ST Y

2ND

[
\
1ST Y
2ND X

]

DTRS 〈 [CAT X np] 〉

Other “adjusting screws” in OpenCCG, e.g., the specifi-

cation of the atomic mode hierarchy (see last subsection)
are also “casted” in program code (deeply nested if-then-
else statements), whereas our treatment uses a type hierar-
chy, helping to better understand and manipulate the parser’s
output. Given these remarks, explaining missing analyses in
OpenCCG has required a deep inspection of the program
code. Besides the MODE dimension, we found a further or-
thogonal binary ABILITY dimension with values inert and
active that was hidden in the program code (Java classes) for
each categorial rule. The PET version of CCG still overgen-
erates (to a lesser extent) and we hope to unveil the secrets
at the conference.

Moving Further
The transformation schema described in this paper has been
manually constructed for the rules, the lexical types, and a
small set of lexicon entires. In order to automatically trans-
form the OpenCCG grammars from our Lab for English and
Italian, we have implemented code that operates on the XML
output of the ccg2xml converter for CCG’s WebCCG in-
put format. This includes files for rules, general types, and
so-called families which are collections of lexical types and
corresponding lexical entries.

Contrary to traditional CG and CCG, OpenCCG does not
use Lambda semantics, but instead comes with a kind of
Davidsonean event semantics, comparable to MRS, build-
ing on Blackburn’s hybrid modal logic: Hybrid Logic De-
pendency Semantics (HLDS) (Baldridge & Kruijff 2002).
Looking more closely on the seemingly different notation,
it becomes quite clear that HLDS formulae can be straight-
forwardly translated into a TFS representation. We can only
throw a glance on a small example at the end of this paper.

Originally, the HLDS representations were built up in
tandem with the construction of the categorial backbone
(Baldridge & Kruijff 2002), comparable to the construc-
tion of Lambda semantics in our rules before. (White
& Baldridge 2003) has improved on this construction by
attaching the semantics, i.e., the elementary predications
(EPs), directly to the atomic categories from which a com-
plex category is built up (see (Zeevat 1988) for a similar
treatment in UCG).

Consider the sentence Marcel proved completeness (Krui-
jff & Baldridge 2004). Subscripts attached to atomic cate-
gories (the nominals) can be used to access them. The satis-
faction operator @ that is equipped with a subscript e indi-
cates that the formulae to follow hold at a state named e:

proved ` (se\npx)/npy :
@eprove ∧@e〈TENSE〉past ∧@e〈ACT〉x ∧@e〈PAT〉y

Marcel ` npm : @mMarcel
completeness ` npc : @ccompleteness

By conjoining the EPs during the application of (>A) and
(<A), we immediately obtain

Marcel proved completeness ` se :
@eprove ∧@e〈TENSE〉past ∧@e〈ACT〉m ∧
@e〈PAT〉c ∧@mMarcel ∧@ccompleteness

Exactly these effects can be achieved through unification
in our framework. The CCG nominals are realized through
logic variables (coreference tags), atomic categories, such
as s or np are assigned a further feature INDEX, cospecified
with the semantics, and the nominals are realized through or-
dinary features. In theory, SEM is a set-valued feature whose
elements are combined conjunctively (as in HLDS or MRS).
Since TDL (and PET) does not provide sets, the usual list
implementation is used. This gives us the following TFSs
(we have omitted the explicit representation of the name of
the event variables e, m, and c in the individual EPs below):

proved

CAT

/

1ST

\

1ST

[
s
INDEX e

]
2ND

[
np
INDEX x

]

2ND

[
np
INDEX y

]

SEM e 〈 prove, [TENSE past], [ACT x], [PAT y] 〉

 marcel

CAT

[
np
INDEX m

]
SEM m 〈Marcel 〉

 completeness

CAT

[
np
INDEX c

]
SEM c 〈 completeness 〉

Alternatively, the list representation of EPs might be re-

placed by a single complex feature structure. However,
the list implementation makes it easy to implement rela-
tional information, e.g., the representation of several modi-
fiers. Given the above encoding, there is no longer a need to
specify semantics construction in each of the categorial rule
schemata: semantics construction simply “happens” here
when categorial information is unified. In a certain sense,
this is easier and more elegant than representing the effects
of the different combinators A, B, S, T in the different kinds
of rule schemata, as we have described in the beginning of
this paper. More complex constructions involving, e.g., co-
ordination particles, stipulate that the list under SEM is in
fact a difference list in order to ease the implementation of a
list append that is not required in the example above.

References
Baldridge, J., and Kruijff, G.-J. M. 2002. Coupling CCG and
hybrid logic dependency semantics. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics,
319–326.
Baldridge, J., and Kruijff, G.-J. M. 2003. Multi-modal combina-
tory categorial grammar. In Proceedings of the 10th Conference
of the European Chapter of the Association for Computational
Linguistics, 211–218.
Baldridge, J. 2002. Lexically Specified Derivational Control in
Combinatory Categorial Grammar. Ph.D. Dissertation, Univer-
sity of Edinburgh, Division of Informatics, Institute for Commu-
nicating and Collaborative Systems.
Barendregt, H. 1984. The Lambda Calculus, its Syntax and Se-
mantics. Amsterdam: North-Holland.
Bouma, G. 1988. Modifiers and specifiers in categorial unifica-
tion grammar. Linguistics 26:21–46.
Calder, J.; Klein, E.; and Zeevat, H. 1988. Unification categorial
grammar: A concise, extendable grammar for natural language
processing. In Proceedings of the 12th International Conference
on Computational Linguistics, 83–86.
Callmeier, U. 2000. PET—A Platform for Experimentation
with Efficient HPSG Processing. Natural Language Engineering
6(1):99–107.
Kaplan, R. M., and Maxwell III, J. T. 1988. An algorithm for
functional uncertainty. In Proceedings of the 12th International
Conference on Computational Linguistics, 297–302.
Karttunen, L. 1986. Radical lexicalism. Technical Report CSLI-
86-68, Center for the Study of Language and Information, Stan-
ford University.
Krieger, H.-U. 1995. TDL—A Type Description Language for
Constraint-Based Grammars. Foundations, Implementation, and
Applications. Ph.D. Dissertation, Universität des Saarlandes, De-
partment of Computer Science.
Krieger, H.-U. 2007. From UBGs to CFGs—a practical corpus-
driven approach. Natural Language Engineering 13(4):317–351.
Published online in April 2006.
Kruijff, G.-J. M., and Baldridge, J. 2004. Generalizing dimen-
sionality in combinatory categorial crammar. In Proceedings of
the 20th International Conference on Computational Linguistics.
Steedman, M. 2000. The Syntactic Process. Cambridge, MA:
MIT Press.
Uszkoreit, H. 1986. Categorial unification grammars. In Pro-
ceedings of the 11th International Conference on Computational
Linguistics, 187–194.
White, M., and Baldridge, J. 2003. Adapting chart realization to
CCG. In Proceedings of the 9th European Workshop on Natural
Language Generation.
Zeevat, H. 1988. Combining categorial grammar and unification.
In Reyle, U., and Rohrer, C., eds., Natural Language Parsing and
Linguistic Theories. Reidel, Dordrecht. 202–229.

