PMENOTVENK
 WORD ORDER KND NEGKTION IN BASOUE

J Crowgey and Emily M. Bender

University of Washington
25 August 2011

18th International Conference on HPSG

TKBLE OF CONTENTS

introduction
overview

Basque [eus]
who,what,where
syntax
word order
overview
aux-first types
verb-first types
negation
conclusions and outlook

NEGATION, BRSQUE AND GRAMMMAR ENGINEERING

OVERVIEW

- negation in Basque:
- ordering of major constituents is quite free
- but negation constrains possible word orders
- we have negation:
- Kim (2000) examines negation lit, proposes types for HPSG
- morphological marking
- syntactic marking
- we have free word order:
- Fokkens (2010)

ENGENEERENG

OVERVEEV

- will existing analyses of negation and free word order interact correctly to capture the natural language patterns of Basque?
- the methodology:
- grammar engineering: implement your analysis, test it
- open source tools:
- LKB (Copestake 2002)
- [incr tsdb()] (Oepen \& Flickenger 1998) grammar development platform
- Grammar Matrix customization system (Bender et al. 2002; 2010)
- we find: construction types motivated to account for word order in Basque provide the proper analytical division to account for word order under negation patterns

BASQUE PEOPLE, LKNGUKGE, PL広CE

- language isolate spoken across the Western Pyrenees in
Northern Spain and Southern France
- endonyms
- lang: Euskara [euskara]
- ppl: euskaldunak [euskaldunak]
- place: Euskadi [euskadi], Euskal Herria [euskal xeria]

SYNTMCTIC FMCTS OF BKSQUE

- ergative-absolutive $(\mathrm{S}=\mathrm{O})$
- rich system of agreement markers expressed on the finite element of the clause
- most lexical verbs in Basque cannot be finite
- typical (minimal) clause has as least three elements: subject, lexical verb (LV), auxiliary verb (Aux)

Miren	ibilli	da
Mary.ABS	walk.PERF	3.SG.S.PRES ${ }^{1}$
Mary has walked. [eus]		

${ }^{1}$ data here and below adapted from (Manandise 1988)

WORD ORDER

- major constituent order is nearly free
- a pragmatic constraint:
- element in preverbal (LV) position is in focus
- focused element traditionally termed galdegaia "object of inquiry"
a. Liburu bat nork irakurri du?
book one.ABS.SG who.ERG.SG.FOC read.PERF 3.SG.O.PRES.3.SG.A Who has read one book? [eus]
b. Liburu bat Mirenek irakurri du. book one.ABS.SG Mary.ERG.SG.FOC read.PERF 3.SG.O.PRES.3.SG.A Mary has read one book. [eus]
c. Mirenek liburu bat irakurri du. Mary.ERG.SG book one.ABS.SG.FOC read.PERF 3.SG.O.PRES.3.SG.A Mary has read one book. [eus]

WORD ORDER

- major constituent order is nearly free
- a pragmatic constraint:
- element in preverbal (LV) position is in focus
- focused element traditionally termed galdegaia "object of inquiry"
- only (b) is an acceptable answer to (a)
a. Liburu bat nork irakurri du?
book one.ABS.SG who.ERG.SG.FOC read.PERF 3.SG.O.PRES.3.SG.A Who has read one book? [eus]
b. Liburu bat Mirenek irakurri du. book one.ABS.SG Mary.erg.sg.foc read.PERF 3.SG.O.PRES.3.SG.A Mary has read one book. [eus]
c. Mirenek liburu bat irakurri du.

Mary.ERG.SG book one.abs.sg.foc read.PERF 3.SG.O.PRES.3.SG.A Mary has read one book. [eus]

MLANANDESE'S FILTER

a syntactic constraint on word order
If the lexical verb is to the left of the auxiliary, then the lexical verb must be left-adjacent to the auxiliary. (Manandise 1988, 15)

*Liburu	irakurri	Mirenek	du.
book.ABS.SG	read.PERF	Mary.ERG.SG	AUX

Mary has read a book. [eus]

NP	NP	V	Aux	NP	NP	Aux	V
${ }^{*} N P$	V	NP	Aux	NP	V	Aux	NP
${ }^{*} V$	NP	NP	Aux	$V V$	NP	Aux	NP
NP	Aux	NP	V	Aux	NP	NP	V
NP	Aux	V	NP	Aux	NP	V	NP
V	Aux	NP	NP	Aux	V	NP	NP

TVNO CLIASSES OF POSSEBLE SENTENCES

- Manandise's filter suggests a bifurcation of a priori sentence types
- aux-first types
- free word order
- verb-first types
- no interveners

NP	NP	V	Aux	NP	NP	Aux	V
*NP	V	NP	Aux	NP	V	Aux	NP
*V	NP	NP	Aux	*V	NP	Aux	NP
NP	Aux	NP	V	Aux	NP	NP	V
NP	Aux	V	NP	Aux	NP	V	NP
V	Aux	NP	NP	Aux	V	NP	NP

TVNO CLISSEES OF POSSEBTE SENTENCES

- Manandise's filter suggests a bifurcation of a priori sentence types
- aux-first types
- free word order
- verb-first types
- no interveners

NP	NP	V	Aux	NP	NP	Aux	V
*NP	V	NP	Aux	NP	V	Aux	NP
*V	NP	NP	Aux	*V	NP	Aux	NP
NP	Aux	NP	V	Aux	NP	NP	V
NP	Aux	V	NP	Aux	NP	V	NP
V	Aux	NP	NP	Aux	V	NP	NP

TVVO CLASSES OF POSSIBLE SENTENCES

- Manandise's filter suggests a bifurcation of a priori sentence types
- aux-first types
- free word order
- verb-first types
- no interveners

NP	NP	V	Aux	NP	NP	Aux	V
NP	V	Aux	NP	NP	Aux	NP	V
V	Aux	NP	NP	NP	Aux	V	NP
*NP	V	NP	Aux	Aux	NP	NP	V
*V	NP	Aux	NP	Aux	NP	V	NP
*V	NP	NP	Aux	Aux	V	NP	NP

KUX-F IRST TYPES

OVERVIEW

free word order

- allow free word order without creating spurious ambiguity
- no ID-LP split
- our approach starts with Fokkens (2010):
- head-final and head-initial versions of head-nexus rules
- apply any head-initial rules before ("lower") than any head-final rules
- additional measures:
- agreement and the checking off of valence lists (Aux, Verb, NP)

- rules must be specified for arity and order of daughters
- capturing all permutations of $\left\{\mathrm{NP}_{1}, \mathrm{NP}_{2}, \mathrm{~V}\right\}$ requires 6 rules; more generally, permutations of n elements will require at least n ! rules
- a binary branching analysis with a projecting headpath captures all permutations of $\left\{\mathrm{NP}_{1}, N P_{2}, \mathrm{~V}\right\}$, with only 4 rules
- subj-head
- head-subj
- comp-head
- head-comp
- optimizing on the size of the grammar - this grammar is maintained by hand

FREE WORD ORDER

- simply providing head-init and head-final versions of combinatory rules leads to massive spurious ambiguity
- both these parses yield identical MRS structures:

xmod hierarchy

- phrasal rules annotated to pass [ATTACH xmod]

FIREE NOOTRD ORDETR

- potential for spurious ambiguity on form-types like: Aux, V, NP
- using only head-initial types, there is a potential for two derivation trees with equivalent semantic representations
- our approach:
- Aux must know about the case and PNG information of argument NPs
- argument composition Auxes ${ }^{2}$ and valence list cancellation is in effect
- but Aux requires its verbal complement to store case information in this position
$\left[\begin{array}{l}\text { transitive-abssg-aux-lex } \\ \text { sUBJ }\left\langle\left[\begin{array}{l}\text { CASE erg }]\rangle\end{array}\right.\right. \\ \operatorname{COMPS}\left\langle\left[\begin{array}{l}\text { FORM nonfinite } \\ \operatorname{COMPS}\langle[\text { CASE abs }]\rangle\end{array}\right]\right\rangle\end{array}\right]$

[^0]
* (保 U (V NP))

VERBME IRST TYPES

verbal complex analysis

- no interverners
- verbal complex rule added (Fokkens 2010):

$$
\left[\begin{array}{l}
\text { comp-aux-phrase } \\
\text { SYNSEM|LOCAL|CAT|HEAD }\left[\begin{array}{ll}
\text { verb } \\
\text { AUX } & +
\end{array}\right] \\
\text { NON-HEAD-DTR|SYNSEM|LOCAL|CAT|HEAD [verb] }] \\
\text { HEAD-DTR|SYNSEM|LIGHT }+
\end{array}\right]
$$

- inherits from head-final, so it's only potentially available to verb-first data
- non-head daughter is a verb
- confront spurious ambiguity on sequences like: (V, Aux, NP) using LIGHT
- lex-synsems [LIGHT +], phr-synsem are [LIGHT -] (matrix.tdl)

VERBME IRST TYPES

the feature [VC /uk]

- defined on both phrasal and lexical synsems (and lexical rules annotated to pass its value up)
- lexical verb types stipulated [VC +], auxiliaries [VC -]
- head-complement rules redefined to take their [VC] value from the non-head daughter
- value of VC on a phrase indicates whether the lexical verb is present in that phrase
- specify that in comp-head and subj-head rules, the head daughter must be [VC +]

VERBETERST TYPES

Example

*(V, NP, Aux)

- if ((V, NP) vp Aux): case information unaccessible on daughter of VP, unification fails
- if (V (NP, Aux)): head daughter of potential comp(/subj)-head rule is [VC -], unification fails

WORD ORDER SUTMIMEREY

- a priori possible data divided into two classes (by the condition of Manandise's Filter)
- aux-first
- verb-first
- head-nexus rules and valence list cancellation capture free word order in the aux-first data
- a verbal complex rule and LIGHT ensure no interveners on the verb-first data

NEGATION

morphological negation

- shape of negative morpheme: ez-
- bound:
- nearly free permutation of syntactic elements, but ez is fixed to the aux
- no intervention of adverbials, generally (some particular grammatical particles are possible between ez and aux, but these seem bound too)
- by treating ez as bound, these facts follow from lexical integrity (and therefore don't need to be treated in the syntax)

NEGKTION KND VVORD ORDER

major constituent order interacts with negation

- generally, auxes can appear on either side of the lexical verb
- negated auxes can only appear on the left of the lexical verb
- under negation we have a narrowing of possible word orders

Miren	ez-da	ibilli	*Miren	ibilli	ez-da
Mary.abs	NEG-AUX	walk.PERF	Mary.abs	walk.PERF	NEG-AUX
Mary has not walked.	[eus]	Mary has	not walked.	[eus]	

NEGKTION KND WVORD ORDER

analysis

- recall that our word order analysis treated the data as belonging to two paradigms, with a construction specific rule that only (and always appears in one of the paradigms)
- we define the feature [NEGATED luk], and modify the lexical rule that carries out negation such that its result is [NEGATED +]
- add [NEGATED -] to the verbal cluster rule (comp-aux-phrase)
- the interaction of these components conspires to rule out any examples in which the lexical verb appears to the left of a negated auxiliary

CONCL USIONS

existing (independently motivated) analyses working together

- constructional approach created a specific rule associated with a class of sentences
- the rule forms the locus upon which constraints about negation were placed

OUTLOOK

next steps: word order \times focus \times negation

- focus is configurationally marked
- when the negated auxiliary is in the focus position, Manandise treats this as sentential negation
- when an NP appears as galdegaia in a negated clause, constituent negation results
- issues which concern the interface between syntax, semantics and information structure
- extend the grammar presented here to cover interactions with focus

[^0]: ${ }^{2}$ (Hinrichs \& Nazagawa 1990)

