Converting CCGs into TFS Grammars
Hans-Ulrich Krieger and Bernd Kiefer
{krieger,kiefer}@dfki.de
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
- b
2

18th Conference on Head-Driven Phrase Structure Grammar
August 25, 2011

H.U. Krieger & B. Kiefer) -':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011

1/20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

H.U. Krieger & B. Kiefer) :':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 /20

Goal & Motivation

Goal:
Generate a TFS grammar that is equivalent to a given hand-written CCG
Motivation:

» Understand the relation between CCG and Constraint-Based
formalisms

» Could CCG-like syntax embedded into TFS formalisms be helpful?
» Compactness of formulation vs. flexibility

H.U. Krieger & B. Kiefer)= I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 /20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

» Understand the relation between CCG and Constraint-Based
formalisms

» Could CCG-like syntax embedded into TFS formalisms be helpful?
» Compactness of formulation vs. flexibility

» Compare performance of processing systems

H.U. Krieger & B. Kiefer)= I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 /20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

» Understand the relation between CCG and Constraint-Based
formalisms

» Could CCG-like syntax embedded into TFS formalisms be helpful?
» Compactness of formulation vs. flexibility

» Compare performance of processing systems

» Uncover implicit constraints in the OpenCCG system (constraints that
are visible only in the program code)

H.U. Krieger & B. Kiefer)= I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 /20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

» Understand the relation between CCG and Constraint-Based
formalisms

» Could CCG-like syntax embedded into TFS formalisms be helpful?
» Compactness of formulation vs. flexibility

» Compare performance of processing systems

» Uncover implicit constraints in the OpenCCG system (constraints that
are visible only in the program code)
» Re-use existing work and implementation for grammar approximation

» Even better performance?
» Generate language models restricted to sublanguages

H.U. Krieger & B. Kiefer)= I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 /20

Combinatory Categorial Grammar

» Fully lexicalized

» Very limited set of rule schemata
Most basic: forward and backward application:
(>A) X/Y Y = X
(<A) Y X\Y = X

» Semantics in the basic version defined straightforward by functional
application
(>A) X/)Y:f Y:a = X:f(a)
(<A) Y:a X\Y:f = X:f(a)

» Dialect used in the implementation stems from OpenCCG
(Baldridge/Kruijff), greater formal power and different construction
of semantics

H.U. Krieger & B. Kiefer) :':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 3 /20

Additional CCG Rule Schemata

v

Harmonic Composition (>B) X/Y Y/Z = X/Z

Crossed Composition (>B,) X/Y Y\Z = X\Z

Substitution (>S) (X/Y)/Z Y/Z = X/Z

Type Raising (>T) X = Y/(Y\X)

Functional semantics for these schemata (cf. Steedman)
» Bfg = Ax.f(gx)

» Sfg = Ax.fx(gx)
» Tx = M.fx

\4

v

v

v

H.U. Krieger & B. Kiefer) ':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011

4 /20

CCG Examples

Lexicon entries

Transitive verb: defeat - (s\np)/np : Ax.\y.defeat(y, x)
Modal verb: should & (s\np)/(s\np) : AP.\y.should(Px)

Derivation
Brazil defeats Germany
np : Brazil (s\np)/np: Ax.)\y.defeat(y,x) np: Germany
>
s\np : Ax.defeat(y, Germany)
s : defeat(Brazil, Germany)
H.U. Krieger & B. Kiefer)= I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011

5 /20

CCG Examples

Derivation with type raising and backward substitution

ball that Bill lost

np : ball (n\n)/(s/np): that np:Bill (s\np)/np: lost

>T

s/(s\np)
>B

s/np
n\n
n
H.U. Krieger & B. Kiefer)= I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011

6/ 20

TFS Translation: Lexicon Entry defeat

defeat = (s\np)/np : Ax.\y.defeat(y, x)

H.U. Krieger & B. Kiefer

[defeat

cat

sem

)=

/
\
Ist | Ist s

2nd np
2nd np
B

var
A

var
body

body {

f'
name defeat

args ([y],®)

Converting CCGs into TFS Grammars

18th Conf. on HPSG, 2011

7/ 20

TFS Translation: Lexicon Entry should

should - (s\np)/(s\np) : AP.Ax.should(Px)

H.U. Krieger & B. Kiefer

)=

r should

\

Ist | Ist's
cat 2nd np

\

2nd | Ist s
2nd np

A
var |:var
body [bl

A

var

sem

body f
body | name should

args ()

I Converting CCGs into TFS Grammars

18th Conf. on HPSG, 2011

8 /20

TFS Translation: Forward Application

(>A) X)Y:f Y:a = X:fa

>A
cat
sem
/
cat | Ist
2nd [cat } >
dtrs ,
A sem
sem | var @
i body]

H.U. Krieger & B. Kiefer)= | Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 9 /20

TFS Translation: Forward Crossed Composition

(>Byx) X/)Y:f Y\Z:g = X\Z:x.f(gx)

[>B
\

cat | Ist
2nd
A

sem | var

body [f] [args|first [g] |
/ \
dtrs e | Jis ot éfvtd
e ’ var
sem|body sem }
i body

H.U. Krieger & B. Kiefer)= I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 10 / 20

Dollar Convention

» Purpose: Create a rule that transfers an arbitrary number of
arguments from a daughter into the mother

» s/$ represents: {s,s/X, (s/X)/Y,...}

» Generalized Forward Composition:
(>B*) X/)Y (Y/Z)$ = (X/Z)}$

» More than one dollar possible: dollar variables:
) X)Y (Y$1/Z)% = (X$1/2)%

» Often used in type changing (lexical) unary rules

» A dollar specification may include the slash
— SLASH feature needed to be able to coindex slash

» Example from CCG for English: pp$; = s$;\s

H.U. Krieger & B. Kiefer) -':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 11 /20

Dollar Convention: Translation

Since these rules dig into the argument stack, there is no simple
translation as for the other schemata

Implementation alternatives:

» Code in the processing system that matches the (buried) top
elements: that's what we want to get rid of

H.U. Krieger & B. Kiefer) -':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 12 /20

Dollar Convention: Translation

Since these rules dig into the argument stack, there is no simple
translation as for the other schemata
Implementation alternatives:

» Code in the processing system that matches the (buried) top
elements: that's what we want to get rid of
» Use helper rules
» Removal rule puts argument from the stack into a scratch stack
» Finishing rule matches the “real” arguments and restores the stack
» Ordinary rules are blocked on intermediate results of the removal rule
» Efficiency questionable: generates a lot of intermediate edges

H.U. Krieger & B. Kiefer) -':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 12 /20

Dollar Convention: Translation

Since these rules dig into the argument stack, there is no simple
translation as for the other schemata
Implementation alternatives:

» Code in the processing system that matches the (buried) top
elements: that's what we want to get rid of
» Use helper rules
» Removal rule puts argument from the stack into a scratch stack
» Finishing rule matches the “real” arguments and restores the stack
» Ordinary rules are blocked on intermediate results of the removal rule
» Efficiency questionable: generates a lot of intermediate edges
» Expand inductively into a set of rules,
Each rule transfers a fixed number of arguments
Not exact, since expansion can not be infinite
In reality, the number of transferred arguments will be finite and small
Presumably more efficient, since there are no intermediate results

v

vvVvYy

H.U. Krieger & B. Kiefer) -':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 12 /20

Dollar Convention: Translation Example

(>B*) X)Y (Y/2)$ = (X/Z)$
r >B»>
slash
[>B:] slash
slash Ist
e lst{lst } cat | Ist lst{znd }
2nd 2nd
2nd 2nd
slash / slash /
|: cat lst s [cat | Ist 8
2ndlY] 2nd
dirs slash slash
slash / ditrs slash
cat | Ist| Ist slash /
2nd cat | Ist| 1st [Ist }
I 2nd 2nd
2nd
L 2nd

H.U. Krieger & B. Kiefer)=

Converting CCGs into TFS Grammars

18th Conf. on HPSG, 2011

13 /20

Categorical Information and Modes

» Inclusion of more general schemata may lead to spurious ambiguities
» Additional information provided to restrict applicability

» Categorical information as feature-value pairs (e.g., morphology)
» binary feature on slashes: active or inert

» Hierarchy of slash modes, that control the applicability of rule
schemata:

/ . >< application and crossed composition
X o
AN — . -
gx x> <« > application and harmonic composition

only application

*

H.U. Krieger & B. Kiefer) -':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 14 /20

Transformation Process

» Straightforward transformation of type hierarchy, some basic types
defined by hand
» Lexicon entries and unary rules:

» Initial plan: read XML definitions directly
» But: Some only poorly understood feature inheritance mechanisms
found in the code

» Now: data structures generated by OpenCCG and transformed into
TFS

» Binary rule schemata created by hand:
OpenCCG implements them with Java classes for every schema type

H.U. Krieger & B. Kiefer) :':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 15 / 20

Transformation Process: Problems

» Slash mode type hierarchy and activity derived from code, different
from definition in papers
» Lots of hard-coded default restrictions found
» default type raising rules only applicable to NP's
» slashes in rule schemata are modalized in the constructor depending on
type
» activity changes of argument slashes during unification under special
conditions
» etc., etc.
» Correct transformation took quite some time due to all this hidden
constraints and functionality
» It's very likely that we still overlooked some of the traps

H.U. Krieger & B. Kiefer) :':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 16 / 20

Transformation Process: Semantics

v

OpenCCG uses hybrid logic dependency semantics (HLDS)
‘vou should have the ball’
Q,scription-e1 (have A(MoOD)ind A (TENSE)pres A (MODIFIER) m1
A(ACT)t0 A (PAT)t1 A (SUBJ)t0)
/\@,,erso,,;to(you A <NUM>Sg) A Opodar:m1Should
AGshing:¢1(ball A (NUM)sg A (DELIM)unique A (QUANT)specific)

Similar in many respects to MRS

v

v

Allows (almost) direct realization as feature structure

» (MODIFIER) relations may occur multiple times in one structure
» cyclic structures possible

v

Problematic cases avoided by slightly modifying the input grammar

v

Different translation (flat list) considered to obtain equivalence

H.U. Krieger & B. Kiefer) :':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 17 /20

Measurements

» Medium-size hand-written English grammar for interaction with
robots

» Small test corpus of 246 sentences coming with the grammar

» Vanilla OpenCCG parsing compared to pet using translated grammar
» Both parsers did not use supertagging (no models available)

» Both parsers used packing

» pet used the standard filter and optimization techniques

» Same number of passive edges — translation seems to be correct
» Platform: MacBook Pro 1,1, Ubuntu 10.10, startup times taken out

» pet: 9.49 CPUsec, 170MB max
» OpenCCG: 75.56 CPUsec, 780MB max

H.U. Krieger & B. Kiefer) :':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 18 / 20

Outlook

v

Modify original semantics to simplify transformation:

» Modifier lists
» remove cyclic formulations

v

Restore the families of lexicon entries to get more compact
representations

v

Application of approximation methods

v

Use of approximated grammars to ease learning of language models
Add additional descriptional apparatus to TDL?

» more compact representation
» automatic expansion

v

H.U. Krieger & B. Kiefer) :':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 19 /20

Thank you for listening!

H.U. Krieger & B. Kiefer) ':I Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 20 / 20

