
Converting CCGs into TFS Grammars

Hans-Ulrich Krieger and Bernd Kiefer
{krieger,kiefer}@dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz

18th Conference on Head-Driven Phrase Structure Grammar
August 25, 2011

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 1 / 20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

I Understand the relation between CCG and Constraint-Based
formalisms

I Could CCG-like syntax embedded into TFS formalisms be helpful?
I Compactness of formulation vs. flexibility

I Compare performance of processing systems

I Uncover implicit constraints in the OpenCCG system (constraints that
are visible only in the program code)

I Re-use existing work and implementation for grammar approximation
I Even better performance?
I Generate language models restricted to sublanguages

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 / 20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

I Understand the relation between CCG and Constraint-Based
formalisms

I Could CCG-like syntax embedded into TFS formalisms be helpful?
I Compactness of formulation vs. flexibility

I Compare performance of processing systems

I Uncover implicit constraints in the OpenCCG system (constraints that
are visible only in the program code)

I Re-use existing work and implementation for grammar approximation
I Even better performance?
I Generate language models restricted to sublanguages

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 / 20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

I Understand the relation between CCG and Constraint-Based
formalisms

I Could CCG-like syntax embedded into TFS formalisms be helpful?
I Compactness of formulation vs. flexibility

I Compare performance of processing systems

I Uncover implicit constraints in the OpenCCG system (constraints that
are visible only in the program code)

I Re-use existing work and implementation for grammar approximation
I Even better performance?
I Generate language models restricted to sublanguages

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 / 20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

I Understand the relation between CCG and Constraint-Based
formalisms

I Could CCG-like syntax embedded into TFS formalisms be helpful?
I Compactness of formulation vs. flexibility

I Compare performance of processing systems

I Uncover implicit constraints in the OpenCCG system (constraints that
are visible only in the program code)

I Re-use existing work and implementation for grammar approximation
I Even better performance?
I Generate language models restricted to sublanguages

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 / 20

Goal & Motivation

Goal:

Generate a TFS grammar that is equivalent to a given hand-written CCG

Motivation:

I Understand the relation between CCG and Constraint-Based
formalisms

I Could CCG-like syntax embedded into TFS formalisms be helpful?
I Compactness of formulation vs. flexibility

I Compare performance of processing systems

I Uncover implicit constraints in the OpenCCG system (constraints that
are visible only in the program code)

I Re-use existing work and implementation for grammar approximation
I Even better performance?
I Generate language models restricted to sublanguages

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 2 / 20

Combinatory Categorial Grammar

I Fully lexicalized

I Very limited set of rule schemata
Most basic: forward and backward application:
(>A) X/Y Y ⇒ X
(<A) Y X\Y ⇒ X

I Semantics in the basic version defined straightforward by functional
application
(>A) X/Y : f Y : a ⇒ X : f (a)
(<A) Y : a X\Y : f ⇒ X : f (a)

I Dialect used in the implementation stems from OpenCCG
(Baldridge/Kruijff), greater formal power and different construction
of semantics

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 3 / 20

Additional CCG Rule Schemata

I Harmonic Composition (>B) X/Y Y/Z ⇒ X/Z

I Crossed Composition (>B×) X/Y Y\Z ⇒ X\Z
I Substitution (>S) (X/Y)/Z Y/Z ⇒ X/Z

I Type Raising (>T) X ⇒ Y/(Y\X)

I Functional semantics for these schemata (cf. Steedman)
I Bfg ≡ λx .f (gx)
I Sfg ≡ λx .fx(gx)
I Tx ≡ λf .fx

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 4 / 20

CCG Examples

Lexicon entries

Transitive verb: defeat ` (s\np)/np : λx .λy .defeat(y , x)

Modal verb: should ` (s\np)/(s\np) : λP.λy .should(Px)

Derivation

Brazil defeats Germany

np : Brazil (s\np)/np : λx .λy .defeat(y , x) np : Germany
>

s\np : λx .defeat(y ,Germany)
<

s : defeat(Brazil,Germany)

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 5 / 20

CCG Examples

Derivation with type raising and backward substitution

ball that Bill lost

np : ball (n\n)/(s/np) : that np : Bill (s\np)/np : lost
>T

s/(s\np)
>B

s/np
<

n\n
<n

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 6 / 20

TFS Translation: Lexicon Entry defeat

defeat ` (s\np)/np : λx .λy .defeat(y , x)



defeat

cat


/

1st

 \1st s
2nd np


2nd np



sem



λ
var x

body


λ
var y

body

 f
name defeat
args 〈 y , x 〉








H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 7 / 20

TFS Translation: Lexicon Entry should

should ` (s\np)/(s\np) : λP .λx .should(Px)


should

cat



/

1st

 \1st s
2nd np


2nd

 \1st s
2nd np





sem



λ

var

 λvar x
body b



body


λ
var x

body

 f
name should

args
〈
b
〉







H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 8 / 20

TFS Translation: Forward Application

(>A) X/Y : f Y : a ⇒ X : fa



>A
cat X

sem f

dtrs

〈


cat

 /1st X

2nd Y


sem

λvar a

body f



,
[

cat Y

sem a

]〉



H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 9 / 20

TFS Translation: Forward Crossed Composition

(>B×) X/Y : f Y\Z : g ⇒ X\Z : λx .f (gx)



>B×

cat

 \1st X

2nd Z


sem

λvar x

body f
[

args|first g
]


dtrs

〈 cat

 /1st X

2nd Y


sem|body f

,


cat

 \1st Y

2nd Z


sem

[
var x

body g

]

〉



H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 10 / 20

Dollar Convention

I Purpose: Create a rule that transfers an arbitrary number of
arguments from a daughter into the mother

I s/$ represents: {s, s/X, (s/X)/Y, . . .}
I Generalized Forward Composition:

(>B∗) X/Y (Y/Z) $ ⇒ (X/Z) $

I More than one dollar possible: dollar variables:
(??) X/Y (Y $1 /Z) $2 ⇒ (X $1 /Z) $2

I Often used in type changing (lexical) unary rules

I A dollar specification may include the slash
→ SLASH feature needed to be able to coindex slash

I Example from CCG for English: pp $1 ⇒ s $1\s

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 11 / 20

Dollar Convention: Translation

Since these rules dig into the argument stack, there is no simple
translation as for the other schemata
Implementation alternatives:

I Code in the processing system that matches the (buried) top
elements: that’s what we want to get rid of

I Use helper rules
I Removal rule puts argument from the stack into a scratch stack
I Finishing rule matches the “real” arguments and restores the stack
I Ordinary rules are blocked on intermediate results of the removal rule
I Efficiency questionable: generates a lot of intermediate edges

I Expand inductively into a set of rules,
I Each rule transfers a fixed number of arguments
I Not exact, since expansion can not be infinite
I In reality, the number of transferred arguments will be finite and small
I Presumably more efficient, since there are no intermediate results

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 12 / 20

Dollar Convention: Translation

Since these rules dig into the argument stack, there is no simple
translation as for the other schemata
Implementation alternatives:

I Code in the processing system that matches the (buried) top
elements: that’s what we want to get rid of

I Use helper rules
I Removal rule puts argument from the stack into a scratch stack
I Finishing rule matches the “real” arguments and restores the stack
I Ordinary rules are blocked on intermediate results of the removal rule
I Efficiency questionable: generates a lot of intermediate edges

I Expand inductively into a set of rules,
I Each rule transfers a fixed number of arguments
I Not exact, since expansion can not be infinite
I In reality, the number of transferred arguments will be finite and small
I Presumably more efficient, since there are no intermediate results

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 12 / 20

Dollar Convention: Translation

Since these rules dig into the argument stack, there is no simple
translation as for the other schemata
Implementation alternatives:

I Code in the processing system that matches the (buried) top
elements: that’s what we want to get rid of

I Use helper rules
I Removal rule puts argument from the stack into a scratch stack
I Finishing rule matches the “real” arguments and restores the stack
I Ordinary rules are blocked on intermediate results of the removal rule
I Efficiency questionable: generates a lot of intermediate edges

I Expand inductively into a set of rules,
I Each rule transfers a fixed number of arguments
I Not exact, since expansion can not be infinite
I In reality, the number of transferred arguments will be finite and small
I Presumably more efficient, since there are no intermediate results

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 12 / 20

Dollar Convention: Translation Example

(>B∗) X/Y (Y/Z) $ ⇒ (X/Z) $



>B1

cat


slash S1

1st

[
1st X
2nd Z

]
2nd A1



dtrs

〈
 cat

 slash /

1stX
2nd Y

 , cat


slash S1

1st

 slash /

1st Y
2nd Z


2nd A1



〉





>B2

cat



slash S1

1st


slash S2

1st

[
1st X
2nd Z

]
2nd A2


2nd A1



dtrs

〈

 cat

 slash /

1st X
2nd Y

 ,

cat



slash S1

1st


slash S2

1st

 slash /

1st Y
2nd Z


2nd A2


2nd A1





〉



H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 13 / 20

Categorical Information and Modes

I Inclusion of more general schemata may lead to spurious ambiguities
I Additional information provided to restrict applicability

I Categorical information as feature-value pairs (e.g., morphology)
I binary feature on slashes: active or inert
I Hierarchy of slash modes, that control the applicability of rule

schemata:
•

? × �

C BC× ×B application and harmonic composition

application and crossed composition

only application

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 14 / 20

Transformation Process

I Straightforward transformation of type hierarchy, some basic types
defined by hand

I Lexicon entries and unary rules:
I Initial plan: read XML definitions directly
I But: Some only poorly understood feature inheritance mechanisms

found in the code
I Now: data structures generated by OpenCCG and transformed into

TFS

I Binary rule schemata created by hand:
OpenCCG implements them with Java classes for every schema type

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 15 / 20

Transformation Process: Problems

I Slash mode type hierarchy and activity derived from code, different
from definition in papers

I Lots of hard-coded default restrictions found
I default type raising rules only applicable to NP’s
I slashes in rule schemata are modalized in the constructor depending on

type
I activity changes of argument slashes during unification under special

conditions
I etc., etc.

I Correct transformation took quite some time due to all this hidden
constraints and functionality

I It’s very likely that we still overlooked some of the traps

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 16 / 20

Transformation Process: Semantics

I OpenCCG uses hybrid logic dependency semantics (HLDS)
‘you should have the ball’

@ascription:e1(have ∧〈Mood〉ind ∧ 〈Tense〉pres ∧ 〈Modifier〉m1
∧〈Act〉t0 ∧ 〈Pat〉t1 ∧ 〈Subj〉t0)

∧@person:t0(you ∧ 〈Num〉sg) ∧ @modal :m1should
∧@thing :t1(ball ∧ 〈Num〉sg ∧ 〈Delim〉unique ∧ 〈Quant〉specific)

I Similar in many respects to MRS
I Allows (almost) direct realization as feature structure

I 〈Modifier〉 relations may occur multiple times in one structure
I cyclic structures possible

I Problematic cases avoided by slightly modifying the input grammar

I Different translation (flat list) considered to obtain equivalence

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 17 / 20

Measurements

I Medium-size hand-written English grammar for interaction with
robots

I Small test corpus of 246 sentences coming with the grammar

I Vanilla OpenCCG parsing compared to pet using translated grammar

I Both parsers did not use supertagging (no models available)

I Both parsers used packing

I pet used the standard filter and optimization techniques

I Same number of passive edges → translation seems to be correct
I Platform: MacBook Pro 1,1, Ubuntu 10.10, startup times taken out

I pet: 9.49 CPUsec, 170MB max
I OpenCCG: 75.56 CPUsec, 780MB max

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 18 / 20

Outlook

I Modify original semantics to simplify transformation:
I Modifier lists
I remove cyclic formulations

I Restore the families of lexicon entries to get more compact
representations

I Application of approximation methods

I Use of approximated grammars to ease learning of language models
I Add additional descriptional apparatus to TDL?

I more compact representation
I automatic expansion

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 19 / 20

Thank you for listening!

H.U. Krieger & B. Kiefer Converting CCGs into TFS Grammars 18th Conf. on HPSG, 2011 20 / 20

