1 Tsunami geomorphology: erosion and deposition from the 15

- 2 November 2006 Kuril Island tsunami
- 3 Breanyn T. MacInnes¹, Joanne Bourgeois¹, Tatiana K. Pinegina², and Ekaterina A.

4 Kravchunovskaya²

5 ¹Department of Earth and Space Sciences, University of Washington, Seattle, Washington

6 98195, USA

7 ² Institute of Volcanology and Seismology, Far Eastern Branch Russian Academy of

8 Sciences, 683006 Petropavlovsk-Kamchatskiy, Russia

9 *E-mail macinneb@u.washington.edu

10 ABSTRACT

11 The 15 November 2006 Kuril earthquake (Mw 8.1–8.4) and tsunami enabled us to 12 collect a compelling data set of coastal geomorphic change in the Kuril Islands from ~3 13 months before to 9 (and 21) months after the tsunami. Our pre- and post-tsunami surveys of 14 the islands, including four topographic profiles measured in 2006 and reoccupied in 2007, 15 allow us the confidence to attribute many changes to the tsunami, in spite of an absence of 16 eyewitness accounts in the central islands. Areas with low runup, <8 m, experienced limited 17 geomorphic change, primarily confined to the beach or stream channels. Regions with high 18 runup, >15 m, experienced massive erosion that dramatically altered the coastline. Tsunami 19 deposits roughly corresponded with the extent of tsunami runup and inundation. The amount 20 of sediment eroded by the tsunami far outweighed the amount deposited on land in all cases 21 studied. The tsunami was dominantly erosive in the Kuril Islands because the high-relief 22 topography of the coastline accelerated tsunami outflow.

23 INTRODUCTION

24	To study the full impact of tsunamis on coastal geomorphology, it is essential to
25	understand their role in both addition and removal of coastal sediment. However, most
26	studies of tsunami geology have focused on tsunami deposition rather than erosion
27	(Bourgeois, 2009). Yet on certain coastlines, tsunamis may be important geomorphic agents,
28	causing long-term changes in coastal systems. Pre- and post-tsunami measurements of
29	coastal geomorphology are necessary in order to calculate coastal change and sediment
30	movement during a tsunami— topics of utmost interest to the tsunami community (c.f.
31	Gelfenbaum and Jaffe, 2003; Jaffe and Gelfenbaum, 2007; Huntington et al., 2007) and of
32	broad interest to coastal geomorphologists (Dawson, 1994; Kench et al., 2008).
33	Tsunami-induced erosional changes of coastlines have been difficult to quantify
34	because pre-event controls are lacking (c.f. Dawson, 1994; Choowong et al., 2007; Umitsu et
35	al., 2007). To date, the only quantified before-and-after studies are beach profiles and atoll-
36	island surveys from the 2004 Indian Ocean tsunami in southwestern India and the Maldives
37	(Kurian et al., 2006; Kench et al., 2006; 2008). Also, Gelfenbaum and Jaffe (2003) estimated
38	depth of erosion by the 1998 Papua New Guinea tsunami from exposed tree roots.
39	Despite the few quantified studies, many qualitative observations suggest that most
40	tsunami-induced changes in coastal geomorphology are driven by erosion, during either
41	inflow or outflow. Erosional changes to a landscape can be temporary (Kurian et al., 2006),
42	permanent (Andrade, 1992), or continue an ongoing trend (Kench et al., 2006, 2008).
43	Tsunamis remove vegetation and damage man-made structures (Dawson, 1994; Maramai and
44	Tinti, 1997). Tsunami erosion causes beach retreat either as large-scale scour features or as
45	smaller scallops (Dawson, 1994; Gelfenbaum and Jaffe, 2003; Kench et al., 2006; Kurian et

46	al., 2006; Umitsu et al., 2007; Choowong et al., 2007). Tsunamis breach beach berms and
47	other ridges, or erode the surface uniformly (Andrade, 1992; Dawson, 1994; Maramai and
48	Tinti, 1997; Gelfenbaum and Jaffe, 2003; Choowong et al., 2007; Umitsu et al., 2007). They
49	also alter drainage patterns by widening river mouths and creating new drainage networks,
50	especially from topographic lows (Andrade, 1992; Maramai and Tinti, 1997; Umitsu et al.,
51	2007).
52	From a geologically fortuitous series of field seasons bracketing the 15 November
53	2006 Kuril Island tsunami, we have been able to quantify tsunami erosion as well as
54	deposition. In four examples of detailed topographic profiles from before and after the
55	tsunami, as well as in numerous post-tsunami study sites, erosion was the primary response
56	of the coastline to the 2006 tsunami in the Kuril Islands. Dominant motion of sediment was
57	offshore, resulting in significant alteration of coastal geomorphology in some areas.
58	BACKGROUND
59	We surveyed coastlines on the Kuril Islands in summers of 2006-2008, focusing on
60	paleotsunami records and coastal geomorphology as a part of the multi-disciplinary Kuril
61	Biocomplexity Project (KBP). The Kurils are a volcanically active arc with many small
62	islands in the central region (Fig. 1). Accordingly, dominant coastal geomorphologies are
63	rocky cliffs or boulder to gravel beaches, with some sandy embayments.
64	Between our first and second field seasons, the 15 November 2006 earthquake (Mw
65	8.1 – 8.4) in the Kuril-Kamchatka subduction zone (Fig. 1) produced a large tsunami (Fujii
66	and Satake, 2008; Ammon et al., 2008). Following the November events, an outer-rise
67	earthquake occurred on 13 January 2007 (M_w 7.9–8.1), adjacent to the 2006 rupture zone
68	(Ammon et al., 2008; Fujii and Satake, 2008), also generating a tsunami. These tsunamis

- 69 partially refocused our field efforts in 2007 and 2008 to include post-tsunami surveys and
- 70 detailed examination of tsunami-caused change.

Until our post-tsunami surveys, there were no runup data from the uninhabited central
Kuril Islands. However, around the Pacific Rim, tide gauges recorded tsunami amplitudes
from the November 2006 event (archived for 113 locations by the National Geophysical Data
Center (NGDC) Global Tsunami Database), ranging from <0.1 m (Solomon Islands) to 1.76
m (Crescent City, CA). The ensuing (January 2007) tsunami was on average three times
smaller than the 2006 tsunami on tide gauges in the NGDC database.

77 **METHODS**

78 Our 2006 (pre-tsunami) survey focused on open embayments where paleotsunami 79 records could be preserved, limiting quantified pre- and post-tsunami comparisons to three 80 sandy beach-ridge plains open to the Pacific—Dushnaya Bay on northern Simushir Island, 81 and South Bay and Ainu Bay on Matua Island (Figs. 1, 2). All contain beach ridges greater than 5 m above mean sea level. These sites are vegetated primarily with beach rye (Elymus 82 arenarius) and coastal-meadow grasses and flowers. All three sites were trenched by military 83 84 in WWII, which locally allowed enhancement of tsunami erosion and deposition; for the 85 purpose of this study, we avoided these anthropogenic effects where possible. 86 Because 10 months (September-June) passed between 2006 and 2007 field 87 observations, we must address the question of whether the 2006 tsunami was the primary 88 agent of observed changes. Other possible agents include the 2007 Kuril tsunami, storms, and 89 seasonal wave regime. Seasonal effects are controlled for by our repeat survey in 2008.

90 Moreover, there was a lack of large regional storms between field seasons (DRText; Figs.

91	DR2, DR3). We reason that the January 2007 tsunami caused little change because it was
92	much smaller and occurred when the shoreline was frozen (MacInnes et al., 2009).
93	Post-tsunami survey teams in summers of 2007 and 2008 documented tsunami
94	inundation (local maximum penetration distance), runup (elevation above mean sea level at
95	inundation), erosion, and deposition. We surveyed 9 sites visited in 2006 or earlier, and 18
96	new sites, measuring in total 192 runup transects along a distance of ~600 km (Fig. 1; Table
97	DR1) We identified tsunami inundation and runup by the farthest inland wrackline of
98	floatable debris. Nearfield measurements of tsunami runup average 10 m and range up to 22
99	m (Table DR1).
100	We quantified erosional change on four 2006 topographic profiles (Figs. 1, 3) by re-
101	measuring the profiles using a transit and rod; to relocate we used a combination of
102	landmarks such as trenches and ridge crests, and GPS. On many other profiles, we described
103	and recorded the position of erosional features, measured thicknesses of tsunami deposits,
104	and documented the deposit's landward-most extent (Table 1). For more on method, see
105	Table DR1 and MacInnes et al. (2009).
106	OBSERVATIONS
107	The 2006 Kuril Island tsunami altered the coastline of the central Kurils in sandy
108	embayments and on boulder beaches. The three sandy embayments focused on in this
109	study—Dushnaya, South and Ainu bays—experienced a range of tsunami size, from low
110	runup (<8 m) to high (>15 m) and exhibited a range of erosional and depositional features.
111	We observed a greater volume of erosion and deposition where runup was higher
112	(Table 1; Fig. DR4) and fewer erosional features where runup was lower. In Dushnaya Bay,
113	the tsunami was smaller in the center (Fig. 1), with runup of 5–20 m and inundation of 40–

114	150 m (Table DR1). Central Dushnaya Bay, the location of a before-and-after profile (Fig.
115	3A), recorded ~6-9 m runup and ~100-150 m inundation, erosion was limited and a sand
116	sheet preserved (Table 1). Runup in South Bay was low (5–8 m), with inundation of \sim 100–
117	200 m (Table DR1). We found tsunami deposits almost as far as water carried debris, with
118	patches of erosion on vegetated beach ridges (Fig. 3B; Table 1). In Ainu Bay, runup was
119	typically 14–20 m, with inundation up to ~500 m (Table DR1), generating massive erosion,
120	with erosional patches extending farther inland than we found tsunami deposits (Table 1).
121	Sediment Removal and Erosional Features
122	Low Runup
123	Erosion in central Dushnaya Bay (Fig. DR1) can be generalized as small-scale retreat
124	of the back-beach scarp (Fig. DR6), surficial sediment removal in areas lacking cohesive
125	soils, and local scour associated with focused water withdrawal, especially into stream
126	channels. At one point, the tsunami breached the seaward beach ridge. Comparison of before
127	and after profiles (Fig. 3A) could not resolve landward retreat of the beach scarp, although
128	nearby we measured up to 3 m of retreat . The only quantifiable change on the profiles was
129	on the unvegetated beach (Fig. 3A), where $\sim 5 \text{ m}^3$ (per unit width) of sediment had been
130	removed between 2006 and 2007 (Table 1).
131	In South Bay, before and after profiles (Figs. 3B, DR10) show a significant difference
132	in the active beach, with $\sim 50 \text{ m}^3$ (per unit width) of sediment missing in 2007. In beach-ridge
133	troughs along the profile, our 2006 excavated turf blocks and some flagging tape remained
134	virtually undisturbed in 2007. Small, shallow patches of erosion on high points up to 160 m

135 inland (Table 1) and larger ones elsewhere in South Bay were on seaward sides of beach

136 ridges. Along the shoreline away from the profile, the tsunami removed blocks of turf off the

137 back-beach scarp.

138 High Runup

Much of the erosion in Ainu Bay can be considered persistent geomorphic change 139 (Figs. DR11–14). The tsunami removed $\sim 200 \text{ m}^3$ (per unit width) of sediment along the Ainu 140 141 Bay reoccupied profiles (Fig. 3C,D, Table 1). On both profiles, continuous, deep erosion of 142 vegetation and sediment occurred for ~160 m inland, including landward widening of the 143 beach by up to 55 m (Figs. 2, 3D) via back-beach cliff retreat. The tsunami removed 144 seaward-most beach ridges, reduced others in size, and eroded seaward-facing slopes 145 primarily by stripping young, sandy sediment off the surface (Fig. 3C,D). As a particular 146 example, a continuous scour extending over 100 m laterally formed on a seaward-facing 147 slope of compact soil (at 160 m inland in Figure 3C; Fig. DR13). 148 Throughout Ainu Bay, smaller-scale but still dramatic erosion included patches of 149 eroded soil and stripped vegetation up to 5 m in diameter. Eroded patches were especially 150 associated with rodent burrow networks and volcanic cinder layers below the sod, both of 151 which facilitated soil stripping. These patches were common at the bases of slopes, some

152 even landward of a recognizable tsunami deposit (Table 1). In areas with sandy soils,

153 gullying and scouring were common where the tsunami was steered by low-lying

154 topography. The tsunami also breached and drained a lake (Fig. 3D, DR14). Most indicators

155 of flow direction, such as plunge pools and gullies, primarily recorded outflow; some, such

156 as a flipped-over sod, recorded inflow.

157 Sediment Deposition

158	Irrespective of tsunami runup height and inundation distance, there was evidence of
159	deposition on all studied sites (Fig. 3; Table 1). Where sand was available along the shore,
160	the tsunami deposited a landward thinning, continuous sheet of that sand across vegetated
161	surfaces. Sand deposits averaged 2.5 cm thick (20 cm maximum) and were generally thicker
162	in beach-ridge troughs than on crests. Along the sandy beach ridges of Dushnaya, South and
163	Ainu bays, the tsunami added a thin veneer of sediment, ~1-6 m^3 per unit width of profile
164	(Table 1). Shorelines along boulder to gravel beaches exhibited patchy tsunami deposits of
165	pebbly gravel, and relocated cobbles and boulders generally <1 m diameter. On most
166	shorelines, the tsunami eroded and deposited blocks of sod, more abundant and larger (up to
167	3 m diameter) on coarser-grained shorelines.
168	Sandy tsunami deposits were nearly as extensive as the tsunami (Table 1). The

169 maximum elevation of deposits was on average 90% of runup elevation, and never <71% (a

170 case with limited sand supply). The landward terminus of the deposit averaged 95% of

171 tsunami inundation (as marked by floated debris); the horizontal difference was <10 m in

172 nine cases, and at most 22 m (Table 1).

173 **Deposition versus Erosion**

Even with ubiquitous deposition, less sediment was deposited than eroded on every profile studied in detail. In the eight cases with measured volumes (per unit width) of both erosion and deposition, the amount of tsunami-transported sand preserved on the coastal plain was usually <10% of that eroded (Table 1); only one of those profiles exhibited focused erosion (Profile 2 in Dushnaya Bay; Figs. DR1, DR9). Even in Dushnaya Bay, where the tsunami was the smallest, erosion the least, and deposition the most extensive, about three times more sediment was removed from the coast then deposited on land.

181 DISCUSSION AND CONCLUSIONS

182 Our survey of tsunami deposits in the Kuril Islands strengthens the argument that on 183 sandy shorelines tsunami-deposit extent can be used as proxy for tsunami runup and 184 inundation (Table 1; Martin et al., 2008), provided the pre-tsunami shoreline position can be reconstructed. Recent post-tsunami studies of low-relief coastlines have shown that tsunami 185 186 deposits commonly extend to 90% of water runup and inundation limits (Table DR2). On the 187 high-relief coastlines of the Kuril Islands, tsunami deposits are equally representative of 188 onshore tsunami metrics. 189 The volume of tsunami erosion is related to tsunami runup, distance from shore, and 190 topography; vegetation and local roughness can clearly be factors as well, but in our study 191 they do not measurably vary. That greatest erosion from tsunamis occurs closer to the shore

192 is a common observation of post-tsunami surveys (cf. Gelfenbaum and Jaffe, 2003; Umitsu et

al., 2007). Farther from the shore (100s of m in the Ainu Bay case), patches of erosion

194 typically occur where the topography generates local water acceleration, enhancing the

195 erosive capacity of tsunamis.

196 Some erosional features generated by tsunamis should become preserved

197 geomorphology. In Ainu Bay, the removal of the seaward beach ridges, breaching of a lake

and development of inland scours should all be visible for decades or centuries. Indeed,

199 previous (undated) instances of deep coastal erosion and breached lakes can be seen in Ainu

200 Bay stratigraphy (Fig. DR11). Even in cases of relatively low runup, breached beach ridges

should remain discontinuous, and we have observed such breaches in older beach ridges in

202 Dushnaya Bay and also along the Pacific coast of Kamchatka.

203	Our findings agree with previous studies indicating that net direction of tsunami
204	sediment transport is dependent on capacity of the coastline to generate backwash or offshore
205	flow (Umitsu et al., 2007). Tsunamis flowing over low-relief coastlines (Kurian et al., 2006;
206	Gelfenbaum and Jaffe, 2003) generated net onshore transport. On high-relief coastlines such
207	as the Kuril Islands, tsunami backwash can be accelerated to a greater velocity than on low-
208	relief topography, thereby generating net offshore transport. The case where a tsunami
209	completely overtops low-relief islands, as in the 2004 Indian Ocean tsunami washing over
210	the low-relief Maldives, is more complex (Kench et al., 2008).
211	For the first time, a group of tsunami geologists surveyed a coast both before and
212	after a large tsunami. Our quantitative comparison of erosional and depositional volumes is
213	this case showed that erosion clearly dominated deposition. Nevertheless, geologists
214	interpreting paleotsunamis should be reassured that deposits can be a reliable proxy for
215	tsunami runup and inundation, though the necessary paleogeographic reconstruction remains
216	challenging, especially in light of tsunami erosion. Our data and analyses are also significant
217	for geologists interested in understanding tsunami flow properties, in defining tsunami
218	erosion and deposition patterns (tsunami geomorphology), and in determining coastal
219	geologic histories in tsunami-affected regions. Moreover, while the central Kurils are
220	currently uninhabited, this study may help explain why there are fewer coastal archaeological
221	sites on the Pacific side of the Kurils. It also provides important information about tsunami
222	hazard on high-relief coastlines around the world.

223 ACKNOWLEDGMENTS

Funding for fieldwork was provided by the Kuril Biocomplexity Project (NSF
grant #0508109, PI- Ben Fitzhugh) and by the Institute of Marine Geology and

226	Geophysics, FED RAS, Yuzhno-Sahkalinsk, Russia (Director- Boris Levin). For field
227	assistance, we thank Sergei Chirkov, Misty Nikula, Mike Etnier, and Jesse Einhorn. We
228	thank Cecilia Bitz for helping us recover weather data from the region, and we appreciate
229	thorough reviews by Brian McAdoo, Martitia Tuttle and two anonymous reviewers.
230	REFERENCES CITED
231	Ammon, C.J., Kanamori, H., and Lay, T., 2008, A great earthquake doublet and seismic
232	stress transfer cycle in the central Kuril islands: Nature v. 451, p, 561–566.
233	Andrade, C., 1992, Tsunami generated forms in the Algarve Barrier Islands: Science of
234	Tsunami Hazards v. 10, p, 21–34.
235	Apel, E.V., Burgmann, R., Steblov, G., Vasilenko, N., King, R., and Prytkov, A., 2006,
236	Independent active microplate tectonics of northeast Asia from GPS velocities and block
237	modeling: Geophysical Research Letters, v. 33, p. L11303, doi:
238	10.1029/2006GL026077.
239	Bourgeois, J., 2009, Geologic effects and records of tsunamis, in The Sea: Volume 15,
240	Tsunamis (eds. Bernard, E.N. and Robinson, A.R.), Harvard University Press, 55–91.
241	Choowong, M., Murakoshi, N., Hisada, K., Charusiri, P., Daorerk, V., Charoentitirat, T.,
242	Chutakositkanon, V., Jankaew, K., and Kanjanapayont, P., 2007, Erosion and Deposition
243	by the 2004 Indian Ocean Tsunami in Phuket and Phang-nga Provinces, Thailand:
244	Journal of Coastal Research v. 23, p, 1270–1276.
245	Dawson, A.G., 1994, Geomorphological effects of tsunami run-up and backwash:
246	Geomorphology v. 10, p, 83–94.
247	Fedotov, S.A., Chernyshev, S.D., and Chernysheva, G.V., 1982, The Improved
248	Determination of the Source Boundaries for Earthquakes of M>7.75, of the Properties of

249	the Seismic Cycle, and of Long-term Seismic Prediction for the Kurile-Kamchatka Arc:
250	Earthquake Prediction Research, v. 1, p. 153–171.
251	Fujii, Y., and Satake, K., 2008, Tsunami Sources of the November 2006 and January 2007
252	Great Kuril Earthquakes: Bulletin of the Seismological Society of America v. 98, p, doi:
253	10.1785/0120070221.
254	Gelfenbaum, G., and Jaffe, B., 2003, Erosion and Sedimentation from the 17 July 1998
255	Papua New Guinea Tsunami: Pure and Applied Geophysics, v. 160, p. 1969–1999, doi:
256	10.1007/s00024-003-2416-y.
257	Huntington, K., Bourgeois, J., Gelfenbaum, G., Lynett, P., Jaffe, B., Yeh, H., and Weiss, R.,
258	2007, Sandy signs of a tsunami's onshore depth and speed: Eos, Transactions, American
259	Geophysical Union, v. 88, no. 52, p. 577–578, doi: 10.1029/2007EO520001.
260	Jaffe, B., and Gelfenbaum, G., 2007, A simple model for calculating tsunami flow speed
261	from tsunami deposits: Sedimentary Geology, v. 200, p. 347-361, doi:
262	10.1016/j.sedgeo.2007.01.013.
263	Kench, P.S., McLean, R.F., Brander, R.W., Nichol, S.L., Smithers, S.G., Ford, M.R., Parnell,
264	K.E., and Aslam, M., 2006, Geological effects of tsunami on mid-ocean atoll islands:
265	The Maldives before and after the Sumatran tsunami: Geology, v. 34, p. 177–180, doi:
266	10.1130/G21907.1.
267	Kench, P.S., Nichol, S.L., Smithers, S.G., McLean, R.F., and Brander, R.W., 2008, Tsunami
268	as agents of geomorphic change in mid-ocean reef islands: Geomorphology v. 95, p,

269 361–383.

- 270 Kurian, N.P., Pillai, A.P., Rajith, K., Murali Krishnan, B.T., and Kalaiarasan, P., 2006,
- 271 Inundation characteristics and geomorphological impacts of December 2004 tsunami on
- 272 Kerala coast: Current Science, v. 90, p. 240–249.
- 273 MacInnes, B.T., Pinegina, T.K., Bourgeois, J., Razhegaeva, N.G., Kaistrenko, V.M., and
- 274 Kravchenovskaya, E.A., 2009, Field survey and geological effects of the 15 November
- 275 2006 Kuril tsunami in the middle Kuril Islands: Pure and Applied Geophysics, v. 166,
- 276 Maramai., A., and Tinti, S., 1997, The 3 June 1994 Java Tsunami: A Post-Event Survey
- of the Coastal Effects: Natural Hazards v. 15, p, 31–49.
- 278 Martin, M.E., Weiss, R., Bourgeois, J., Pinegina, T.K., Houston, H., and Titov, V.V., 2008,
- 279 Combining constraints from tsunami modeling and sedimentology to untangle the 1969
- 280 Ozernoi and 1971 Kamchatskii tsunamis: Geophysical Research Letters, v. 35,
- 281 p. L01610, doi: 10.1029/2007GL032349.
- 282 Umitsu, M., Tanavud, C., and Patanakanog, B., 2007, Effects of landforms on tsunami flow
- in the plains of Banda Aceh, Indonesia, and Nam Khem, Thailand: Marine Geology,
- 284 v. 242, p. 141–153, doi: 10.1016/j.margeo.2006.10.030.

285 FIGURE CAPTIONS

- Figure 1. A. Historical tsunamigenic earthquakes on the Kuril-Kamchatka trench, after
- Fedotov et al. (1982). The 2007 earthquake was an outer-rise event in the Pacific Plate; all
- others occurred on the Pacific/Okhostk plate interface. **B.** Tectonic setting of the region, after
- Apel et al. (2006); velocities on plate boundaries are in mm/yr. Area of (A) is shown by a
- shaded rectangle. C. Runup elevation in meters from the 2007 and 2008 post-tsunami
- surveys (Table DR1) for the shaded area of islands in (A).

- Figure 2. Post-tsunami (2007) view of Ainu Bay, Matua (Fig. 1). Black line marks seaward
- extent of vegetation in 2006.
- Figure 3. Before (2006) and after (2007) topographic profiles from Dushnaya Bay, Simushir
- Island ((A)) and South Matua Island ((B), (C), (D)) (locations on Fig. 1, DR1). (A) and (B)
- are cases of low runup and (C) and (D) of high runup. "First vegetation" refers to the
- seaward limit of vegetation covering the surface; on (A) and (B), the location of first
- vegetation did not significantly change between 2006 and 2007. On (**D**) the lake was present
- in 2006 but not in 2007; in the area marked "not measured," seaward-derived sand deposits
- 300 were mixed with locally eroded cinders and gravel. Additional images: (A): Figures DR5–6.
- 301 (**B**): Figure DR10. (**C**): Figures DR11–13. (**D**): Figure DR3, DR14.

302

302

TABLE 1. CHARACTERISTICS OF THE 15 NOVEMBER 2006 TSUNAMI WAVE, SAND DEPOSITS, AND COASTAL EROSION IN THE CENTRAL KURIL ISLANDS

TABLE 1. CHARACTERISTICS OF THE 13 NOVEWIDER 2000 TSUNAWI WAVE, SAND DEPOSITS, AND COASTAL EROSION IN THE CENTRAL KURIL ISLANDS											
	Wate	er limit		Deposit limit							
Topographic profile*	Runup [†] (m)	Inundation (m)	Approximate deposit volume (m ³)	Vertical [†] (m)	Horizontal (m)	Approximate erosion volume (m ³)	Vertical [†] (m)	Horizontal (m)			
Dushnaya Bay central	6.7	122	1.2	6.6	120	5	5.1	55			
South Bay	5.7 (7.6)	223	3.4	5.0 (7.6)	217	50	5.3 (7.6)	160			
Ainu Bay north	17.1	327	4.8	14.8	305	200	16.3	310			
Ainu Bay south	18.1	432	6.3	17.4	422	200	17.4	422			
Dushnaya Bay-2	12.4	75	0.9	12.1	72	>50 [§]	11.9	62			
Dushnaya Bay-6	4.4 (10.3)	106	1.2	4.4 (10.3)	106	-	-	-			
Dushnaya Bay-7	6.3	139	1.7	6.3	139	-	5.9	122			
Dushnaya Bay-9	7.3 (12.6)	151	3.0	7.3 (12.6)	151	-	-	-			
Dushnaya Bay-12	6.9	120	0.9	5.8	112	-	3.2	59			
Dushnaya Bay-109	9.1	59	Little sand, 0.4	7.5	49	5 [§]	5.6	41			
Dushnaya Bay-106	13.0	70	Local gravel only	-	-	>5 [§]	8.2	63			
Dushnaya Bay-102	7.7	51	1.4	6.7	46	>5 [§]	5.1	37			
Sarychevo-125	11.8	118	1.3	8.4	97	-	9.5	102			
NE Rasshua-201	11.4	111	1.4	10.2	109	5 [§]	9.2	105			

*See Figure 1 or Table DR1 for locations. [†](7.6)—Cases with higher topography seaward of runup. [§]Minimum estimates because beach change not measurable without pre-tsunami topography. - ----not measured.

303

MacInnes et al., Figure 1

MacInnes et al., Figure 2

MacInnes et al., Figure 3

1	Data Repository
2	for
3	Tsunami geomorphology: erosion and deposition from the 15 November 2006 Kuril Island
4	tsunami
5	
6	MacInnes, Breanyn T.
7	Bourgeois, Joanne
8	Pinegina, Tatiana K.
9	Kravchunovskaya, Ekaterina A.
10	

11Discussion—Were all observed changes from the 2006 tsunami?

Because 10 months (September-June) passed between field observations, we must 13address the question of whether the 2006 tsunami was the primary cause of observed changes. 14Other possible agents acting during these unobserved periods include the 2007 Kuril tsunami, 15erosion and deposition due to storms, and seasonal beach-profile variations. We reason that 2006 16did cause most observed changes, based on the smaller size of the 2007 tsunami, on the fact that 17the 2007 tsunami occurred when the shoreline was frozen, and on the lack of large regional 18storms between field seasons.

We reason that the 2007 Kuril tsunami had little impact on the coastline because of its 20 relative size and because of the time of year (MacInnes et al., 2009). Field observations suggest 21 that the 2007 Kuril tsunami had runup of less than 5 m (MacInnes et al., 2009), making its 22 influence on much of the vegetated coastline negligible. Moreover, the average temperature in 23 the central Kurils between the 2006 and 2007 tsunamis was -3 to -6 °C¹, resulting in a frozen 24 upper beach and coastal plain at the time of the 2007 tsunami, inhibiting marked erosion.

We also reason that all measured change above and most measured change below storm 26high tide (defined by the presence of dense vegetation and seaweed wracklines) resulted from the 272006 tsunami and not from storms. Storms affecting the coasts of Kurils in 2006, 2007, and 2008 28were not abnormally large and therefore likely did not cause measurable changes above storm 29wracklines observed in 2006 or on the vegetated coastal plain. Wind speed records suggest no 30unusual storms occurred in the field area between the pre- and post- tsunami surveys (Fig. DR2). 31Also, in 2007 and 2008 surveys we observed no fresh storm effects beyond the beach on 32coastlines where the tsunamis also did not surpass the beach.

Below storm high tide, beaches may actively change (c.f. Shepard et al., 1950), and in 34our study, we did not measure winter-beach profiles, but we argue that the 2006 tsunami is also 35responsible for most beach-profile changes because the beaches did not recover between 2007 36and 2008 (Fig. DR3).

37

38Post-tsunami survey data—runup and inundation

A compilation of all field measurements of runup and inundation from the 2007 and 2008 40(post-tsunami) field seasons is presented in Table DR1. Most measurements made in 2007 were 41previously reported in MacInnes et al. (2009), but with fewer columns (thus omitting some 42observations). The data from the 2008 field season are newly reported here.

43

44Supplemental field observations, data and photographs

^{1&}lt;sup>1</sup>Based on four-times daily temperature records; NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, 2Boulder, Colorado, USA, from their Web site at <u>http://www.cdc.noaa.gov/</u>

Volume of erosion and deposition. In cases where we could quantify the volume of 46erosion or deposition along a profile (reported as m³ per unit width), we plotted those estimates 47relative to runup and to runup times inundation, the latter an approximation of onland tsunami 48volume (Fig. DR4). We calculated the volume of tsunami erosion along a profile by measuring 49the area missing in 2007/2008 below profile lines measured in or reconstructed from 2006 (e.g., 50Figs. 3). We calculated deposit volume along a profile by taking measured thickness of fresh 51tsunami deposits at survey points (as in Figure 3) and integrating between them to generate the 52cross-sectional area covered by tsunami deposit along a given profile. We assigned $\pm 10\%$ error to 53the calculations. There is not a robust correlation of runup to volume of erosion and deposition 54for runup of less than 13 m (Fig. DR4A); the higher runup in Ainu Bay clearly produced greater 55geomorphic change. There is a better trend shown by comparing erosion and deposition volumes 56to runup times inundation (Fig. DR4B), which is a better overall scale of tsunami size. In Fig. 57DR4B, however, there is an even larger gap between the high numbers of Ainu Bay and the rest 58of the data.

Additional illustrations of tsunami effects. While the Dushnaya Central profile (Fig. 3) 60on Simushir Island was virtually unchanged across its vegetated surface (Fig. DR5), the tsunami 61rearranged the beach and locally eroded the beach scarp (Fig. DR6). In northern Dushnaya Bay, 62runup was higher, with common stripping of turf and soil (Fig. DR7) and deposition of gravel 63(Fig. DR8). In southern Dushnaya Bay, a very steep, sandy profile exhibited dramatic local 64erosional scours and enlarged drainage (Fig. DR9). The effects on the shoreline along South Bay, 65Matua Island (Fig. DR10), were similar to Central Dushnaya Bay, with a greater volume of 66beach erosion (Figure 3; Table 1). The most dramatic tsunami effects were in Ainu Bay on Matua 67Island, where stratigraphic analysis suggests tsunamis may have repeatedly produced coastal 68erosion (Fig. DR11). In the north, young landforms from the beach to 160 m inland were 69removed or denuded (Fig. DR12) and a long scour developed at the boundary between older and 70younger landforms (Fig. DR13). In the south, erosion was also severe, especially close to the 71shoreline (Fig. DR14).

72

73Discussion

In order to examine the extent to which tsunami deposits may approximate actual runup 75and inundation, we compiled our own data (Table 1) with other reported cases and calculated the 76percent of actual runup and inundation represented by the deposit (Table DR2). We also 77calculated the total relief (runup/inundation) over the tsunami-affected part of each profile, and 78the maximum relief on each profile, in order to compare Kurils cases with others where the data 79are available. Table DR2 shows that Kurils profiles are higher relief than the others.

81Acknowledgements

The following people contributed to the collection of data that appears in Table DR1: 83Nadezhda Razhigaeva, Kirill Ganzey, Andrew Ritchie, Sergei Chirkov, Andrei Kharlamov, 84Douglas Querl, Victor Kaistrenko, Misty Nikula, Mike Etnier, Natalia Slobodina, Dimitri Frolov, 85Nikolai Vasilenko, Ben Fitzhugh, Boris Levin, Mikhail Nosov, Molly Odell, Erik Gjesfeld, and 86Elena Sassorova.

87

88References cited

89

90Gelfenbaum, G. and Jaffe, B., 2003, Erosion and Sedimentation from the 17 July 1998 Papua
91 New Guinea Tsunami, Pure and Applied Geophysics, v. 160, 1969–1999.

94 Francisco, Elsevier, p. 81–104. 95Jaffe, B.E., Borrero, J.C., Prasetya, G.S., Peters, R., McAdoo, B., Gelfenbaum, G., Morton, R., Ruggiero, P., Higman, B., and Dengler, L., 2006, Northwest Sumatra and Offshore Islands 96 97 Field Survey after the December 2004 Indian Ocean Tsunami: Earthquake Spectra v. 22, p, 98 S105. 99MacInnes, B.T., Pinegina, T.K., Bourgeois, J., Razhegaeva, N.G., Kaistrenko, V.M., and 100 Kravchenovskava, E.A., 2009, Field survey and geological effects of the 15 November 2006 Kuril tsunami in the middle Kuril Islands: Pure and Applied Geophysics, v. 166, 102Nanayama, F., 2008, Sedimentary Characteristics and Depositional Processes of Onshore 103 Tsunami Deposits: An Example of Sedimentation Associated with the 12 July 1993 104 Hokkaido-Nansei-oki Earthquake Tsunami, in Shiki, T., Tsuji, Y., Yamazaki, T., and 105 Minoura, K., ed., Tsunamiites: Features and Implications: San Francisco, Elsevier, p. 63-106 80 107Shepard, F.P., Macdonald, G.A., and Cox, D.C., 1950, The tsunami of April 1, 1946 (Hawaii): California University, Scripps Institute of Oceanography Bulletin, v. 5, p. 391-528. 108 109Shi, S.Z., Dawson, A.G., and Smith, D.E., 1995, Coastal sedimentation associated with the 110 December 12th, 1992 tsunami in Flores, Indonesia: Pure and Applied Geophysics v. 144, p. 525-536.

92Higman, B., and Bourgeois, J., 2008, Deposits of the 1992 Nicaragua Tsunami, in Shiki, T.,

Tsuji, Y., Yamazaki, T., and Minoura, K., ed., Tsunamiites: Features and Implications: San

112Srinivasalu, S., Thangadurai, N., Switzer, A.D., Ram Mohan, V., and Ayyamperumal, T., 2007,

- 113 Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December
- 114 2004 tsunami: Marine Geology v. 240, p. 65-75.

93

101

111

Date	Team*	Location				Method [•]		R	unup (prefe	Hiaher	Inundation				
		Island	Locality name	Latitude of	Longitude of	Wethou	Number	2006	2006	Tide	Runup	Runup	elevation	Measured	GPS
			2	profile.	profile		of runup	runup on	runup	correc-	with tide	avg. with	seaward	inundation	calculated
				promo	promo		readings	profile	avg. near	tion	correc-	tide cor-	of inun-	(m)	inundation
							•	(m)	profile	(m)	tion	rection	dation	. ,	(m)
									(m)		(m)	(m)	(m)		
05/07/2007	VMK	Urup	Os'ma Bay-2	45.58223	149.45068	TL	1	4.4	-	-	-	-	no	170	-
05/07/2007	VMK	Urup	Os'ma Bay-1	45.58285	149.45138	TL	1	5.0	-	-	-	-	no	48	-
05/07/2007	JB	Urup	Os'ma Bay-1-2006	45.58300	149.45350	TL	1	4.8	-	-	-	-	no	50	-
21/08/2008	BTM	Urup	Kostrikum Cape-225	46.21145	150.54547	TL	4	7.6	7.7	0.3	7.9	8.0	no	80	79
21/08/2008	BTM	Urup	Kostrikum Cape-232	46.21520	150.54867	TL	3	5.4	5.4	-0.1	5.2	5.2	5.6	61	51
19/08/2008	JB	Chirpoi	Peschanaya South-V153	46.53294	150.89059	HLT	1	5.7	-	-0.3	5.4	-	no	70	-
19/08/2008	JB	Chirpoi	Peschanaya South-V150	46.53397	150.89264	HLT	2	10.4	10.3	0.0	10.5	10.4	no	91	81
19/08/2008	BTM	Chirpoi	Peschanaya-221	46.53865	150.89644	TL	1	5.6	-	-0.2	5.5	-	no	43	42
19/08/2008	BTM	Chirpoi	Peschanaya-217	46.54120	150.90598	TL	3	5.8	5.5	0.1	5.9	5.6	no	31	30
19/08/2008	BTM	Chirpoi	Peschanaya-219	46.54148	150.90152	TL	4	7.6	8.6	0.0	7.5	8.5	no	40	43
13/07/2007	NGR	Simushir	Spaseniya Bay-37	46.83173	151.87659	HL	1	4.3	-	-0.4	3.9	-	4.4	180	141
13/07/2007	NGR	Simushir	Spaseniya Bay-39	46.83411	151.87962	HL	1	2.7	-	-0.4	2.3	-	3.9	146	127
12/07/2007	VMK	Simushir	Spaseniya Bay-82	46.83668	151.88249	HL	1	7.2	-	-	-	-	-	75	51
12/07/2007	VMK	Simushir	Spaseniya Bay-77b	46.84178	151.89000	HL	1	5.7	-	-	-	-	-	109	54
09/08/2008	JB	Simushir	Spaseniya Bay-2	46.84244	151.89121	HLT	4	7.1	7.2	0.3	7.5	7.5	no	127	118
13/07/2007	NGR	Simushir	Spaseniya Bay-36	46.84520	151.89542	HL	1	2.2	-	-0.9	1.3	-	3.9	212	172
09/08/2008	JB	Simushir	Spaseniya Bay-1	46.84772	151.89931	HLT	5	6.7	6.8	0.2	7.0	7.0	7.1	111	116
19/07/2007	NGR	Simushir	Spaseniya Bay-79	46.85087	151.90409	HL	1	6.5	-	-0.3	6.2	-	no	80	59
19/07/2007	NGR	Simushir	Spaseniya Bay-78	46.85281	151.90750	HL	1	4.6	-	-0.2	4.4	-	no	140	115
18/08/2008	BTM	Simushir	Opasnaya Bay-215	46.94008	152.05510	TL	2	7.2	7.0	-0.3	6.9	6.7	no	79	79
18/08/2008	BTM	Simushir	Opasnaya Bay-213	46.94306	152.05847	TL	3	8.6	8.7	-0.2	8.5	8.5	no	98	99
18/08/2008	BTM	Simushir	Opasnaya Bay-212	46.94655	152.06214	TL	1	6.4	-	-0.1	6.3	-	6.7	136	131
11/07/2007	TKP	Simushir	Dushnaya Bay-1	47.04313	152.15841	TL	1	19.6	-	0.4	20.0	-	no	83	79
11/07/2007	TKP	Simushir	Dushnaya Bay-2	47.04530	152.15915	TL	1	12.2	-	0.2	12.4	-	12.7	75	92
10/07/2007	VMK	Simushir	Dushnaya Bay-57	47.04684	152.15963	HL	1	9.3	-	-	-	-	-	136	115
10/07/2007	VMK	Simushir	Dushnaya Bay-54	47.04769	152.16070	HL	1	11.7	-	-	-	-	-	44	-
11/07/2007	TKP	Simushir	Dushnaya Bay-3	47.04942	152.16235	TL	1	7.9	-	0.0	7.9	-	no	123	135
12/07/2007	TKP	Simushir	Dushnaya Bay-5	47.05409	152.16471	TL	1	11.0	-	0.3	11.3	-	no	132	128
12/07/2007	TKP	Simushir	Dushnaya Bay-6	47.05628	152.16650	TL	1	4.2	-	0.2	4.4	-	10.1	106	98
12/07/2007	TKP	Simushir	Dushnaya Bay-7	47.05807	152.16878	TL	1	6.3	-	0.0	6.3	-	7.1	139	139
13/07/2007	TKP	Simushir	Dushnaya Bay-8	47.05979	152.17162	TL	1	7.9	-	0.7	8.6	-	11.4	118	120
13/07/2007	TKP	Simushir	Dushnaya Bay-9	47.06094	152.17313	TL	1	6.7	-	0.6	7.3	-	12.0	151	154
10/07/2007	JB	Simushir	Dushnaya Bay-2-2006	47.06201	152.17549	TL	1	6.7	-	0.0	6.7	-	7.7	122	125
			(Dushnaya central)												
14/07/2007	TKP	Simushir	Dushnaya Bay-12	47.06393	152.17726	TL	1	6.6	-	0.3	6.9	-	no	120	115
14/07/2007	TKP	Simushir	Dushnaya Bay-11	47.06582	152.17981	TL	1	7.7	-	0.5	8.2	-	8.4	115	109
14/07/2007	TKP	Simushir	Dushnaya Bay-10	47.06772	152.18230	TL	1	9.3	-	0.6	9.9	-	no	133	121
13/07/2007	JB	Simushir	Dushnaya Bay-110	47.06960	152.18429	TL	11	10.0	8.8	0.0	10.0	8.8	no	114	107
14/07/2007	JB	Simushir	Dushnaya Bay-1-2006	47.06971	152.18614	TL	8	9.8	10.0	0.6	10.4	10.6	no	100	102
13/07/2007	JB	Simushir	Dushnaya Bay-109	47.07039	152.18792	TL	10	8.8	9.0	0.1	8.9	9.1	no	59	56
09/07/2007	VMK	Simushir	Dushnaya Bay-24	47.07085	152.18777	HL	1	8.7	-	-	-	-	-	77	-
13/07/2007	JB	Simushir	Dushnaya Bay-108	47.07124	152.19088	TL	9	11.7	11.6	0.3	12.0	11.9	no	61	57
, 13/07/2007	JB	Simushir	Dushnaya Bay-107	47.07312	152.19315	TL	12	17.9	14.8	0.5	18.4	15.3	no	85	74

TABLE DR1: SUMMARY OF CENTRAL KURIL ISLANDS POST-TSUNAMI SURVEY OF RUNUP AND INUNDATION ORDERED BY LATITUDE

Date	Team*	Location			Method	Runup (preferred in bold) Higher Inundation								dation	
		Island	Locality name	Latitude of	Longitude of		Number	2006	2006	Tide	Runup	Runup	elevation	Measured	GPS
				profile	profile		of runup	runup on	runup	correc-	with tide	avg. with	seaward	inundation	calculated
							readings	profile	avg. near	tion	correc-	tide cor-	of inun-	(m)	inundation
								(m)	profile	(m)	tion	rection	dation		(m)
									(m)		(m)	(m)	(m)		
12/07/2007	JB	Simushir	Dushnaya Bay-106	47.07537	152.19476	TL	10	11.5	13.1	-0.1	11.4	13.0	no	70	66
12/07/2007	JB	Simushir	Dushnaya Bay-105	47.07754	152.19528	TL	10	14.9	15.1	0.4	15.3	15.5	no	93	102
11/07/2007	JB	Simushir	Dushnaya Bay-104	47.07809	152.19888	TL	7	13.3	13.2	-0.2	13.1	13.0	no	52	52
11/07/2007	JB	Simushir	Dushnaya Bay-103	47.07818	152.20214	TL	10	10.4	10.9	-0.1	10.3	10.8	no	49	46
11/07/2007	JB	Simushir	Dushnaya Bay-102	47.07835	152.20566	TL	8	7.5	7.7	0.0	7.5	7.7	no	51	50
11/07/2007	JB	Simushir	Dushnaya Bay-101	47.07880	152.20884	TL	5	8.5	8.5	0.3	8.8	8.8	no	44	39
11/07/2007	JB	Simushir	Dushnaya Bay-100	47.07971	152.21016	TL,HLT	1	12.9	-	0.4	13.3	-	no	68	-
08/07/2007	JB	Ketoi	Yuzhni Bay-3	47.29640	152.49141	HLT	9	6.8	6.5	0.0	6.8	6.5	no	44	27
08/07/2007	VMK	Ketoi	Yuzhni Bay-10c	47.29659	152.49009	HL	1	6.7	-	0.0	6.7	-	no	79	38
08/07/2007	VMK	Ketoi	Yuzhni Bay-13	47.29774	152.48760	HL	1	9.2	-	0.0	9.2	-	no	67	43
10/08/2008	JB	Ketoi	SE coast-V111	47.29801	152.50985	HL	1	10.8	-	0.4	11.2	-	no	44	46
08/07/2007	JB	Ketoi	Yuzhni Bay-2	47.29807	152.48616	HLT	9	7.3	7.4	0.0	7.3	7.4	no	58	54
10/08/2008	JB	Ketoi	SE coast-V109	47.29816	152.50784	HL	1	10.1	-	0.1	10.2	-	no	80	49
08/07/2007	JB	Ketoi	Yuzhni Bay-1c	47.29834	152.48416	HLT	16	7.5	6.7	0.0	7.5	6.7	no	55	51
10/08/2008	JB	Ketoi	SE coast-V114	47.29867	152.51329	HL	1	9.6	-	0.5	10.1	-	no	47	42
08/07/2007	JB	Ketoi	Yuzhni Bay-1b	47.29868	152.48257	HL	9	7.1	6.9	0.0	7.1	6.9	no	-	75
10/08/2008	JB	Ketoi	SE coast-V116	47.29893	152.51373	HL	1	10.0	-	0.5	10.5	-	no	30	28
08/07/2007	JB	Ketoi	Yuzhni Bay-1a	47.29924	152.48283	HLI	1	6.6	6.5	0.0	6.6	6.5	no	52	39
11/07/2007	VMK	Ketoi	Yuzhni Bay-73	47.29960	152.47238	HL	1	6.8	-	0.0	6.8	-	-	37	23
11/07/2007	VMK	Ketoi	Yuzhni Bay-10b	47.29966	152.47368	HL	1	6.2	-	0.0	6.2	-	-	37	-
11/07/2007	VINK	Ketoi	Yuzhni Bay-71	47.29966	152.47368	HL	1	6.2	-	0.0	6.2	-	-	37	-
11/07/2007	VIVIK	Ketol		47.29968	152.47460	HL	1	7.9	-	0.0	7.9	-	-	54	35
11/08/2008	JB	Ketol	SE coast-V121	47.29972	152.51536	HL	1	8.0	-	0.0	8.6	-	no	26	27
08/07/2007	VIVIK	Ketol	Yuzhni Bay-3b	47.29979	152.48218	HL	1	10.6	-	0.0	10.6	-	no	63	47
11/07/2007	VIVIK	Ketol	Yuzhni Bay-62	47.30022	152.47934	HL	1	0.0	-	0.0	6.0	-	-	37	18
11/07/2007		Ketoi	Yuzhni Bay-07	47.30023	152.47754		1	9.7	-	0.0	9.7	-	-	34	-
11/07/2007		Ketoi	Yuzhni Bay-04	47.30033	152.47762		1	10.4	-	0.0	10.4	-	-	42	22
11/07/2007		Ketoi	Yuzhni Bay 50	47.30043	152.40000		1	0.3	-	0.0	6.0	-	-	52	- 37
11/07/2007		Kotoi	SE coast V/122	47.30047	152.40114		1	11.0	-	0.0	11 0	-	-	41	45
11/08/2008		Kotoi	SE coast V124	47.30130	152.51790		1	11.0	-	0.1	11.3	-	110	41	40
11/08/2008	JD	Ketoi	SE coast V126	47.30271	152.52079		1	11.0	-	0.1	11.1	-	110		60
11/08/2008	IB	Ketoi	SE coast-V128	47.30430	152.52207		1	10.1	-	0.3	10.6	-	no	80	72
10/08/2007	TKD	Lehiehir	Vankicha-257	47 52506	152.02402	TI	2	12.8	12 7	0.4	13.6	13.5	no	57	72
10/08/2007		Ushishir	Dyponkicha 239	47.52590	152.02020		2	0.4	12.7	0.0	10.1	13.5	110	52	50
12/08/2007	IR	Lehiehir	Ryponkicha-V/135	47.53101	152.02719		-	9.4	11.0	0.7	9.7		no	52 47	50
09/08/2007	TKP	Lishishir	Ryponkicha-245	47 53244	152.82001	TI	5	10.8	10.6	0.2	11.4	11.2	no	56	55
09/08/2007	NGP	Llehiehir	Ryponkicha-240	47 53287	152.02300	н	1	0.0	10.0	0.0	10.1	11.2	no	60	48
09/08/2007	TKP	Llehiehir	Ryponkicha-200	47 53324	152.02000	TI	3	11.2	10.8	0.2	11.6	11.2	no	46	40
09/08/2007	TKP	Lishishir	Ryponkicha-249	47 53508	152.00000	TI	1	11.2	-	0.4	12.0	-	no	40	55
09/08/2007	TKP	Ushishir	Ryponkicha-253	47 53632	152 83617	TI	5	12.2	11 1	-0.1	12.0	11.0	no	50	47
09/08/2007	TKP	Ushishir	Ryponkicha-255	47 53742	152 84057	TI	3	74	77	-0.3	7 1	74	no	25	30
09/08/2007	NGR	Ushishir	Ryponkicha-180	47 54934	152 85081	HI	1	6.5	-	-0.8	5.7	-	no	54	47
5 09/08/2008	BTM	Rasshua	SE coast-187	47 68511	152 97311	TI	3	10.2	10.5	0.0	10.3	10.5	no	46	48
0 00/00/2000	D I WI	1 (033)100		11.00011	102.07011		0	10.2	10.0	0.0	10.0	10.0	110	-0	-0-

Date	Team*	Location				Method	Runup (preferred in bold) Higher Inunda								ation	
		Island	Locality name	Latitude of	Longitude of		Number	2006	2006	Tide	Runup	Runup	elevation	Measured	GPS	
				profile	profile		of runup	runup on	runup	correc-	with tide	avg. with	seaward	inundation	calculated	
							readings	profile	avg. near	tion	correc-	tide cor-	of inun-	(m)	inundation	
								(m)	profile	(m)	tion	rection	dation		(m)	
									(m)		(m)	(m)	(m)			
08/08/2008	BTM	Rasshua	SW coast-177	47.68617	152.96642	TL	1	7.1	-	-0.2	6.9	-	no	38	57	
08/08/2008	BTM	Rasshua	SW coast-179	47.69037	152.96786	TL	1	7.5	-	0.1	7.6	-	no	42	41	
09/08/2008	BTM	Rasshua	SE coast-189	47.69040	152.97519	TL	3	9.4	9.8	0.2	9.6	10.0	no	99	93	
09/08/2008	BTM	Rasshua	SE coast-191	47.69449	152.97826	TL	5	10.8	10.8	0.4	11.2	11.2	no	84	75	
08/08/2008	BTM	Rasshua	SW coast-181	47.69501	152.96827	TL	4	6.8	7.1	0.3	7.1	7.4	no	50	52	
09/08/2008	BTM	Rasshua	SE coast-193	47.69648	152.98709	TL	1	10.5	-	0.4	10.9	-	no	57	53	
11/08/2007	NGR	Rasshua	SW coast-198	47.69893	152.96575	HL	1	4.7	-	0.3	5.0	-	no	66	-	
11/08/2007	NGR	Rasshua	SW coast-196	47.69963	152.96543	HL	1	3.9	-	0.3	4.2	-	no	64	-	
08/08/2008	BTM	Rasshua	SW coast-183	47.70066	152.96200	TL	1	4.7	-	0.3	5.0	-	no	73	74	
11/08/2007	JB	Rasshua	Landing cove-507	47.70630	152.96405	HL	1	9.7	-	-0.3	9.4	-	no	56	53	
10/08/2008	BTM	Rasshua	Nepristupnaya Bay-195	47.70983	153.02418	TL	3	10.9	11.8	-0.3	10.7	11.5	no	43	36	
10/08/2008	BTM	Rasshua	Nepristupnaya Bay-central	47.71077	153.02597	А	1	22	-	0.1	22	-	no	-	-	
10/08/2008	BTM	Rasshua	Nepristupnaya Bay-north	47.71166	153.02907	A	3	-	11	0.1	-	11	no	-	50	
15/08/2008	ACR	Rasshua	IMGG cove-V144	47.71964	152.97135	HLT	1	8.7	-	-0.5	8.2	-	no	63	64	
15/08/2008	ACR	Rasshua	IMGG cove-V142	47.72330	152.97303	HLT	1	9.0	-	-0.5	8.5	-	no	33	40	
14/08/2008	BTM	Rasshua	Severniy Cape-205	47.79095	153.04941	TL	4	10.9	11.0	-0.4	10.5	10.6	no	51	34	
11/08/2008	BTM	Rasshua	Severniy Cape-201	47.79513	153.05030	TL	2	11.2	11.3	0.1	11.3	11.4	no	111	107	
14/08/2008	BTM	Rasshua	Severniy Cape-209	47.80009	153.04924	TL	3	12.3	12.5	-0.1	12.2	12.4	no	75	78	
11/08/2008	BTM	Rasshua	Severniy Cape-203	47.80408	153.04496	TL	3	19.7	19.8	0.4	20.1	20.2	no	71	57	
06/08/2007	NGR	Matua	South Bay-153	48.03749	153.27090	HL	1	7.8	-	0.1	7.8	-	no	254	129	
07/08/2007	TKP	Matua	South Bay-222	48.03976	153.23971	TL	2	6.9	7.4	-0.1	6.8	7.3	7.0	174	170	
04/08/2007	NGR	Matua	Ainu Bay-142	48.03980	153.22876	HL	1	13.0	-	-0.1	12.9	-	no	164	128	
07/08/2007	TKP	Matua	South Bay-224	48.04023	153.24302	TL	1	5.8	-	-0.1	5.7	-	5.9	215	219	
06/08/2007	NGR	Matua	South Bay-152	48.04034	153.26773	HL	1	7.8	-	0.1	7.8	-	no	147	126	
07/08/2007	NGR	Matua	Sarychevo-160	48.04124	153.27865	HL	1	7.3	-	0.0	7.3	-	no	56	55	
07/08/2007	TKP	Matua	South Bay-228	48.04127	153.24595	TL	1	7.3	-	-0.2	7.1	-	no	233	205	
02/08/2007	NGR	Matua	Ainu Bay-126	48.04154	153.22731	HL	1	21.2	-	-0.5	20.8	-	no	436	315	
07/08/2007	NGR	Matua	Sarychevo-161	48.04193	153.27764	HL	1	6.1	-	0.0	6.1	-	no	108	92	
06/08/2007	TKP	Matua	South Bay-216 (central)	48.04199	153.24922	TL	1	5.8	-	-0.1	5.7	-	7.6	223	221	
06/08/2007	NGR	Matua	South Bay-151	48.04202	153.26372	HL	1	7.9	-	0.0	7.9	-	8.1	95	60	
06/08/2007	NGR	Matua	South Bay-148	48.04234	153.25296	HL	1	4.9	-	0.1	4.9	-	9.9	174	139	
06/08/2007	NGR	Matua	South Bay-149	48.04244	153.25585	HL	1	6.4	-	0.1	6.4	-	8.2	134	101	
03/08/2007	NGR	Matua	Ainu Bay-133	48.04266	153.22644	HL	1	20.4	-	-0.2	20.2	-	no	503	417	
06/08/2007	NGR	Matua	South Bay-150	48.04267	153.25930	HL	1	5.6	-	0.0	5.7	-	6.4	176	146	
06/08/2007	BTM	Matua	Ainu Bay-2-2006 (south)	48.04269	153.22650	TL	6	18.3	18.2	-0.1	18.2	18.1	no	432	411	
03/08/2007	NGR	Matua	Ainu Bay-132	48.04284	153.22588	HL	1	18.5	-	-0.3	18.3	-	no	398	376	
07/08/2007	NGR	Matua	Sarychevo-162	48.04349	153.27506	HL	1	8.0	-	0.0	8.1	-	no	109	116	
04/08/2007	BTM	Matua	Ainu Bay-1-2006 (north)	48.04412	153.22497	TL	1	17.3	-	-0.2	17.1	-	no	327	313	
03/08/2007	NGR	Matua	Ainu Bay-130	48.04444	153.22463	HL	1	17.3	-	-0.1	17.1	-	no	356	315	
07/08/2007	NGR	Matua	Sarychevo-164	48.04504	153.27429	HL	1	8.5	-	0.0	8.6	-	no	124	110	
04/08/2007	NGR	Matua	Ainu Bay-139	48.04537	153.22430	HL	1	18.4	-	-0.2	18.1	-	no	315	288	
05/08/2007	NGR	Matua	Ainu Bay-143	48.04599	153.22315	HL	1	17.2	-	-0.1	17.1	-	no	244	200	
07/08/2007	NGR	Matua	Sarychevo-165	48.04660	153.27397	HL	1	8.5	-	0.1	8.6	-	no	122	101	

Date	Team*	Location				Method		Runup (preferred in bold)					Higher	Inundation	
		Island	Locality name	Latitude of	Longitude of		Number	2006	2006	Tide	Runup	Runup	elevation	Measured	GPS
				profile	profile		of runup	runup on	runup	correc-	with tide	avg. with	seaward	inundation	calculated
					-		readings	profile	avg. near	tion	correc-	tide cor-	of inun-	(m)	inundation
								(m)	profile	(m)	tion	rection	dation		(m)
									(m)		(m)	(m)	(m)		
07/08/2007	NGR	Matua	Sarychevo-166	48.04751	153.27489	HL	1	9.5	-	0.1	9.6	-	no	56	56
04/08/2007	NGR	Matua	Ainu Bay-145	48.04786	153.21894	HL	1	13.6	-	0.0	13.6	-	no	121	68
07/08/2007	NGR	Matua	Sarychevo-167	48.04854	153.27534	HL	1	10.3	-	0.1	10.4	-	no	71	67
07/08/2007	NGR	Matua	Sarychevo-170	48.04985	153.27407	HL	1	9.8	-	0.1	9.9	-	no	55	48
03/08/2007	TKP	Matua	Sarychevo-142	48.05172	153.27181	TL	3	13.8	14.0	0.3	14.1	14.3	no	51	54
03/08/2007	TKP	Matua	Sarychevo-145	48.05310	153.26861	TL	3	11.2	11.8	0.4	11.6	12.2	no	62	55
03/08/2007	TKP	Matua	Sarychevo-147	48.05498	153.26675	TL	1	16.8	-	0.2	17.0	-	no	49	48
03/08/2007	TKP	Matua	Sarychevo-149	48.05728	153.26618	TL	1	15.4	-	-0.1	15.3	-	no	60	56
04/08/2007	TKP	Matua	Sarychevo-152	48.05941	153.26706	TL	1	21.7	-	0.2	21.9	-	no	48	41
04/08/2007	TKP	Matua	Sarychevo-154	48.06177	153.26918	TL	1	16.7	-	0.0	16.7	-	no	46	26
04/08/2007	TKP	Matua	Sarychevo-157	48.06401	153.26918	TL	3	12.0	12.3	-0.2	11.8	12.1	no	69	79
03/08/2007	BTM	Matua	Sarychevo-86	48.06642	153.26921	TL,HLT	3	-	15.5	0.2	15.7	15.7	no	56	52
03/08/2007	BTM	Matua	Sarychevo-83	48.06911	153.26872	TL	4	16.9	16.7	0.1	17.0	16.8	no	38	35
03/08/2007	BTM	Matua	Sarychevo-79	48.07098	153.26668	TL	4	19.6	18.8	0.2	19.8	19.0	no	50	45
08/08/2007	JB	Matua	Toporkov-231	48.07213	153.28239	HLT	2	9.4	9.4	-0.1	9.3	9.3	no	40	40
08/08/2007	JB	Matua	Toporkov-234	48.07238	153.28224	HLT	1	>8.1	-	-0.1	>8.0	-	no	37	42
03/08/2007	BTM	Matua	Sarychevo-73	48.07340	153.26681	TL	1	17.7	-	0.4	18.1	-	no	93	106
08/08/2007	JB	Matua	Toporkov-230	48.07375	153.28205	HLT	2	10.0	9.8	0.1	10.1	9.9	no	42	27
03/08/2007	BTM	Matua	Sarychevo-69	48.07510	153.26518	TL	1	12.4	-	0.2	12.6	-	no	59	94
08/08/2007	JB	Matua	Toporkov-235	48.07510	153.28164	HLT	1	11.4	-	-0.1	11.3	-	no	28	26
08/08/2007	JB	Matua	Toporkov-237	48.07637	153.28168	HLT	4	10.5	10.2	-0.2	10.3	10.0	no	41	-
02/08/2007	BTM	Matua	Sarychevo-136	48.07707	153.26329	TL	4	10.6	10.7	0.0	10.6	10.7	no	36	34
02/08/2007	BTM	Matua	Sarychevo-133	48.07906	153.26357	TL	1	12.3	-	0.2	12.5	-	no	38	44
02/08/2007	BTM	Matua	Sarychevo-129	48.08123	153.26444	TL	3	10.2	10.3	0.3	10.5	10.6	no	54	42
02/08/2007	BTM	Matua	Sarychevo-125	48.08323	153.26612	TL	4	11.3	11.3	0.5	11.8	11.8	no	118	103
02/08/2007	BTM	Matua	Sarychevo-120	48.08416	153.26740	TL	6	12.6	11.5	0.5	13.1	12.0	no	70	68
05/08/2008	BTM	Matua	NE Bay-5	48.09483	153.24565	A	1	18.5	-	-0.1	18	-	no	-	56
05/08/2008	BTM	Matua	NE Bay-4	48.09620	153.24276	A	2	-	16	-0.1	-	16	no	-	43
05/08/2008	BTM	Matua	NE Bay-3	48.09751	153.24232	HL	3	-	14	-0.1	-	14	no	-	36
05/08/2008	BTM	Matua	NE Bay-2	48.09776	153.24250	A	3	-	13	-0.1	-	13	no	-	47
05/08/2008	BTM	Matua	NE Bay-1	48.09836	153.24240	A	1	10	-	-0.1	10	-	no	-	43
22/07/2008	BTM	Shiashkotan	Voskhodnaya Bay	48.78556	154.08406	A	20	-	6	-0.3	-	5.5	no	-	60
22/07/2008	JB	Shiashkotan	Voskhodnaya Bay-1	48.78817	154.08586	TL	1	7.4	-	-0.3	7.1	-	no	56	-
23/07/2008	BTM	Kharimkotan	1933 Landslide	49.12374	154.60002	A	7	-	4	-0.2	-	3	7.3	-	400
31/07/2008	BTM	Kharimkotan	Severgina Bay-south	49.16001	154.49450	A	3	-	5	-0.1	-	5	no	-	556
31/07/2008	BTM	Kharimkotan	Severgina Bay-north	49.16329	154.48074	A	2	-	7	-0.5	-	6	no	-	66
27/07/2008	BTM	Onekotan	Mussel Bay-south	49.38688	154.82825	A	4	-	5	0.0	-	5	no	-	36
27/07/2008	BTM	Onekotan	Mussel Bay-central-A	49.38814	154.82450	A	3	-	5	-0.4	-	4	no	-	127
27/07/2008	BTM	Onekotan	Mussel Bay-central-B	49.38814	154.82450	A	1	8.5	-	-0.4	8	-	no	-	41
27/07/2008	BTM	Onekotan	Mussel Bay-north-A	49.38891	154.82392	A	1	4	-	-0.2	4	-	no	-	180
27/07/2008	BTM	Onekotan	Mussel Bay-north-B	49.38891	154.82392	Α	3	-	7	-0.2	-	6	no	-	123
26/07/2008	BTM	Onekotan	Cape Lissii Bay-south	49.39499	154.82517	A	2	-	7	0.1	-	7	no	-	38
26/07/2008	BTM	Onekotan	Cape Lissii Bay-central-A	49.39749	154.82366	Α	1	4.5	-	0.1	5	-	no	-	125
26/07/2008	BTM	Onekotan	Cape Lissii Bay-central-B	49.39749	154.82366	A	3	6	-	0.1	6	-	no	-	63

Date	Team*	Location					nd [§] Runup (preferred in bold)							Inunc	ndation	
		Island	Locality name	Latitude of	Longitude of		Number	2006	2006	Tide	Runup	Runup	elevation	Measured	GPS	
				profile [†]	profile [†]		of runup	runup on	runup	correc-	with tide	avg. with	seaward	inundation	calculated	
				-			readings	profile	avg. near	tion	correc-	tide cor-	of inun-	(m)	inundation	
								(m)	profile	(m)	tion	rection	dation		(m)	
									(m)		(m)	(m)	(m)			
28/07/2008	BTM	Onekotan	Cape Lissii Bay-north	49.40006	154.82539	А	1	8	-	0.4	8	-	no	-	27	
30/07/2008	BTM	Onekotan	Cape Lisii-lighthouse	49.40051	154.82888	А	3	-	7	-0.3	-	7	no	-	38	
28/07/2008	BTM	Onekotan	Blakiston Bay-8	49.40144	154.81968	Α	1	10	-	0.4	10	-	no	-	39	
29/07/2008	BTM	Onekotan	Blakiston Bay-9-A	49.40588	154.81512	А	1	5	-	0.4	5	-	no	-	158	
29/07/2008	BTM	Onekotan	Blakiston Bay-9-B	49.40588	154.81512	А	2	-	10	0.4	-	10	no	-	89	
29/07/2008	BTM	Onekotan	Blakiston Bay-9-C	49.40588	154.81512	HLT	1	8.0	-	0.5	8.5	-	no	83	89	
28/07/2008	BTM	Onekotan	Blakiston Bay-7-A	49.41474	154.81187	А	2	-	5	0.4	-	5	no	-	223	
28/07/2008	BTM	Onekotan	Blakiston Bay-7-B	49.41474	154.81187	А	2	-	11	0.4	-	11	no	-	114	
28/07/2008	BTM	Onekotan	Blakiston Bay-6-A	49.42438	154.81009	А	1	5	-	0.4	5	-	no	-	200	
28/07/2008	BTM	Onekotan	Blakiston Bay-6-B	49.42438	154.81009	Α	2	-	10	0.4	-	10	no	-	99	
28/07/2008	BTM	Onekotan	Blakiston Bay-5-A	49.43465	154.80873	А	4	-	8	0.3	-	8	no	-	159	
28/07/2008	BTM	Onekotan	Blakiston Bay-5-B	49.43465	154.80873	Α	1	11	-	0.3	11	-	no	-	57	
28/07/2008	BTM	Onekotan	Blakiston Bay-4-A	49.44043	154.80874	Α	4	-	5	-0.2	-	5	no	-	430	
28/07/2008	BTM	Onekotan	Blakiston Bay-4-B	49.44043	154.80874	А	1	10	-	-0.2	10	-	no	-	105	
25/07/2008	BTM	Onekotan	Blakiston Bay-3	49.45092	154.80956	Α	4	-	4	-0.1	-	4	no	-	311	
25/07/2008	BTM	Onekotan	Blakiston Bay-2-A	49.46020	154.81065	Α	1	4	-	0.0	4	-	no	-	162	
25/07/2008	BTM	Onekotan	Blakiston Bay-2-B	49.46020	154.81065	А	1	6	-	0.0	6	-	no	-	77	
25/07/2008	BTM	Onekotan	Blakiston Bay-1	49.47269	154.81434	А	1	7	-	0.0	7	-	no	-	103	

* Initials of team leaders: NGR (Nadezhda Razhigaeva), VMK (Viktor Kaistrenko), JB (Joanne Bourgeois), TKP (Tatiana Pinegina), BTM (Breanyn MacInnes)

† Lat/Long at sea level unless italic

\$ Method: TL (transit level and rod), HLT (hand level, rod and tape), HL (hand level, rod for elevation and distance), A (altimeter (+/- 1 m error) and GPS)

- = unknown, not measured, or not applicable

119____

Ref	Tsunami	Name of profile or transect	Water inundation (m)	Water runup (m)	Sediment inundation (m)	Sediment runup (m)	% Sed inundation	% Sed runup*	Total relief • (m/m)	Max relief (m/m)	Max elevation (m)
1	1998 PNG	Waipo	320	1.25	280	1.5	88	120	0.004	0.150	3.2
1	1998 PNG	Arop	720	1.5	680	2	94	133	0.002	0.010	2.5
1	1998 PNG	Otto	160	-0.2	130	0.25	81	125	-0.001	0.150	0.75
1	1998 PNG	Sissano	575	1	575	1	100	100	0.002	0.027	3.1
2	2004 Indian Oc.	Jantang 3	665	19.7	628	4	94	20	0.030	0.432	19.7
3	1993 Hokkaido	Miyano, Taisei A	445	4.75	370	4	83	84	0.011	0.050	4.75
3	1993 Hokkaido	Miyano, Taisei B	460	5	420	4.5	91	90	0.011	0.050	5
5	1992 Nicaragua	Salina	425	2.2	425	2.2	100	100	0.005	0.110	2.75
5	1992 Nicaragua	Yellow house	380	2.5	320	2.4	84	96	0.007	0.067	3
5	1992 Nicaragua	Mangrove	300	1.8	230	1.75	77	97	0.006	0.081	3.25
5	1992 Nicaragua	Beach rock	362	2.2	300	2.15	83	98	0.006	0.107	3.5
4	2004 Indian Oc.	Thiruvidandai	330	6	300	4	91	67	0.0182	0.0917	6
4	2004 Indian Oc.	Vadanemmeli	220	3.75	220	3.75	100	100	0.0170	0.0170	3.75
4	2004 Indian Oc.	Kalpakkam	445	4	445	4	100	100	0.0090	0.0250	4
4	2004 Indian Oc.	Mamallapuram•	650	4.3	620	5	95	116	0.0066	0.0800	5
4	2004 Indian Oc.	Kadalore	70	4.2	70	4.2	100	100	0.0600	0.1500	4.2
6	1992 Flores Is.	Lato#	140	3.5	75	1.75	54	50	0.0250	0.1000	3.5
7	2006 Kuril Is.	Dushnaya 2006-2	122	6.7	120	6.6	98	99	0.0549	1.50	6.7
7	2006 Kuril Is.	Dushnaya Bay 2	75	12.4	72	12.1	96	98	0.1653	4.84	12.4
7	2006 Kuril Is.	South Bay-211	223	5.7	217	5	97	88	0.0256	1.29	7.6
7	2006 Kuril Is.	Ainu Bay 2006-1	327	17.1	305	14.8	93	87	0.0523	1.04	17.1
7	2006 Kuril Is.	Ainu Bay 2006-2	432	18.1	422	17.3	98	96	0.0419	0.81	18.1
7	2006 Kuril Is.	Dushnaya Bay-102	51	7.7	46	6.7	90	87	0.1510	5.49	7.7

TABLE DR2. DATA FROM SURVEYS RELATING TSUNAMI SEDIMENT DISTRIBUTION TO TSUNAMI RUNUP AND ELEVATION

122Table DR2 Page 1

Ref	Tsunami	Name of profile or transect	Water inundation (m)	Water runup (m)	Sediment inundation (m)	Sediment runup (m)	% Sed inundation	% Sed runup*	Total relief • (m/m)	Max relief (m/m)	Max elevation (m)
7	2006 Kuril Is.	Dushnaya Bay-6	106	4.4	106	4.4	100	100	0.0415	0.66	10.3
7	2006 Kuril Is.	Dushnaya Bay-109	59	9.1	49	7.5	83	82	0.1542	2.48	9.1
7	2006 Kuril Is.	Dushnaya Bay-12	120	6.9	112	5.8	93	84	0.0575	0.64	6.9
7	2006 Kuril Is.	Dushnaya Bay-7	139	6.3	139	6.3	100	100	0.0453	1.87	6.3
7	2006 Kuril Is.	Dushnaya Bay-9	151	7.3	151	7.3	100	100	0.0483	1.05	12.6
7	2006 Kuril Is.	Sarychevo-125	118	11.8	97	8.4	82	71	0.1000	1.01	11.8
7	2006 Kuril Is.	NE Rasshua-201	111	11.4	109	10.2	98	89	0.1023	0.52	11.4
2	2004 Indian Oc.	Jantang, L1-2	517.5	14.9	512.5	**	99				
2	2004 Indian Oc.	Lhok Kruet 1	376.4	12.6	275.1		73				
2	2004 Indian Oc.	Lhok Kruet L1-4	414.8	17.4	334.1		81				
2	2004 Indian Oc.	Lhok Leupung	903.3	12.2	856		95				
2	2004 Indian Oc.	Kuala Meurisi	1820	12.9	1803.3		99				
2	2004 Indian Oc.	Langi Island	524.4		492.6		94				
2	2004 Indian Oc.	Langi field	441.4	3	234.9		53				
2	2004 Indian Oc.	Langi village	294.2	10.9	276.8		94				
2	2004 Indian Oc.	Langi 102	334.7	7.3	330.8		99				
2	2004 Indian Oc.	Busung 2	82	3.1	67.9		83				
2	2004 Indian Oc.	Busung 1	130	4.1	109.3		84				

*Numbers >100% are cases where slope goes down at end

"total relief" = runup/inundation

• Disagreement between text and figure; profile plot may be in error

Fringing reef

**Not reported

References: 1. Gelfenbaum and Jaffe, 2003; 2. Jaffe et al., 2006; 3. Nanayama et al., 2003; 4. Srinivasalu et al., 2007; 5. J. Bourgeois, unpublished field 123 notes, see also Higman and Bourgeois, 2008; 6. Shi et al., 1996; 7. *This study* 124

125Table DR2 Page 2

128Figure DR1. Location of topographic profiles and mapped inundation limits in Dushnaya Bay, Simushir, 129and Ainu and South bays, Matua Island. Profiles measured both in 2006 and 2007 are named. A. Digital 130Globe image. **B.** ASTER image.

Recurrence Interval (years) 132Figure DR2: **A**. Calculated wind speed >10 m/s in the onshore (NW) direction in the central Kuril Islands 133from Jan 1989-Dec 2008. Data are averaged over 2.5° latitude and longitude centered on 45° N, 150° E 134and 47.5° N, 152.5° E, derived from 4-times-daily surface winds from NCEP Reanalysis data provided by 135NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, <u>http://www.cdc.noaa.gov/</u>. The three vertical lines 136represent the three summer field seasons of KBP. **B**. Same data as in **A** normalized to a comparative index 137of storm strength to account for storm duration. Wind speeds (in m/s) are multiplied by the length (in 138days) of sustained >10 m/s wind speeds. Two large events (index = 0.75) occurred in early November 1392006 (6-7 Nov and 11-12 Nov), but nothing as large since then. **C**. Recurrence interval for all events with 140>10 m/s onshore wind speeds between January 1989 and December 2008. The two largest events between 141field seasons have recurrences of 1.8 and 2.2 years and occurred in 2006 before the tsunami.

144Figure DR3: Topography of the beach on the Ainu Bay south profile from surveys in 2006, 2007, and 1452008. That the 2007 and 2008 profiles remain nearly identical (within measurement error) suggests that 146the large difference from 2006 to 2007/8 is due to tsunami erosion removing sediment entirely from the 147littoral zone.

150Figure DR4. Calculated and estimated volumes of tsunami erosion and deposition plotted against 151A-runup and B-runup times inundation. Plotted data are given in Table 1.

154Figure DR5. Stitched panorama centered on Dushnaya Bay Central profile (located in Figure 2, 155illustrated in Figure 3). Photographer Bourgeois is on high ridge at the back of the profile; the 156three people are landward of 2006 runup and inundation; some tsunami transported wood is 157visible near right edge, center. Person in center background is along the profile track. No 158significant erosion occurred on this profile landward of the backbeach scarp; see Figure DR6. A 159thin sand layer extended almost to the limit of runup and inundation (Fig. 3; Table 1).

164Figure DR6: Before (summer 2006) and after (summer 2007) photoset- Central Dushnaya Bay, near 165Profile 10 (see Figure 2). A red circle identifies approximately the same point in each photo. The 2007 166photo shows evidence of some backbeach cliff retreat—hanging and fallen fresh turf. Also, between 167photos, the beach has been rearranged so that the backbeach valley has been filled in (as in Dushnaya 168Central profile, Figure 3). 2006 photo: Dena Berkey; 2007 photo: MacInnes.

171Figure DR7. A steep, well-vegetated profile measured in 2007 from northern Dushnaya Bay, Simushir 172(2:1 vertical exaggeration). The former surface was inferred from the current surface and the location of 173 soil stripping; also, in erosion zones, remaining root rhizomes often indicated original soil elevation. The 174soil was cohesive and eroded mainly through block removal, preferentially along certain tephra layers -175cinders in particular (see inset). Tephra correlations also show that the surface is progressively younger 176 toward the sea, indicating net progradation since about 2000 - 3000 years ago (from preliminary 177radiocarbon dates in peat). Photos in Figure DR8 were taken near this profile.

183Figure DR8. Before (summer 2006) and after (summer 2007) photoset from northern Dushnaya Bay near 184profile 106 (between 105 and 106; see Figure 2 for location; see Figure DR6 for a profile near this spot). 185Our team in 2006 chose a convenient but foolish spot for one overnight. 2006 photo: Beth Martin; 2007 186photo: MacInnes.

190Figure DR9. A steep, short, sandy profile from southern Dushnaya Bay measured in 2007, extruded to 191show schematically the 3-D tsunami effects. This profile is located on Figure 2, with some data given in 192Table 1 (runup 12.4 m). Recreated tsunami inflow shown in blue, outflow in orange. Near this profile, the 193 outgoing tsunami removed sand during outflow over the back-beach scarp, creating at least two giant 194scour/waterfalls about 7 m high. The left picture views one of the scours from the beach, the right picture 195shows the location of the two scours from the ridge behind and above the scours. In the middle of the 196 right picture is an enlarged prior drainage valley. The outgoing (and possibly also incoming) tsunami 197enlarged steep stream valleys already cut through the beach ridges. Both photos: Pinegina; right photo is 198 reversed to look similar to profile perspective.

201Figure DR10. Before (summer 2006) and after (summer 2007) photoset – South Bay profile on Matua 202(see Figure 2 for location; Fig 3 for profile). The approximate location of the profile is shown by a red 203line; a red circle identifies approximately the same point in each photo. Trenches and other excavations 204from WWII can be seen on both photos, especially well on 2007. On the 2007 (after) photo, the tsunami 205inundation is visible as gray lines of driftwood, near the top of the picture. The (unseen) unvegetated 206beach was rearranged between 2006 and 2007 (see Fig. 3), but other erosion was not dramatic. A thin 207sheet of tsunami sand was deposited almost to the limit of runup and inundation. Both photos: Pinegina.

210Figure DR11: Profiles and stratigraphy from Ainu Bay, Matua (Figures 2 and 3). The transition between 211older, well-developed soil (brown) and young sandy stratigraphy (green) is interpreted from excavations 212and post-tsunami exposures. **Top**. Ainu Bay north--the 2006 tsunami removed a sizable amount of the 213sandy proximal coastline (Figure DR12). The sharp vertical contact (or paleo-scarp) juxtaposing young 214sandy soil and older compact soil between excavations 17 and 18 indicates that either large-volume 215erosional events on the scale of the 2006 tsunami have occurred in Ainu Bay in the past, or that the bay 216has transitioned from eroding to prograding in the recent past. The scarp (inset) is also detailed in Fig. DR 21712. **Bottom**. Ainu Bay south profile (Figure DR14) and stratigraphy are similar, though 91S is thickened 218by eolian sand. A distinct difference in landscape age between excavations 20 and 21 can be seen in 219tephra stratigraphy, and 21 is a tundra soil, while 20 is a grassy sandy soil. Inset: scarp with gulley-like 220scour. Both photo insets: MacInnes.

225Figure DR12. Before (summer 2006) and after (summer 2007) photoset – Ainu Bay North profile on 226Matua (see Figure 2 for location; Fig 3 for profile; also see Figure DR11, DR13). The approximate 227location of the profile is shown by a red line, and a red circle identifies approximately the same point in 228each photo. The after perspective is hard to match because of the severe erosion, lowering the surface on 229which the group camped for two nights in 2006. Both photos: Misty Nikula.

233Figure DR13. Top: View in 2007 of 100-m-long, tsunami-generated scarp crossed by Ainu Bay North 234profile (Figs. 3, DR11). Line of bouldery sand in the foreground is another surface stripped of turf by the 235tsunami. Bottom: Close-up of the eroded scarp, with exposed soils and tephra. Tape on outcrop is 236extended to 100 cm. A light-colored tan tephra in the middle of the scarp (marked at either end by yellow 237flagging tape) is about 2000 years old.

240Figure DR14. Before (summer 2006) and after (summer 2007) photoset – Ainu Bay South profile on 241Matua (see Figure 2 for location; Fig 3 for profile; also see Figure DR11). The approximate location of 242the profile is shown by a red line, and a red circle identifies approximately the same point in each photo. 243The beach and proximal vegetated region suffered severe erosion, and the lake was breached, drained and 244filled with sand. Both photos: Misty Nikula