BIT 142 A3 Posttest:

(For 'Object References, and Arrays')
If you were given this test to do at home, then please pay attention to the following rules:
· You need to do this on your own. No asking for help, no using the internet, no using books or notes. Use only what you've got in your head. DO NOT USE VISUAL STUDIO (or any variation thereof, like the Visual C# Express/XNA Game Studio Express), or anything else that will 'help' you write your code.

· When you're done, email your answer to the professor, by attaching this file directly to your email.
· If you do not complete this, and email this to the professor by the specified due date, you will receive a 10 point penalty on Assignment 1!!
Summary: Given a picture of a simple graph, create a helper class to represent links (which are composed of a destination, and a weight/cost of that link), and then add code below so the array named myLinks (provided to you in the code below) matches given picture. In a nutshell, each link goes from N to 2 *N, with a weight of (2*N)+1, for all N > 0. So the node at slot 1 goes to (2*1 = 2) 2, and has a weight/cost of 3 (2*1+1 = 2+1 = 3)

Details: You will be given an already allocated, one-dimensional array (a 'normal array') that contain references to object of the Link class, which you will need to define (you should include a definition of a constructor, along with any data fields you need). Your job is twofold:
1) To define the Link class, which needs to store information about the 'weight' of the link (weight is often used to represent something like the cost of going from the current slot, to another slot - for this exercise, you can assume that the weight will be a whole number, positive or negative).
2) To initialize the given array using the provided pattern:
[image: image1.jpg]()

Weight: 7
T
v
Siot# > 0 1 2 3 4 5 6 7 8 9
Slot Contents: null | <ref> | <ref> | <refy] | <ref> | null null null null null
{_) 17Ut :
: : et |
tea | 3 i R e o o O ,
Comreest |2 . :

Weight

@

(ConnectsTo:| 4

To be clear, the pattern is as follows: Except for 0, all slots may contain a reference to a Link object (depicted above using a thick line from the array slot to the object). Any slots that don't contain a link, instead have the value null assigned to them. The slot's destination is twice the index of the current slot (so slot #1 links to slot #2, slot #4 links to slot #8, etc) UNLESS the destination is outside the bounds of the array (notice that slot #5 would link to slot #10, except that there is no slot #10). If the link exists, then the weight assigned to the link is twice the current index, plus 1 (so slot #1's link has a weight of (1*2)+1 = 3, slot #2's weight is (2*2)+1 = 5). The connections are depicted using a thin, dashed line, in order to convey the connection (even though there’s no C# reference connecting them – the only thing that establishes the connection is the integer value of the ConnectsTo: field)
 NOTE: The length of the array may be different than what is pictured above!
 Write your answer here:
	 Line
	Program Text

	1.
	using System;

	2.
	namespace ConsoleApplication1

	3.
	{

	4.
	 class Link // YOU NEED TO FILL IN THE DEFINITION OF THIS CLASS!

	5.
	 {

	6.
	

	7.
	

	8.
	

	9.
	

	10.
	

	11.
	

	12.
	

	13.
	

	14.
	 }

	15.
	class Program

	16.
	{

	17.
	 static void Main(String[] args)

	18.
	 {

	19.
	 Link[] myLinks = new Link[30];

	20.
	 // ANY OTHER CODE YOU NEED TO WRITE SHOULD GO BELOW

	21.
	

	22.
	

	23.
	

	24.
	

	25.
	

	26.
	

	27.
	

	28.
	

	29.
	

	30.
	

	31.
	

	32.
	

	33.
	

	34.
	

	35.
	

	36.
	

	37.
	

	38.
	

	39.
	

	40.
	

	41.
	

	42.
	

	43.
	

	44.
	

	45.
	

	46.
	

	47.
	

	48.
	

	49.
	

	50.
	

	51.
	

	52.
	

	53.
	

	54.
	

	55.
	

	56.
	

	57.
	

	58.
	

	59.
	

	60.
	

	61.
	

	62.
	

	63.
	

	64.
	

	65.
	
}

	66.
	}

[image: image2.jpg]Microsoft

 This document and the related materials are developed with support from Microsoft Research Computer Gaming Initiative under the Computer Gaming Curriculum in Computer Science RFP, Award Number 15871.
