BIT 143 A3 Posttest:

 (For ‘Binary Search Trees’)
If you were given this test to do at home, then please pay attention to the following rules:
· You need to do this on your own. No asking for help, no using the internet, no using books or notes. Use only what you've got in your head. DO NOT USE VISUAL STUDIO (or any variation thereof, like the Visual C# Express/XNA Game Studio Express), or anything else that will 'help' you write your code.

· When you're done, email your answer to the professor, by attaching this file directly to your email.
· If you do not complete this, and email this to the professor by the specified due date, you will receive a 10 point penalty on Assignment 1!!
Summary: Given the code that is defined below, you should fill the 'fixTree' method. fixTree will structurally rearrange a binary search tree that has been "damanged" in a particular way.

Details: The "damage" that the tree has sustained is as follows: Starting with a perfectly valid binary search tree (such as the one pictured in Figure 1, below

the 'damager' procedure has gone through the tree, and at every node, flipped a coin. If the coin came up heads, then the 'damager' has swapped the left & right children. If the coin came up tails, then the 'damager' did nothing. For example, starting with the tree in Figure 1, above, let's say that the damager randomly determined (via the coin toss) to swap the children of the node containing 20, to leave the node containing 10 unchanged, to swap the children of the node containing 5, to swap the children of the node containing 10, and to leave the nodes containing 50 and 35 alone. In that case, when the damager is finished, the resulting tree will look like the one pictured in Figure 2, below.

[image: image1.png]

Figure 2: One damaged binary search tree
Your fixTree routine must go through a damaged tree, and 'fix' it. This means that if your code was given the damaged tree from Figure 2, you would restore it to looking like Figure 1. Note that the ONLY way in which the tree will be damaged is as described above - you don't need to worry about anything else. For example, you don't need to worry about the 'damager' procedure removing nodes, adding extra nodes, or making any other structural changes to the tree, except as described above.

Your fixTree method is NOT allowed to allocate any new node objects, which therefore rules out simply starting a new tree from scratch, and re-adding all the values in the damaged tree to that new tree.

 Write your answer here:

	 Line
	Program Text

	1.
	using System;

	2.
	namespace ConsoleApplication1

	3.
	{

	4.
	 class BSTNode

	5.
	 {

	6.
	 public BSTNode left;

	7.
	 public BSTNode right;

	8.
	 public int data;

	9.
	 }

	10.
	 class BinarySearchTree

	11.
	 {

	12.
	 // You may assume that there is an Add method, a Find method,

	13.
	 // a Remove method, and that they've all been implemented correctly.

	14.
	

	15.
	

	16.
	 private BSTNode top;

	17.
	 public void fixTree() {

	18.
	using System;

	19.
	namespace ConsoleApplication1

	20.
	{

	21.
	

	22.
	

	23.
	

	24.
	

	25.
	

	26.
	

	27.
	

	28.
	

	29.
	

	30.
	

	31.
	

	32.
	

	33.
	

	34.
	

	35.
	

	36.
	

	37.
	

	38.
	

	39.
	

	40.
	

	41.
	

	42.
	

	43.
	

	44.
	

	45.
	

	46.
	

	47.
	

	48.
	

	49.
	

	50.
	

	51.
	

	52.
	

	53.
	

	54.
	

	55.
	

	56.
	

	57.
	

	58.
	

	59.
	

	60.
	

	61.
	

	62.
	

	63.
	

	64.
	

	65.
	

	66.
	

	67.
	

	68.
	

	69.
	

	70.
	

	71.
	

	72.
	

	73.
	

	74.
	

	75.
	

	76.
	

	77.
	

	78.
	

	79.
	

	80.
	

	81.
	

	82.
	

	83.
	

	84.
	

	85.
	

	86.
	

	87.
	

	88.
	

	89.
	

	90.
	

	91.
	

	92.
	

[image: image2.jpg]Microsoft

 This document and the related materials are developed with support from Microsoft Research Computer Gaming Initiative under the Computer Gaming Curriculum in Computer Science RFP, Award Number 15871.

