XNACS1Lib: Game Implementation Guide
Your “game-themed” application will probably include four major components:
1. TheWorld – dimension of the world (coordinate system) and appearance
2. Hero – Look and Behavior: e.g., the Ball in the BlockBreaker game.
3. Support Object – Look and Behavior: The Paddle and the Blocks in the BlockBreaker game.
4. Hero / Support Interaction – How does the Hero and Support objects interact.

XNACS1Lib:
· InitializeWorld() = define look
· UpdateWorld() = define behavior
Implementation steps: (after each step you should compile/run/test):

Step 1: implement TheWorld:
a. InitializeWorld() call SetCoordinateSystem() and SetBackgroundColor/Texture to define the coordinate system and color/texture of the background. For example, in the BlockBreaker game:
 	SetWorldCoordinate(new Vector2(0, 0), 15);
 	SetBackgroundTexture(@"bgTexture");

b. UpdateWorld(): typically nothing needs to be done here.

Step 2: implement the Hero:
a. InitializeWorld(): define XNACS1Circle or XNACS1Rectangle to define the look/size of the hero. Texture can be applied last (after all the steps are done). For example, in the BlockBreaker game (the ball):
 m_Ball = null;

a. UpdateWorld(): implement Hero behavior. Typically, Hero is controlled by the user (directly or indirectly), and/or it has “self-behavior”. For example, in the BlockBreaker game, the Ball is shot by the user, and it has a “self-behavior” where it bounces around in the window.
 if (GamePad.ButtonAClicked)
 m_Ball = new Ball(m_Paddle.Position);
 if (null != m_Ball)
 m_Ball.Update(); // Fly the ball
 if (m_Ball.expired()) // Check for out of bound
 m_Ball = null; // Fly the ball
It is important to double check and to ensure that the appearance and behavior of the hero is correct before continue to the next step. It is much easier to fix the specific of the hero when there is relatively small amount of code. In this case we should ensure the Ball can be properly shot, and bounces around in correct manner.

Step 3: implement the Support objects:
b. InitializeWorld(): appearance of support object. For example, in the BlockBreaker game, the Paddle and the Blocks can be considered as support objects. In this case, we should implement the Paddle and Blocks separately, ensuring each is functioning properly before continues with the next. For example, we can first implement the Paddle:
 m_Paddle = new Paddle();

c. UpdateWorld(): behavior of the support object. Once again, if we have more than one types of support object, complete the implementation of one before continue to the next. In this case, we will implement the Paddle behavior first:
 Vector2 delta = XNACS1Base.GamePad.ThumbSticks.Right;
 m_Paddle.MovePaddle(delta.X); // user control the paddle
We should make sure that the Paddle object appears correctly and behaves correctly before we continue to implement the blocks. Notice, by the end of Step-3, my Hero and Support objects do not interact at all! All we have is an application where there are objects (potentially) flying around but do not interact!
Step 4: Support object interaction. The implementation will be entirely in UpdateWorld(). For the case of the BlockBreaker game, we need to support the interaction between Ball and Paddle, and Ball and Blocks:
 if (null != m_Ball)
m_Paddle.BounceBall(m_Ball); // Ball paddle interaction
m_BlockSet.BreakBlocks(m_Ball); // Ball block interaction

Step 5: final touch up: audio and texture.

Template of Object class:
	
Object class: (same template for both Hero and Support)

 	Constructor()
 	What object (e.g., Hero) looks like.
		Called by InitializeWorld()

 	Update(UserInput)
 	Take UserInput and change Object (either geometry or color, or both).
		Called by UpdateWorld()

	Interact(AnotherObject)
		Take AnotherObject (collide or test for relative position) and change this object,
 		and/or AnotherObject. (e.g., collide and both fly in different directions).
		Called by UpdateWorld()

Page 2 of 2

