BIT 143 A4 Pretest:

 (For ‘Binary Search Trees’)
If you were given this test to do at home, then please pay attention to the following rules:
· You need to do this on your own. No asking for help, no using the internet, no using books or notes. Use only what you've got in your head. DO NOT USE VISUAL STUDIO (or any variation thereof, like the Visual C# Express/XNA Game Studio Express), or anything else that will 'help' you write your code.

· When you're done, email your answer to the professor, by attaching this file directly to your email.
· If you do not complete this, and email this to the professor by the specified due date, you will receive a 10 point penalty on Assignment 1!!
Summary: Given a normal binary search tree, ‘reverse’ the tree, in a very particular way.

Details: Given the code that is defined below, you should fill the 'reverseTree' method. reverseTree will structurally rearrange a normal binary search tree, so that instead of the ‘left’ reference pointing to the smaller values, the ‘left’ reference will actually point to the larger values (similarly with the ‘right’ reference). Here’s a picture that illustrates a tree BEFORE reversing the tree (on the left), and then another picture, that illustrates what the tree would look like after being reversed.

You may assume (without checking or verifying) that when your reverseTree method is called, the binary search tree is a correct, 'normal' binary search tree, with each node's left subtree containing values that are less than that of the node, and with the larger values being stored in node's right subtree.

 [image: image1.emf]10

20

5

15

10

5

20

15

Before the ReversingAfter the Reversing

 Write your answer here:

	 Line
	Program Text

	1.
	using System;

	2.
	namespace ConsoleApplication1

	3.
	{

	4.
	 class BSTNode

	5.
	 {

	6.
	 public BSTNode left;

	7.
	 public BSTNode right;

	8.
	 public int data;

	9.
	 }

	10.
	 class BinarySearchTree

	11.
	 {

	12.
	 // You may assume that there is an Add method, a Find method,

	13.
	 // a Remove method, and that they've all been implemented correctly.

	14.
	

	15.
	

	16.
	 private BSTNode top;

	17.
	 // ReverseTree will rearrange every node in the tree so that if

	18.
	 // left is currently referring to the ‘smaller’ values, then once

	19.
	

	20.
	

	21.
	

	22.
	

	23.
	

	24.
	

	25.
	

	26.
	

	27.
	

	28.
	

	29.
	

	30.
	

	31.
	

	32.
	

	33.
	

	34.
	

	35.
	

	36.
	

	37.
	

	38.
	

	39.
	

	40.
	

	41.
	

	42.
	

	43.
	

	44.
	

	45.
	

	46.
	

	47.
	

	48.
	

	49.
	

	50.
	

	51.
	

	52.
	

	53.
	

	54.
	

	55.
	

	56.
	

	57.
	

	58.
	

	59.
	

	60.
	

	61.
	

	62.
	

	63.
	

	64.
	

	65.
	

	66.
	

	67.
	

	68.
	

	69.
	

	70.
	

	71.
	

	72.
	

	73.
	

	74.
	

	75.
	

[image: image2.jpg] This document and the related materials are developed with support from Microsoft Research Computer Gaming Initiative under the Computer Gaming Curriculum in Computer Science RFP, Award Number 15871.

