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Abstract.  If causes of population fluctuation vary temporally, then tests that search for
density dependence in long time series cannot distinguish, at any given time, how much
population change is due to density-dependent or density-independent factors. For some
species’ dynamics, however, it is possible to determine over a restricted period whether
density-dependent factors are involved in reducing population densities. I use a new Return
Trajectory Likelihood Ratio Test (RTLRT) to determine whether a population perturbed to
high density (e.g., by periodic recruitment) exhibits density dependence by returning to a
positive asymptote (or leveling density, L) or is density independent and, through propor-
tional hazards, approaches zero exponentially.

In a series of simulations, declines after recruitment were mimicked by creating se-
quences that changed due to a combination of density-dependent and density-independent
factors. Until the sequence dropped below L, losses due to each mortality type were com-
bined; after that point the density-dependent component was discontinued. The power of
the test was assessed over a range of decline rates (e ?, where b = 0, 0.1, 0.25, 0.5, 0.75,
0.9, 1) to zero and to L, initial density values (2, 4, and 6 times higher than L), and
observation and process errors (¢” where ¢ = 0.1, 0.25, and 0.5). Test size was assessed
by generating trajectories with no density-dependent decline.

These simulations identified four critical parameters that influence the likelihood of
detecting density-dependent decline. (1) Detection rates change with the ratio of initial
recruitment peak to leveling density: high peaks generally increase detection, although they
may decrease detection of slow density-dependent declines. (2) High rates of density-
dependent decline relative to density-independent decline also improve detection, except
that populations rapidly dropping below L will appear density independent regardless of
dynamics governing change prior to that time. (3) Error reduces detection of density de-
pendence, except when declines are shallow and process error is assumed. (4) Slow rates
of density-independent decline (to <10% of original value) cause the RTLRT to detect
density dependence when it is not present (i.c., size is excessive for slow declines).

As an example of how the RTLRT may be used, I apply it to four years of monthly
counts of an intertidal isopod, Idotea wosnesenskii, which recruits annually to high densities
under boulders. Based on the RTLRT, subsequent declines were density dependent in some
years, although detection differed with the assumption of process or observation error, and
with the use of separate or averaged samples. In addition to density dependence, selective
mortality of one class of individuals or mortality balanced by continuing low immigration
could also cause steep declines to L. For isopods, however, densities were higher under
boulders with small depressions than under smooth controls, suggesting that declines may
occur when densities exceed the number of safe sites available. The postrecruitment decline
of 1. wosnesenskii appears to be at least partially density dependent.

Key words:  density dependence; habitat heterogeneity; 1dotea wosnesenskii; limitation; maximum
likelihood; observation error; population dynamics; process error; recruitment; regulation; simula-
tions; time series.

INTRODUCTION

Density dependence, in the sense that per capita rates
of population change depend on population size, pre-
dicts that populations should decline rapidly from den-
sities exceeding sustainable levels (Pollard et al. 1987,
Murdoch and Walde 1989). Experimental tests, which
are widely recognized as superior indicators of density
dependence because they avoid the complicated causes
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of natural population fluctuations (Berryman 1991,
Murdoch 1994), often compare trajectories of control
populations and those that have been artificially aug-
mented (Harrison and Cappuccino 1995). Higher mor-
tality rates when individuals are abundant imply that
some mortality sources act in a density-dependent man-
ner. Natural recruitment, just like an experimental ma-
nipulation, can create populations of extremely high
densities. Thus, similar comparisons between the dy-
namics of low- and high-density populations can be
carried out on populations that naturally span a wide
density range. Numerous organisms in marine envi-
ronments have periodic pulses of recruitment (fishes:
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Elliot 1984, Pfister 1995; barnacles: Gaines and Rough-
garden 1985, Gaines and Bertness 1992; kelps: Paine
1979, Pfister 1992; bivalves: Ayers 1956), as do many
terrestrial plants and insects (Gaston and LLawton 1987,
Knell 1998). This paper focuses on Idotea wosnesenskii
(Brandt, 1851), a marine isopod with conspicuous late-
summer recruitment into low—mid intertidal areas.

Many techniques already exist for detecting density
dependence in annual, univoltine species (Morris 1959,
Varley and Gradwell 1960, Smith 1961, Bulmer 1975,
Gaston and Lawton 1987, Pollard et al. 1987, Turchin
1990, Crowley 1992, Holyoak 1993, Dennis and Taper
1994, Murdoch 1994, Fox and Ridsdill-Smith 1995,
Turchin 1995). Some work particularly well when pop-
ulations begin far from their equilibrial range (Slade
1977, Pollard et al. 1987), such as after a recruitment
peak. However, most of these techniques share three
drawbacks. First, they require long time series of an-
nual censuses (>20 yr) because they only achieve rea-
sonable statistical power with large sample sizes (Slade
1977, Hassell et al. 1989, Solow and Steele 1990, God-
fray and Hassell 1992, Woiwod and Hanski 1992). Sec-
ond, sampling error often makes density dependence
more likely to be detected regardless of whether den-
sity-dependent factors are actually present (Pielou
1974, Dempster and Pollard 1986, Wolda and Dennis
1993). Finally, most tests require that the dynamics
governing population change be described by a partic-
ular model, which may not accurately reflect actual
population dynamics. For instance, the “‘strength” of
density dependence (i.e., the rapidity of a return to-
wards an equilibrium) can be a function of density or
its logarithm (Turchin 1995). When different under-
lying models are explored, sometimes trajectories are
essentially indistinguishable (Morris 1990), and in oth-
er cases different models differ substantially in whether
they create (Solow 1990) or detect (Getz 1996) density
dependence.

Relying on long time series presents practical prob-
lems because data are difficult to gather, but conceptual
problems are still more severe. Traditional tests for
density dependence purport to address how much of
the numerical variation in populations comes from
sources influenced by density (Pollard et al. 1987, Ber-
ryman 1991, Vickery and Nudds 1991). However, in
practice, these tests cannot quantify density depen-
dence at any given time because they integrate factors
affecting population abundances over long time series.
At some periods, particularly when the population is
near its equilibrium or external perturbations are large,
populations may experience primarily density-inde-
pendent fluctuations. At other times, when populations
approach a ceiling or floor (e.g., after a large pertur-
bation), they may experience primarily density-depen-
dent change tending to return them to intermediate
abundances. Consequently, the strength of density de-
pendence, and therefore its likelihood of being detect-
ed, should change over time.
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The existence of density dependence is tautological
for every species that does not go extinct (Murdoch
1994), and given sufficient time, densities eventually
move away from extreme values. Instead of tests for
density dependence, what is really needed is a way to
link the pattern of population trajectories to more
mechanistic understandings of why and how popula-
tions change in abundance (Krebs 1995). Such a link
is provided by the new technique presented in this pa-
per. The technique determines the extent to which pop-
ulation change is related to density at particular times,
rather than over long periods. Specifically, it distin-
guishes density-dependent from density-independent
decline following recruitment, by using maximum like-
lihood techniques to compare periodic counts to a mod-
el of exponential decline. If a model fits better when
the trajectory approaches a positive value rather than
zero, then the population shows density-dependent dy-
namics. In the absence of new recruits, a population
experiencing constant proportional (density-indepen-
dent) mortality inevitably declines to zero. Numbers
may be limited by the abundance at the recruitment
peak, but not regulated to return to a particular level.
In contrast, exponential decline to a positive level is
**density-dependent’” because per capita mortality rates
are higher when population density is above the level
than when near it.

First I describe simulations designed to assess the
ability of the technique to identify regulated popula-
tions, which decline toward a value >0. The simula-
tions show how power is affected by the height of the
initial recruitment peak, the rate of density-dependent
relative to density-independent decline, and the amount
of error, incorporated as either observation (=sam-
pling, measurement) or process error. When observa-
tion error predominates, discrepancies between ob-
served values and a smooth decline stem from mis-
measurement (or from an incorrect specification of pop-
ulation dynamics). In creating such sequences, the error
in one measurement does not affect subsequent ex-
pected values. When process error predominates, the
dynamics of the decline vary over time, and each ob-
served value influences the subsequent expected value
(see Methods section in Pascual and Kareiva 1996).
The assumption of error type affects parameter esti-
mation (Walters and Ludwig 1981, Pascual and Kareiva
1996) and detection of density dependence (Slade
1977, Crowley 1992).

I then apply the technique to four years of monthly
counts of a marine isopod, /dotea wosnesenskii, which
shows dramatic annual fluctuations in density. Popu-
lation counts and life history data are used to: (1) assess
whether postrecruitment population decline is density
dependent; (2) calculate the amount of error in the
counts; and (3) provide corroboration, through changes
in isopod size, sex ratio, and stage of reproduction, as
well as through habitat manipulation, of causes of the
decline.
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METHODS

Model of density-dependent vs.
density-independent decline

Decline equations.—The population dynamics con-
sidered here are restricted to declines after recruitment
peaks. Density-independent declines were assumed to
be exponential, which describes mortality of a constant
proportion of the population in each time interval re-
gardless of population size. Density-dependent mor-
tality can be incorporated in this model with a single
additional parameter, a density towards which a pop-
ulation tends to return, which I will call a “leveling
density”’ to avoid the static notion of equilibrium. In
these models, N is population size, N, its value at time
t, N, the initial recruitment peak, and N the expected
value in the absence of error. The parameter b repre-
sents the rate of decline, and higher values imply faster
rates of decline (b > 0). If exponential decline is rep-
resented as

N, =Ny x et (D

then the model of decline to a positive leveling density
(L, where L < N,) is

N =@, ~ L) X e + L. (2)

Eq. 2 represents the full model, whereas Eq. 1 is a
reduced version of Eq. 2 in which L is constrained to
a value of zero. In order to distinguish the decline rates
estimated by the full and reduced models, I will use
subscripts: b, is the decline rate to zero and b, is the
decline rate to a leveling density. -

Model justification.—In choosing a model to rep-
resent a decline to a leveling density, I had numerous
options, including a suite of models of density depen-
dence (Getz 1998). I chose Eq. 2 because it includes
a specific parameter for leveling density and requires
just one parameter to be added to the reduced model.

Eq. 2 includes only density-dependent decline,
whereas actual changes in population abundance might
more realistically involve a combination of density-
dependent and independent decline. If these processes
occur simultaneously, then population change would
involve a combination of Eqgs. 1 and 2 until N reached
L, after which only the density-independent component
(Eq. 1) would continue. I employ this strategy to sim-
ulate population declines (see Eq. 6), but simply com-
pare Egs. 1 and 2 when testing for density dependence
in any given trajectory, which provides a conservative
test involving few variables.

Another possible description of density-dependent
decline would involve a rate of decline that acts on the
logarithm of the population density, rather than on the
actual density (Turchin 1995). In practice, there may
be little difference between the trajectories resulting
from each assumption, although the same absolute
change in abundance can be achieved with a smaller
rate of decline applied to In-transformed density or a
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larger rate of decline applied to untransformed density.
The model in this paper assumes that populations de-
cline as a function of density. To determine whether
detection of density dependence is sensitive to this as-
sumption, I include in my simulations (described in
detail below) several cases in which trajectories are
generated based on In-density dependence but are an-
alyzed assuming density dependence.

Test statistic.—I use a likelihood ratio test (Edwards
1972, Hilborn and Mangel 1997) to assess density de-
pendence in species with periodic recruitment. The
likelihood ratio test compares the relative fit of full
(Eq. 2) and reduced (Eq. 1) models to population
counts, given maximum likelihood estimates (MLE) of
parameters. For MLE, population abundances are In-
transformed to account for lognormal error structure in
count data: variance is expected to increase with mean
population density, and densities cannot fall below
zero. The Return Trajectory Likelihood Ratio Test
(RTLRT) developed here tests whether a population
perturbed to high density returns to L or to zero.

The likelihood ratio (R) is equivalent to twice the
difference in negative log likelihoods, where the su-
perscripts f and r denote full and reduced models, and
n population counts are available:

R=4 MM—mMﬁ

2072
R has a chi-square distribution with 1 degree of freedom
(df), because the full and reduced models differ by one
fitted parameter (leveling density L = 0). Variances of
the full and reduced models are unknown but can be
approximated by

1 n
n(ln o' + 51n(21r) + 2
i=1

20-f2

1 " (InN, — In N2
n(ln of + 51n(21'r) + E M)
i=1
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and g

O-rZ
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respectively. Then, the likelihood ratio simplifies to
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R

i
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(In N, — In N7)?
i=1
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o (3)
> nN, - InNfy?
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which is a function of the ratio of the sum of squared
deviances from the reduced model relative to the sum
of squared deviances from the full model.

Error in models.—Counts of declining populations
are unlikely to lie exactly along a trajectory of density-
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dependent or density-independent decline. Instead, er-
ror shifts samples away from the expected trajectory.
This error can have two sources. Observation error (gy)
stems from mismeasurement (Walters and Ludwig
1981, Pascual and Kareiva 1996). The error involved
in one measurement is assumed not to affect the next
measurement; that is, population dynamics occur in-
dependent of sampling noise. Process error (&y,) stems
from variation in the processes governing the decline,
meaning that rates of decline, leveling densities, or
external perturbations change over time. Both types of
error likely affect population estimates, but they cannot
be fit concurrently without making an assumption about
their relative values or the magnitude of one type. The
assumption of which error is most important influences
both the values of parameter estimates and their cer-
tainty (Pascual and Kareiva 1996). Rather than choos-
ing between process and observation error models (e.g.,
most tests for density dependence invoke only process
error [Pollard et al. 1987, Reddingius and den Boer
1989, Holyoak 1993, Dennis and Taper 1994], as do
many stock-recruitment models [Walters and Ludwig
1981]), the best strategy is to explore error types sep-
arately, to determine how each affects detection of den-
sity dependence (Hilborn and Walters 1992).

Observation error was incorporated into simulated
population declines as

N, =N, x e @

where e, is drawn from a normal distribution with
standard deviation ¢. The RTLRT subsequently min-
imized the sum of squares between simulated obser-
vations and the expected decline from N, (all In-trans-
formed) (Fig. 1A). In contrast, process error was sim-
ulated as

N, = g(N_)) X e (5

where g represents the rules governing population de-
cline. Any discrepancy (gy,) from the underlying model
in this case did affect subsequent points. The RTLRT
minimized the sum of squares between each observa-
tion and the expected decline from the previous ob-
servation (all In-transformed) (Fig. 1B). Consequently,
trajectories that were fit with process error could only
include a single sample at each time step, whereas ob-
servation error allowed multiple samples.

I added process error to simulated declines in a man-
ner that makes no assumption about the parameter most
influenced by error, which is similar to Dennis and
Taper’s (1994) “random shock to population growth
rate”” and in contrast to Holyoak (1993), who applied
error only to the parameter determining the ‘‘strength
of density dependence.” This strategy is the most gen-
eral approach, making no assumption about whether b
or L or both vary among time steps. In my simulations,
process error occurred after the action of any density-
dependent or density-independent factors, which Crow-
ley (1992) believes applies to some but not all situa-
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FiG. 1. Schematic representation of (A) observation and
(B) process error. The points represent simulated density-
dependent declines (Eq. 2). with N, = 6, L = 1, b, = 0.75,
and oy = oy = 0.5. Maximum-likelihood techniques were
used to find parameter values that minimize the sum of
squares of the difference between expected and actual values
(distance between each data point and best-fit line, In-trans-
formed). In (A), N, = (3.39 — 1.77) X ¢-9320 4+ 1.77, and
in (B), N, = (N, , —~ 1.45) X e"!3D 4 1.45.

tions. In a sense, then, process error acts as an addi-
tional source of density-independent fluctuation, which
may shift the population above or below the expected
abundance.

Assuming observation error only, the full model has
three parameters (N, [peak], b [decline rate], L [leveling
density]), and the reduced model has two (L = 0).
Assuming process error, N, is an irrelevant parameter
because the prediction at each time step depends only
on the observed value at the previous time. Also, sam-
ple size of points used to fit the decline (n) is reduced
by one because there is no expected value to compare
to N,.

Because the likelihood ratio has a chi-square distri-
bution, Eq. 2 provides a better fit than Eq. 1 at the «
= (.05 level if R > 3.84 in Eq. 3 (Edwards 1972, Stuart
and Ord 1991).

Simulations

To evaluate the ability of the RTLRT to detect den-
sity dependence, I applied it to data simulated with
known underlying dynamics. Simulations with error
were run for 10 time steps, corresponding roughly to
monthly counts between protracted annual recruitment
events characteristic of 1. wosnesenskii. 1 explored the
behavior of >65%, randomly chosen, of the combi-
nations of the following parameters: ratio of peak
height to leveling density (Eqs. 2, 4, 6), rate of ex-
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ponential decline to 0 (b, = 0, 0.1, 0.25, 0.5, 0.75, 1),
and rate of exponential decline to leveling density L
(b, = 0, 0.1, 0.25, 0.5, 0.75, 1). This last parameter
was only used in the simulation as long as the current
and predicted densities were higher than the leveling
density (N,_. > L and N, > L), where 7 is the time
interval between simulated counts. Declines with both
density dependence and density independence were
simulated with the formula

N, =N e - (N_, —L(1—e*) (6

and error was incorporated using Eqs. 4 and/or 5.

The same ratio of peak height to leveling density
(N,/L) provides an identical fit regardless of the ab-
solute values of these parameters (personal observa-
tion). Identical fits are also achieved for all models with
the same product of decline rate and time step (b X 1)
(personal observation). Because errors are lognormally
distributed, they alter observations by relative, not ab-
solute amounts, and I was able to rescale peak height
and decline rate so that L = 1 and 7 = 1. The rate of
decline has a bounded range of interesting parameter
values. If overall decline (combining exponential de-
cline to zero and to L) is too slow, populations do not
approach their leveling density within the full time of
observation; if too high, they pass below the leveling
density almost immediately. In either case, a decline
to a positive leveling density cannot be distinguished
from a decline to zero.

Trajectories were also created in which declines to
L affected In density, while declines to zero continued
to affect untransformed density. For these simulations,
values of b, were chosen such that density-dependent
trajectories (b, = 0) reached the same final values as
in the main simulations.

For each set of parameters, 1 created 200 separate
“population” declines with process error, observation
error, or both. Errors (e, or gy,) were randomly drawn,
at each of 10 time steps, from a normal distribution of
mean = 0 and o = 0.1, 0.25, or 0.5. The same 200
series of 10 random errors were used with each set of
parameters. (To simulate both observation and process
error concurrently required 20 random errors, since two
were incorporated at each time step.) For some simu-
lations with high error (¢ = 0.5), I added additional
samples at each time step of the simulations to explore
the influence of sample size on RTLRT results. Using
these multiple samples, I also calculated average values
at each time step and performed the RTLRT.

For each simulation, I searched for new (MLE) pa-
rameters for Eqs. 1 and 2 that best fit the decline. Tra-
jectories generated with observation error were fit as-
suming observation error; similarly, those generated
with process error were fit assuming process error. Tra-
jectories generated with both process and observation
error were fit twice, once assuming observation error
only, and again assuming process error only. A decline
was determined to be density dependent if the RTLRT
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indicated that Eq. 2 fit significantly better than Eq. 1.
All simulations were run in a visual basic program in
Microsoft Excel 5.0.

The estimated power of the RTLRT, for each param-
eter combination and error level, is the proportion of
the 200 runs that results in significantly better fit with
than without density dependence. The size, which re-
fers to detection of density dependence when it is not
present in the parameters used for the simulation,
comes from runs with b, = 0.

Annual declines in Idotea wosnesenskii

The marine isopod Idotea wosnesenskii lives on al-
gae, interstitially among mussels, and under rocks in
mid-low intertidal areas of rocky shores from Alaska
to southern California (Brusca and Wallerstein 1979,
Rafi and Laubitz 1990). Males reach lengths of 35 mm,
and females are rarely larger than 25 mm. Females
become reproductive in December, and brood offspring
underneath overlapping oostegites on their ventral sur-
face (marsupium) until the juveniles reach a length of
4 mm (personal observation). Many marine isopod spe-
cies experience annual fluctuations in numbers asso-
ciated with the release of offspring and their subsequent
disappearance (Naylor 1955, Lee 1966, Salemaa 1979).

I counted a population of /. wosnesenskii in a boulder
field on an east-facing beach of Tatoosh Island, Wash-
ington, USA (48°24" N, 124°44’ W), a site at which
gravel and boulders shifted over time. Unlike other
populations of isopods, peak densities occur several
months after release of brooded juveniles, when large
nonreproductive individuals recruit to the boulder field
(personal observation). Although I often examined dif-
ferent boulders during each count, I tried to select those
where isopods would be most abundant. These tended
to be boulders at about +0.5 m above mean lower low
water, not buried in gravel, ranging in area from 100
to 2000 cm?. At monthly intervals during low tide series
from July 1992 to August 1996, I turned over 3-5
boulders and collected all isopods underneath. This
sampling regime provided a biased sample of boulder
field densities, concentrating on boulders under which
isopods were most common. Despite my selectivity, I
occasionally chose boulders that were anoxic under-
neath and harbored few isopods. Any samples with two
or fewer individuals were censored, as these repre-
sented poor habitat. [sopods were returned to the boul-
der field after they were recorded.

For each isopod I recorded the following data: length
(in millimeters), sex (males with bristles on their legs,
females with marsupia), and, for females, develop-
mental stage of brooded offspring. Offspring were cat-
egorized as eggs, embryos without legs, embryos with
legs, and juveniles. Females with empty marsupia were
also noted.

Per capita reproduction was based on the brood sizes
of 78 females with eggs or embryos, collected from a
beach adjacent to the study site in December 1992 and
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March 1993. Based on 18 females kept in the laboratory
during spring 1995, developing young took one month
to reach the embryo stage, and two months before re-
lease. Juvenile growth rate (5-15 mm initial length)
was 2.0 = 0.36 mm/mo (mean * 1 Sg, n=19). Thus,
each female observed with eggs during monthly field
surveys should represent an independent reproductive
event, and juveniles should take 6 mo to reach repro-
ductive size.

I applied the RTLRT to each year’s recruitment peak
and subsequent decline. The RTLRT determined
whether a model of exponential decline to a positive
leveling density fit the count data significantly better
than an exponential decline to zero. The tests were
performed assuming either observation or process er-
ror. Average densities for these analyses were weighted
by boulder area.

Causes of population change

The RTLRT reveals whether count data are consis-
tent with density-dependent decline, but does not in-
dicate causes of population change. I separately ex-
amined some potential causes of isopod fluctuations,
including class-specific mortality and habitat avail-
ability. Immigration could also compensate for on-go-
ing population declines, but nonreproductive individ-
uals in the samples >6 mo after the peak were excluded
from analyses to eliminate this possible cause of lev-
eling population abundance.

If certain isopod classes contribute disproportion-
ately to the decline, then size structure or sex ratio of
the population should change. These data were avail-
able from the monthly counts. In particular, I related
average size of males to isopod density using a non-
parametric test for correlation in ranks (Spearman’s r,),
and compared the frequency of females at various stag-
es of brood development with expectations based on
the proportion of time they spent at each stage when
monitored in the laboratory (G test).

If populations are regulated by habitat availability,
then providing additional habitat should increase pop-
ulation densities. Because other marine invertebrates
respond to rock microtopography (Emson and Faller-
Fritsch 1976), 1 altered the undersides of artificial
“boulders.”” Holes (1 cm diameter X 0.5 cm deep) were
drilled into five 20 X 20 cm cement bricks. These bricks
were paired with undrilled bricks and added to the boul-
der field. I monitored isopod densities beneath these
bricks four times between July and September 1995.
Isopods were removed from the bricks after each count.
Because of the presence of several samples without
isopods, I analyzed the results using a generalized lin-
ear model with Poisson error, where the factors were
date, replicate, and treatment (Crawley 1993). Over-
dispersion was corrected by an empirically derived
scale parameter (Crawley 1993).
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Error in population estimates

The magnitude of observation or process error in
monthly counts of isopods was calculated from

= |3 )
Evy ﬁ'

N,
B = l"(g(N..o) ®

which are simply rearrangements of Eqgs. 4 and S. The
magnitude of observation error (gy) was calculated
from separate samples and from samples averaged by
date; process error required average values. I examined
these errors for normality and calculated standard de-
viations.

or

REsuULTS
Simulations

Fig. 2 highlights the results of the simulations, show-
ing how often the RTLRT detected density dependence
in 200 simulated postrecruitment declines. Density de-
pendence was generally easier to detect when most of
the simulated decline was to L instead of zero (b, large
and b, small). Higher initial recruitment peaks also
generally increased detection of density dependence.
However, when density-dependent declines were slow,
higher peak heights resulted in lower detection: for
example, when b, = 0.25 and b, = 0 (o = 0.5), arise
in peak height from 2 to 6 was associated with a decline
in density dependence from 13% to 5%. Increasing the
rate of density-independent decline (b, = 0.1) actually
raised detection of density dependence (to 17-32%).
The overall faster rate of decline must bring the tra-
jectory more rapidly towards L, so that an early steep
and later gradual decline appear to approach a leveling
density (less than the actual L).

As the amount of process error or observation error
increased, the detection of density dependence declined
(Fig. 2). For example, for a given combination of de-
clines to L (b, = 0.5) and to 0 (b, = 0.1), and for a
low peak height (lcl0 = 2), an increase in observation
error (oy = 0.1 to 0.5) reduced detection of density
dependence from 57% to 22%, and a similar increase
in process error reduced detection from 67% to 40%.
Using both types of error in the simulations tended to
increase overall error levels, and detection of density
dependence declined accordingly (Fig. 2). Averaging
multiple samples from a single time step tended to
reduce error levels, and detection of density depen-
dence in simulations became more common (Fig. 3A).
When multiple samples were considered separately
rather than averaged, error (negative log likelihood)
increased but so did sample size, and detection of den-
sity dependence changed little (Fig. 3B).

An obvious exception to the general pattern that error
reduced detection of density dependence was that slow
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Power and size of the Return Trajectory Likelihood Ratio Test for different parameter values and levels of error,

based on the proportion of 200 simulated trajectories in which density dependence is detected. Error is incorporated as (A—
C) observation error (OBS.), (D-F) process error (PROC.), (G-I) both, but assuming only observation error, and (J--L) both,
but assuming only process error. Each column of graphs corresponds to power under a different magnitude of error (o), and
each graph shows results for three peak heights (solid square, N, = 2; solid circle, N, = 4; solid triangle, N, = 6). Although
numerous combinations of density-dependent and density-independent decline were explored, the graphs show a subset of

results for steep declines after recruitment, where b, + b, = 1.

declines, coupled with high process error, often ap-
peared density dependent (and reduction of error did
not necessarily improve detection [Fig. 3C]). In fact,
slow density-independent declines (b, = 0.1-0.25) ap-
peared density dependent up to 40% of the time ac-
cording to the RTLRT, even when no density depen-
dence was included in the simulations; that is, test size

could be excessive assuming process error. However,
<5% of the simulations appeared density dependent
when populations declined at higher density-indepen-
dent rates. The critical decline rate was b, > 0.25,
which would cause a population to decline by one-
fourth at each of 10 time steps in the absence of error.

Assuming that population declines were density de-
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FiG. 3. Power of the Return Trajectory Likelihood Ratio
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time. Both observation (o = 0.5) and process (oy, = 0.5)
error were incorporated in the simulations, which were an-
alyzed by (A) averaging samples at each time and assuming
only observation error, (B) keeping samples separate and as-
suming observation error, and (C) averaging samples at each
time and assuming only process error. Values for initial peak
height (N,), rate of decline to L (b,), and rate of decline to
zero (b,) are presented in the key.

pendent when in fact they were In-density dependent
had little effect on detection of a positive leveling den-
sity. Ln-density-dependent declines were more concave
than their density-dependent counterparts, particularly
when declines were rapid. Low peaks and slow declines
favored detection of density dependence in trajectories
generated with In-density dependence, whereas high
peaks and fast declines favored detection in density-
dependent trajectories (Fig. 4).
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Causes of population change in 1dotea wosnesenskii

Idotea wosnesenskii showed dramatic annual cycles
in population abundance (Fig. 5). New individuals,
identifiable by size (<20 mm) and nonreproductive sta-
tus, began appearing in the boulder field each July.
Maximum population densities occurred as late as Oc-
tober. Recruitment peaks significantly exceeded aver-
age densities by as much as fivefold (Fig. 5).

Adding microtopography to the underside of cement
bricks increased isopod densities relative to smooth
controls (Fig. 6). In a generalized linear model, the
only significant interaction term was date X replicate
(x1, = 21.06, P = 0.05), which suggests that the sam-
ples through time were independent. The main effect
of treatment was highly significant (x; = 46.77, P <
0.0001), with drilled bricks harboring on average 2.60
times more isopods than undrilled bricks (standard er-
ror is asymmetric: 2.24-3.01).

In 1. wosnesenskii, offspring number was correlated
with female size, which accounted for 45% of the var-
iation in brood size (Fig. 7). Estimated offspring pro-
duction could account for the following year’s recruit-
ment peak if juveniles suffered mortality rates of 0.6—
0.75 mo~! outside the boulder field (Table 1). These
juvenile mortality rates fell within estimates for benthic
invertebrates (Strathmann 1985) and, surprisingly,
were similar to estimates for adult isopods (Table 1).

Detection of density dependence in Idotea
wosnesenskii

Declines from peak recruitment indicated a signifi-
cant contribution from density-dependent sources in
only one of four years, assuming observation error and
considering each boulder as a separate sample (Table
1). When counts were combined by date, density de-
pendence was detected in two of four years assuming
observation error and three of four years assuming pro-
cess error. The detection of density dependence in these

5 g-;‘ A B 08BS.
2 0'5 [ FiG. 4. Comparison of density-dependent
3 > ﬁ and In-density-dependent declines analyzed us-
2 0.41 B N, (b,,b>) ing the Return Trajectory Likelihood Ratio Test
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Counts of Idotea wosnesenskii in the boulder field on Tatoosh Island. Samples came from 3-35 boulders each

1. Stars indicate dates on which at least half of the samples are
onfidence limit [cL] of average density based on all samples).
bundances, because variance increases with the mean. The lower

panel shows the proportions of males and females (which do not sum to 1 because some individuals were of indeterminate

sex) and average male size.

cases is unlikely to be due to excessive test size, be-
cause overall decline rates exceeded b = 0.5.

The monthly isopod counts exhibited high error lev-
els. Using Eq. 7 and considering each boulder as a
separate sample, I calculated observation error at oy
= 0.5-0.7. Combining monthly values reduced sample
size and level of error (o and oy = 0.25-0.35) (Table
1), which work antagonistically to change the likeli-
hood ratio. The fact that density dependence was more
readily detected with combined samples suggests that

reduction of error more than balanced the reduction of
sample size, which was also the case in the simulations
(Fig. 3).

During the decline, the proportion of females in the
population increased, probably because females re-
cruited before I was able to distinguish their sex and
then became ovigerous (Fig. 5). The proportion of fe-
males at each brooding stage should reflect the time
required for offspring to develop through the stage, but
females at late stages were underrepresented in the pop-
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ulation relative to those at less advanced stages (Fig.
8; G, = 113.2, P « 0.001). Males made up less than
a third of the population throughout the year, but av-
erage size of males became smaller during the popu-

TABLE 1.

JENNIFER L. RUESINK

Ecology, Vol. 81, No. 12

200
2 1504
a
(2]
=
S]
s 100
o
s}
E .
2 504
.
0 T T T T
18 20 22 24 26
Length (mm)
FiG. 7. Relationship between female length and brood

size in ldotea wosnesenskii. Only females brooding eggs or
embryos were used in the analysis. Simple linear regression:
Number of offspring = 11 X (length of female) — 129; n =
78, adjusted r* = 0.44, F = 61.4, P < 0.001.

lation decline (Fig. 5). Average male size was corre-
lated with population density (Pearson’s p = 0.46, P
< 0.01, n = 41 samples from August 1992 to August
1996). This pattern suggests a disappearance of large
males initially recruiting into the population, while
newly maturing males were small.

Maximum-likelihood parameter estimates and outcome of Return Trajectory Likelihood Ratio Tests (RTLRT) for

four years of population declines following recruitment in Idotea wosnesenskii.

19921993
(28 Aug-20 Jul)

1993-1994
Parameter

(14 Oct=25 Jub)

1994-1995
(3 Oct=25 Jul)

1995-1996
(9 Sep-14 Jul)

Process error, each date as a separate sample

RTLRT 3.96 9.08
Ny (Ny/L) 997 (8.0) 835 (5.7)
L 125 147

b, 0.55 1.19

n 8 8
Error (oyw) 0.33 0.34

Observation error, each date as a separate sample

RTLRT 1.95 4.89
Ny (NJ/L) 846 (9.4) 814 (6.2)
L 90 132

b, 0.37 0.89

n 9 9
Error (o) 0.29 0.32

Observation error, each boulder as a separate sample

RTLRT 0 3.99
Ny (Ny/L) 447 658 (5.4)
L 0 122

b, 0.17 0.83

n 44 42
Error (oy) 0.71 0.60

Prerecruitment dynamics
Ng 422 399
b, 0.66 0.75

6.51 2.09
456 (3.3) 1042 (7.4)
138 141

0.78 0.38

9 7

0.28 0.29

6.21 0.08
480 (4.0) 867 (41.3)
119 21

0.61 0.22

10 8

0.25 0.23

1.87 0.11
339 (3.6) 803 (26.8)

93 30

0.12 0.23

49 40

0.60 0.52
363

0.60

Nores: Boldface numbers indicate that the full model (exponential decline to leveling density) fit significantly better than
the reduced model (exponential decline to zero). N, is the estimated recruitment peak (=actual density given process error),
L is the estimated leveling density. b, is the monthly rate of decline from peak to leveling density (sometimes L = 0}, and
n is sample size. Rocks hosting two or fewer isopods and juveniles appearing >6 mo after the peak were censored from the
analysis. Error in the counts was estimated from Eqs. 7 and 8 in Methods: Error in population estimates. The table also
shows cumulative densities of females with eggs throughout each year’s decline (Ng), and the juvenile (exponential) mortality
rate (b;) assuming average production of 104 offspring per female and 6 mo between release and the following recruitment

peak.
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DISCUSSION

The argument advanced in this paper is that patterns
of population decline after recruitment contain infor-
mation about causes of mortality. Density-independent
factors should cause populations to decline to zero (ex-
ponentially if mortality is proportional), whereas den-
sity dependence should result in a decline to a positive
leveling density (L). The ability of the RTLRT to detect
this density dependence generally improves as: (1) er-
ror (observation, process, or both) declines, (2) peak
height rises relative to L; (3) rate of decline to L be-
comes more rapid; or (4) rate of decline to zero be-
comes shallower (Fig. 2). The test fails to detect density
dependence when the population does not approach L
over the time of observation. Conversely, slow density-
independent declines can appear density dependent.

The isopod I. wosnesenskii recruited to boulder
beaches on Tatoosh Island in late summer. When de-
clines from recruitment peaks were significantly den-
sity dependent according to the RTLRT, decline rates
were 0.6-1.2 mo~! and peaks were 3-8 times higher
than L. Error levels were higher when boulders were
analyzed separately than when densities were averaged
by date. Given these parameter values, simulations
demonstrated that the RTLRT would detect density-
dependent trajectories about half the time. Indeed, den-
sity dependence was only detected in two (observation
error) or three (process error) of four years of isopod
counts. The RTLRT suggests that isopods often de-
clined after recruitment due to density-dependent fac-
tors, and may even have been experiencing density de-
pendence in years when it was not detected, because
the power of the test was low at observed error levels.

The RTLRT can accommodate a number of modi-
fications of sampling regime and population dynamics.
(1) If several counts are available for each time period,
then counts may be tested for density dependence sep-
arately (for observation error only) or as an average
(for observation or process error). Averaging increased
test power, apparently by reducing error levels. Mul-

tiple samples, considered separately, were less likely
to be recognized as density dependent, since minimiz-
ing squared deviances in density tended to flatten the
trajectory. (2) Density-dependent factors have tradi-
tionally been modeled either as a function of density
or as a function of its logarithm, although nothing is
known about when each model is more accurate. If
density dependence is a function of In-density, but the
RTLRT assumes it is a function of density, then test
power changes only slightly. However, density-depen-
dent declines could be described by numerous other
models (Getz 1998), and the power of the RTLRT to
detect such density dependence is currently unknown.
(3) T have not examined the consequences of incor-
porating process error into the parameters b or L, al-
though, in other density-dependence tests, the way in
which error, even of a single type, is incorporated can
have substantial effects on power (Fox and Ridsdill-
Smith 1995). (4) Uneven time steps between samples
may alter the power of the RTLRT, but this issue has
not been explored, nor have the effects of temporally
correlated errors (Solow 1990).

The issues mentioned above concern details of the
RTLRT; there are, in addition, restrictions on using the
test at all. The RTLRT requires populations with pe-
riodic recruitment, and it detects density dependence
poorly when population densities stay above or below
L for most of the samples. In addition, mechanisms
other than density dependence generate apparently den-
sity-dependent trajectories. The first mechanism is im-
migration, which could arrest a density-independent
decline by the continual addition of new individuals.
Fig. 1B provides an indication of the problem, because
process error, like immigration, can displace the actual
density of a population in a positive direction. High
process error and shallow declines create an illusion of
density dependence even when it is weak or non-ex-
istent if the population appears to move toward an in-
termediate level (L > 0). Thus, individuals arriving
after the recruitment peak should be censored. For L
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wosnesenskii, possible immigrants were easily elimi-
nated by censoring nonreproductive individuals count-
ed >6 mo after the peak.

The second mechanism that may result in spurious
detection of density dependence is the disappearance
of one class of individuals while other classes survive.
For instance, in /1. wosnesenskii, portions of each sex
disappear during the decline: large males apparently
disappear (Fig. 5; see also Jormalainen and Tuomi
1989), and females at later brooding stages are under-
represented (Fig. 8), even though females adjust re-
productive output to size (Fig. 7, see also Tuomi et al.
19884, b). However, because sex ratio does not change
consistently during the postrecruitment decline (Fig.
5), class-specific mortality is unlikely to cause apparent
density dependence.

Because the RTLRT analyzes patterns, not mecha-
nisms of decline, it gives no guidance on the causes of
population dynamics, even when other evidence can
eliminate spurious causes of apparently density-depen-
dent declines such as continued immigration or class-
specific mortality. On the other hand, the detection of
density dependence should be a prompt to look for
mechanistic explanations of density-dependent dynam-
ics. In this case, detection of density dependence using
the RTLRT prompted a study of habitat refuges. A
crack or depression in a boulder may protect isopods
from fish or birds known to eat them (Pfister 1995,
Wootton 1997), but these safe sites may also be limited
in number. Because isopod densities were higher under
bricks with microtopography in comparison to smooth
ones, it appears that physical attributes of the habitat
can help determine densities (Fig. 6). However, it is
still unclear if isopods were attracted to microtopog-
raphy, or died at higher rates when holes were un-
available.

After more than 50 years of debate (Smith 1935,
Andrewartha and Birch 1954), the importance of den-
sity dependence is still contested (Berryman 1991,
Hanski et al. 1993, Holyoak and Lawton 1993, Wolda
and Dennis 1993, Wolda et al. 1994). One way to re-
solve the debate over density dependence is to look for
its prevalence in natural populations, but this has
spawned another layer of argument concerning appro-
priate statistical tests (Holyoak 1993, Fox and Ridsdill-
Smith 1995, Turchin 1995). Tests using actual or sim-
ulated data generate results that differ widely, depend-
ing on assumptions about underlying dynamics, error
structure, time lags, spatial structure, and trends (initial
value close to or far from equilibrium) (Stiling 1988,
Hassell et al. 1989, Turchin 1990, Ray and Hastings
1996). Some have excessive size (Holyoak 1993, Wol-
da and Dennis 1993); others have low power to detect
density dependence when it is present. But almost in-
evitably, density dependence is detected as time series
increase in length (Hassell et al. 1989, Solow and Steele
1990, Godfray and Hassell 1992, Woiwod and Hanski
1992). The major conceptual problem with using long
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time series to detect density dependence is that most
tests do not actually answer the question of how much
population change is due to density-dependent sources.
They indicate only that at some times populations reach
extreme densities that tend to move toward an equili-
brial range rather than away.

The RTLRT synthesizes two growing realizations in
the study of density dependence. (1) Experimental ma-
nipulations provide immediate evidence of how pop-
ulation growth rate changes with density. The nonex-
perimental density perturbations experienced naturally
by many organisms echo these experiments, although
they suffer from a lack of *“‘controls.”” Observing actual
population dynamics does have the advantage, how-
ever, of assuring that density manipulations occur with-
in a natural range. (2) Regulated populations, regard-
less of underlying dynamics, should exhibit station-
arity, maintaining a constant mean and variance over
time. Perturbations away from this mean value are used
by Turchin (1995) to exemplify the advantages of den-
sity-dependence tests based on stationarity. He posits
a situation in which a population is always censused
just after a random perturbation away from equilibrium.
In this case, there would be no relationship between
population density sampled at one time, and population
change to the next, because abundance would have
shifted randomly. However, the sequence should, after
sufficient time, be stationary. The RTLRT shows that
there may be more to learn from following short-term
population changes, as populations return from their
perturbed densities towards a sustainable level, than
from waiting for these random perturbations to accu-
mulate. Applying the test is not limited by time (wait-
ing until densities reach levels where density-depen-
dent factors prevail), but by error, which can obscure
a positive asymptote.

The controversy surrounding population regulation
has remained a central focus of ecology because of its
implications for how and why populations fluctuate.
Increasingly, the issues have been cast in a conserva-
tion context, as providing insight into how to reduce
population outbreaks or avoid extinctions. For conser-
vation, detailed case-by-case information about prox-
imal factors influencing population change is more rel-
evant than a general sense of whether density depen-
dence is common or rare among species. In fact, what
is needed are tools like the RTLRT that demonstrate,
within a species, when density-dependent processes are
likely to have large effects on abundance relative to
other causes of population change. These tools help
direct attention to times and conditions when it may
be possible to identify density-dependent mechanisms
of population change.
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