Reflection
 Principle of Least time
 Plane mirror—virtual images
 Concave mirror
 Ray tracing, focal point

Refraction
 Principle of Least Time
 Snell’s law \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \)
 Examples: swimming pool, plate glass
 Total Internal Reflection
 Refraction at curved surface, focal point

Lenses
 Thin Lens properties: focal length, diameter
 Ray tracing—“easy” or principal rays
 Parallel to axis, through lens center, through focal point.
 The lens equation \(1/p + 1/q = 1/f \)
 Size and location of images; real and virtual
 Brightness of images—effect of lens diameter, image area
 Multiple lenses:
 Effect of the eye lens
 Magnifier
 Telescope
 Microscope

Dispersion (n depends on wavelength)
 Prisms
 Rainbows

Photon Model of Light. \(E = hf = hc/\lambda \).
 The total energy is the energy per photon times number of photons.
 Photons also carry momentum, \(E = pc \).

Particles have a wave nature. momentum is related to wavelength. \(p=h/\lambda \).
 For non-relativistic particles \(E = p^2/2m \) or \(p = \sqrt{2mE} \)
 Calculate wavelength of 50 eV electron.
Energy momentum relationship from relativity.
\[E^2 = p^2c^2 + m^2c^4 \]

Two special cases: if mass is zero (photon) then \(E=pc \).
For “slow” particles (speed \(\ll c \)) Do Taylor series expansion:
Find \(E = mc^2 + p^2/2m \) where the first term is the rest energy
and the second term is non-relativistic KE.

Diffraction and interference for particles.
Using the particle wavelength the diffraction and interference phenomena resemble
those for light--- however if we count particles then in the description of the
diffraction (or interference pattern) what was \textbf{Intensity} for
the case of light becomes \textbf{probability} for detecting a particle.

Diffraction leads to the Uncertainty relationship between position and momentum.
\[\Delta y \Delta p_y \sim \hbar \] where \(\Delta y \) is the slit width and \(\Delta p_y \) is spread of sideways momentum
(related to angular spread of diffraction pattern)

Evidence for the photon model for light. The Photoelectric effect.
\[E_{\text{photon}} = \text{work function} + KE_{\text{max}} \]

Polarization of light in the Photon model.

The Feynman thought-experiment-- Can we observe particle and wave aspects
simultaneously?