\[\sin \theta = \frac{h}{R} \]

\[\cos \theta = \frac{R - \varepsilon}{R} \]

\[\text{R = radius of curvature} \]

Vertical angles are equal.

Reflection law.

Sides are equal.
Paraxial rays

\[h \ll R \]

\[\sin \theta = \frac{h}{R} \approx \theta \]

\[\frac{\varphi \theta}{\frac{R}{2}} = 1 - \frac{h}{R} \]

\[\frac{\varphi \theta}{\frac{R}{2}} = 1 - \frac{1}{2} \theta^2 \]

\[\frac{h}{R} \approx \frac{1}{2} \theta^2 \]

\[(R - a)^2 = h^2 + a^2 \]

\[R^2 - 2aR + a^2 = h^2 + a^2 \]

\[R^2 - h^2 = 2aR \]

\[a = R - \frac{h}{2} \approx \frac{R}{2} \]

Focal length is \(\boxed{\frac{R}{2}} \) independent of \(h \).

All paraxial rays go through \(f \).

\(f \) is the focal point of the mirror.
Snell's Law

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

From Principle of Least Time

\[t_{time_1} + t_{time_2} = \text{minimum} \]
\[\sin \theta = n \sin \theta_w \]
\[\tan \Theta_w = \frac{l}{d} \quad \tan \Theta = \frac{\ell}{y} \]

\[y = d \frac{\tan \Theta_w}{\tan \Theta}. \]

Small angle \[\sin \Theta = \tan \Theta \]

\[y = d \frac{\sin \Theta_w}{\sin \Theta} \]

Snell's law \[\sin \Theta = \frac{n \sin \Theta_w}{n} \]

\[y = d \frac{\sin \Theta}{\sin \Theta} = \frac{d}{n} \]

The apparent depth is independent of \(\Theta_w \), so all nearby rays come from \(y \).