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Ferromagnetism in Mn-doped CuO
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Ferromagnetic properties have been observed in CuO doped with 3.5-15 at. % of Mn. The transition
from ferromagnetic to paramagnetic phaseTat=80 K is associated with the metal—insulator
transition. Magnetoresistance is weakly negative in the vicinity of the transition, but positive in a
wide range of temperatures beloW.. The experimental results suggest a possibility of
interpretation in terms of the Zener double-exchange mechanism and strong electron—phonon
interactions. ©2003 American Institute of Physic§DOI: 10.1063/1.1623944

Ferromagnetic semiconducto(ES9 are key materials presence of CuMyO, increases with increasing Mn concen-
for spin injection in electronic and optoelectronic semicon-tration.
QUct?r devices that can be controlled by weak magnetic Magnetic properties of the Mn-CuO samples were stud-
field,” such as spin transistors, polarizing light-emitting di-jed on a superconducting quantum interference device
odes, and nonvolatile storage deviééds the efficiency of (Quantum Design MPMS-5SAIl samples show magnetic
spin injection depends on the interface quality and impedy giereses aF<80 K, with coercive fields of 110, 590, 500,
ance matching, all-semiconductor structures benefit the PeBG and 260 Oe fox=0.035. 0.066. 0.094. 0.127 and 0.150
formancg of spmtro_mc dewcésThe best knoyvn kS st_ruc- respectively, at 5 K. The spontaneous magnetic moment per
ture realized experimentally is Mn-GaAs, with the hlghestlvIn atom is estimated o be up tol.5 Fiqure 2 shows
Curie temperature of 110 K.In recent years, theoretical rﬂysteresis loops for the samgles \./v'»tlI;:BO. 06?5 0.094. and

studies have been made on the origin of ferromagnetis e
(FM) in FSs, and room temperatuf&T) FM predicted in 0.15 atT=5 K. Temperature dependence of magnetization at

semiconductors such as ZnO and AIN doped with magnetid0 O€ was measured in the range from 5 to 120 K, both in
ions®1°RT EM has been observed in diluted FM semicon-zero-field-cooled(ZFC) and field-cooled(FC) conditions.
ductors Co-TiQ, Mn-GaN, Cr-AIN, and Co-ZnO*° Figure 3 shows the results for sample GsMng 1540,

Pure CuO is an antiferromagneti&FM) semiconductor, showing two phase transitions, one at ab®yt=30 K, and
which has been studied partly in relation to high-temperatur@nother aff .=80 K. These transitions were also observed in
cuprate superconductol$:*® Susceptibility studies show other samples at the same temperatures. The inset of Fig. 3
three-dimensional AFM below 212 ¥. Both doping with  shows temperature dependence of inverse susceptibility, in-
iron and other defects in CuO cause an increase of magnetificating that the sample is paramagnetic ab@ye=80 K.
susceptibility, but FM has not been obser¢édh this letter,
we report a realization of FM in CuO by Mn doping.

Five Mn-doped CuO samples were prepared by copre- 30001
cipitation method using MnGl4H,0O and CuCJ-2H,0 as o
the starting materials, followed by annealing at 1000 °C for 2800-
10 h. Magnetic measurements were done on powders, while3
pellet-shaped samples, annealed together with the powdeiﬁ’/
were used for electric transport measurements. Mn and Ct2
concentrations in the Gu,Mn,O structures were deter-
mined by x-ray fluorescence. The Mn atomic fractionef
the five samples were 0.035, 0.066, 0.094, 0.127, and 0.15C—
No other elements were observed, except Mn, Cu, and O
Figure 1 shows the x-ray diffractioiiXRD) results for
sample CygsgMng15§0. The samples consist of the main . ‘
phase CuO €2/c) and a small amount of CuM@,. The 30 40 50 60 70
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FIG. 2. Magnetic hystersis loops for the samples; G¥n,O with

x=0.066, 0.094, and 0.150. FIG. 4. Resistivity as a function of temperature for samplg &dving 1580

in the external field$4 =0 andH =30 kOe. Upper inset: logarithm of resis-
tivity vs 1/T*2 for T>100 K. Lower inset: comparison of resistivities of
samples with 15% Mn and 12.7% Mn doping. The latter is scaled down by

The positive Weiss constant{~80 K) suggests that this a factor of about 50.

transition is between paramagnetic and FM phases.

Figure 4 shows the temperature dependence of resis- In order to determine the magnetic contribution from the
tivity of the sample CylgsgMing 1540, both in zero field CuMn,O, phase, we prepared a standard pure CuBin
(open symbolsand in an applied field dff =30 kOe. There sample at the same conditions. Pure phase was confirmed by
is a critical point at 80 K. Abovel-=80 K, resistance XRD. Figure 5 shows the magnetization curve of the
decreases with increasing temperature, following a relatio€uMn,O, sample measured at=4.3 K. Temperature de-
p=poexd(To/T)*?] (see upper inset of Fig.)Awhich indi-  pendence of magnetization for this standard sample is shown
cates variable range hopping modified by the Coulomb gajn the inset of the Fig. 5. This material shows canted AFM
at the Fermi levef? Below 80 K, the behavior is “metallic’-  behavior with the Nel temperature of abouTy~30 K.
like; however, notice that the value of resistivity remainsHence we can attribute the anomaly at 30 K seen in Fig. 3 to
very high at~10* Q cm. This result is different from that of the presence of small amouritsss than 10% based on XRD
pure CuO, where resistivity decreases monotonically withanalysesof CuMn,O, phase. This phase does not contribute
increasing temperaturéWe observe no sizeable shift in the to the observed hysteresiBig. 2). FM with the Curie tem-
critical temperature in applied field. MagnetoresistafMi) perature off -=80 K is thus attributed to the Mn-CuO phase.
is weakly negative in the vicinity of ¢, and positive afl The crystal structure of CuO is monoclini€2/c), in
<T.. Resistivity of the samples increases dramatically withwhich Cu atoms are coordinated to four coplanar oxygen
decreasing the Mn concentratian The low inset of Fig. 4 atoms situated at the corners of an almost rectangular paral-
shows that the sample with=0.127 is about 50 times more lelogram. With two more distant apical O atoms, a distorted
resistive than ak=0.150. Resistance of samples with lower octahedron is formed because of large Jahn-Teller effect.
X near T¢ was above the limitations of our measurementThe cell parameters for a natural crystal of tenorite are

setup. a=4.662 A,b=3.417 A,c=5.118 A, andB=97°29. There
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FIG. 3. ZFC and FC magnetization of the sample ggMng 1500 atH=10 FIG. 5. Field dependence of magnetization of standard GMisample at
Oe. The inset shows inverse magnetization as a function of temperature. T=4.3 K. Inset is the moment as a function of temperaturel &t100 Oe.
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