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A nanoparticle growth model is developed to predict and guide the syntheses of monodisperse colloidal
nanoparticles in the liquid phase. The model, without any a priori assumptions, is based on the Fick’s law
of diffusion, conservation of mass and the Gibbs–Thomson equation for crystal growth. In the limiting
case, this model reduces to the same expression as the currently accepted model that requires the
assumption of a diffusion layer around each nanoparticle. The present growth model bridges the two lim-
iting cases of the previous model i.e. complete diffusion controlled and adsorption controlled growth of
nanoparticles. Specifically, the results show that a monodispersion of nanoparticles can be obtained both
with fast monomer diffusion and with surface reaction under conditions of small diffusivity to surface
reaction constant ratio that results is growth ‘focusing’. This comprehensive description of nanoparticle
growth provides new insights and establishes the required conditions for fabricating monodisperse nano-
particles critical for a wide range of applications.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Nanoparticle (NP) synthesis has been extensively explored for a
large variety of materials ranging from metallic gold [1] to ionic
iron oxide [2]. The extensive research in NP synthesis is due to
its important role in improving many technologies and providing
advances in fundamental research. For instance, a color display,
comprised of semiconducting NPs (quantum dots), has been
recently launched by Samsung Electronics [3]. NPs and their com-
posites [4] have also been widely investigated for their unique
thermal [5,6], electrical [7,8], magnetic [9–12] and optical [13,14]
properties. In many applications, particularly in biomedicine [15],
it is critical to process batches of NPs having narrow size distribu-
tions since their relaxation properties depend exponentially on
their size. By fine tuning their size, CdSe NPs with a wide spectrum
of colors can be obtained under UV radiation [16]. Magnetic block-
ing temperatures and hysteresis loops of magnetic NPs are affected
by their size and distribution [4]. Further, NP self-assemblies allow
us to understand the collective behavior of an ensemble of NPs and
to explore performance of ensemble applications in nanoelectron-
ics, bit patterned media [17,18], and nanoparticle lithography [19].
To obtain NP self-assembly with long-range order, their size distri-
bution should be less than �5% [20], otherwise self-assembled
arrays may only exhibit short range order and contain many voids
[21]. To this end, it is crucially important to experimentally explore
synthetic routes under different conditions to obtain NPs with very
narrow size distributions. It is also equally important to establish
mathematical models of NP growth so that their preparation can
be theoretically understood and directed.

A general strategy for chemically synthesizing monodisperse
NPs is to separate the nucleation and growth stages of NP
formation. LaMer and Dinegar proposed that there is a minimum
degree of supersaturation of the nutrient species (monomers),
SC = (CC � C0)/C0, where CC and C0 are the critical concentration
for nucleation and solubility of the monomers, respectively. Below
SC, nucleation cannot occur even if the solution is in a supersatu-
rated state [22]. By suddenly boosting monomer concentration
above SC, a prolific nucleation burst can be induced generating an
abundance of nuclei in a very short period of time. The nucleation
burst quickly consumes monomers bringing the concentration
back down below SC so that nucleation is halted leaving the surviv-
ing particles to continue growth. The process is shown in Fig. 1. By
separating nucleation and growth, each nucleus is generated at
almost the same time and thus all have nearly identical growth
conditions. As a result, monodisperse NPs are produced. Later, it
was proposed by Sugimoto that the NP size distribution could be
either focused or broadened during growth depending upon the
growth mechanism [23]. In their proposed model for NP growth,
they assumed a diffusion layer of thickness, d, due to Brownian
motion [24] outside a growing NP. Absorption of monomers by
growing NPs involves two steps. First, monomers move in the
diffusion layer from the bulk solution toward the growing NPs;
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Fig. 1. Nucleation and growth as function of monomer supersaturation (adapted
from Ref. [1]).
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and second, these monomers are adsorbed by the growing NPs at
the liquid/solid interface [23]. This mathematical model indicates
that diffusion-controlled growth would result in monodisperse
NPs while adsorption-controlled growth would lead to polydis-
perse NPs [23], which has been demonstrated in many NP prepara-
tions [25,26]. Without knowing the concentration profile of
monomers in the diffusion layer and its relationship to its thick-
ness, the growth model was developed upon an unfounded postu-
lation. Many fundamentals and the underlying physics of NP
growth are still ambiguous and questionable in this model. For
example,

(1) Under what conditions, if any, is the assumption of such a
diffusion layer outside a growing NP correct?

(2) Does the boundary of the concentration profile correspond
to the physical boundary of the diffusion layer?

(3) What is the concentration profile in the diffusion layer out-
side a growing NP if the diffusion layer does exist?

(4) What defines the diffusion layer and how does its thickness
affect or relate to other physical variables?

By addressing the above questions, NP growth can be better
understood and thus NP synthesis can be better controlled. In this
research work, without any prior assumptions, we start with the
fundamental equations, i.e. the laws of diffusion, mass conserva-
tion and the Gibbs–Thomson equation for crystal growth [27], to
build a mathematical model of NP growth. We show that there is
no need to assume an arbitrary diffusion layer outside a NP in or-
der to arrive at the same qualitative result in the limiting cases of
diffusion-controlled and adsorption-controlled growth. Further-
more, the concentration profile outside a growing NP is calculated
as a function of the monomer concentration in the bulk solution,
the particle size, the diffusivity of the monomer, the adsorption
coefficient, among other properties. Criteria for processing mono-
disperse NPs are discussed based upon the new mathematical
model for NP growth. For simplicity, we follow Sugimoto’s method
and assume that the growing NPs are spherical in shape with ra-
dius R; for the cases considered here, the shape of the particle
has only a minimal effect on its growth rate as discussed later.
Fig. 2. (a) Concentration profile of monomers around a spherical nanoparticle of
radius R, Ci and Cb are the concentrations at the interface and in the bulk,
respectively. (b) Concentration profile in the solution, mn is the interface velocity
and Ceq is the equilibrium concentration of monomers in the solution at the surface
of the nanoparticle, given by the Gibbs–Thomson equation. (c) Examples of
concentration profiles in the solution for the cases in which Cb < Ceq resulting in
dissolution and for Cb > Ceq resulting in growth.
2. NP growth model

For isotropic growth, in a spherical coordinate frame with the
origin set at the center of the NP, Fick’s second law of diffusion is
given by:

@C
@t
¼ D

@2C
@r2 þ

2
r
@C
@r

 !
ð1Þ

where C is the monomer concentration, that depends on time t and
radial position r, and D is the diffusivity of monomer in the solution.
When the interface motion with respect to the origin of the
coordinate frame (dR/dt) is slow compared to the time scale of
monomer diffusion, the concentration profile around a NP is said
to obey quasi-static conditions, namely, oC/ot = 0 for all r. In order
for the quasi-static approximation to be valid the supersaturation
of the monomer in solution (Cb � Ca

0) should be much less than
the difference in equilibrium concentrations of monomer between
the NP and the solution ðCb

0 � Ca
0Þ (see Appendix 1 in Supplemental

information 1), where Cb is the monomer concentration in the bulk
solution. Here Ca

0 � 0, so that the quasi-static condition reduces to
Cb

0 � Cb, which is true in most cases. For example, in a typical cobalt
NP synthesis by thermal decomposition, Cb � 1.5 � 102 mol/m3 be-
fore nucleation, while Cb

0 � 1:5� 105 mol=m3. Under quasi-static
conditions, Fick’s law of diffusion, Eq. (1), reduces to:

@2C
@r2 þ

2
r
@C
@r
¼ 0 ð2Þ

By considering the boundary condition at infinity (C = Cb at r =1),
the solution of the differential Eq. (2) is given by:

C ¼ �A
r
þ Cb ð3Þ

where the constant A is a function (shown later) of particle size (R),
diffusivity (D) and surface reaction constant (k). The concentration
profile of Eq. (3) for a growing NP is schematically shown in
Fig. 2(a).

During growth, the particle liquid/solid interface moves with a
velocity, mn = dR/dt with respect to the center of the nanoparticle
(Fig. 2a). Further, the rate of mass accumulation at the surface of
a nanoparticle is equal to the total flux (per unit area) towards
the nanoparticle, which gives [27]:

mn½Cb
0 � Ci� ¼ �JI ¼ DI

@C
@r
jr¼R ð4Þ
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where Ci is the monomer concentration at the interface, and JI and DI

are the flux and diffusivity at the interface, respectively. If it is
assumed that atom adsorption at the surface of the nanoparticle is
linearly proportional to the interfacial supersaturation, JI is given by:

�JI ¼ DI @C
@r
jr¼R ¼ kðCi � CeqÞ ð5Þ

where Ceq is the equilibrium concentration of monomers at the sur-
face of the nanoparticle, and k is the reaction constant. By combin-
ing Eqs. (4) and (5), Ci is given by:

Ci ¼
vnCb

0 þ kCeq

kþ vn
ð6Þ

During steady-state growth, the total flux through any spherical
surface, S, as denoted by the dashed line in Fig. 2(a), is given by
Fick’s first law of diffusion:

Jtot ¼ 4pr2D
dC
dr

ð7aÞ

According to Eq. (3),

dC
dr
¼ A

r2 ð7bÞ

By substituting Eq. (7b) into (7a), the total flux in the steady state is
given by:

�Jtot ¼ 4pr2D
dC
dr
¼ 4pr2D

A
r2 ¼ 4pDA ð7cÞ

which is independent of position. On the other hand, the total flux is
related to the NP growth rate by:

�Jtot ¼
4pR2

X
dR
dt

ð8Þ

where X is the volume of monomer. By equating Eqs. (7c) and (8),
we get:

dR
dt
¼ DAX

R2 ; ð9Þ

and substituting Eq. (9) into (6), the interface concentration is writ-
ten as:

Ci ¼
DAX
R2 Cb

0 þ kCeq

DAX
R2 þ k

ð10Þ

At the interface (r = R), C = Ci, and by substituting Eq. (3) for Ci into
Eq. (10), leads to an equation for the constant A:

DX

R3 A2 þ DX

R2 ðC
b
0 � CbÞ þ

k
R

� �
Aþ kðCeq � CbÞ ¼ 0 ð11aÞ

Under the quasi-static condition, Cb
0 � Cb, and considering the fact

that X ¼ 1=Cb
0, Eq. (11a) can be rewritten as:

DX

R3 A2 þ Dþ kR

R2 Aþ kðCeq � CbÞ ¼ 0 ð11bÞ

From which, constant A can be solved:

A ¼
� DþkR

R2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DþkR
R2

� �2
þ 4 DX

R3 kðCb � CeqÞ
r

2DX
R3

ð12Þ

(Note that another solution of A is always negative and is thus aban-
doned). In Eq. (12) the denominator of A is always positive, so that
the sign of A only depends on the bulk solution concentration (Cb)
and the equilibrium concentration Ceq. Thus,

SignðAÞ ¼
> 0 for Cb < Ceq

¼ 0 for Cb ¼ Ceq

< 0 for Cb < Ceq

8><
>: ð13Þ
The actual concentration (Ci) at the NP surface is between Cb and
Ceq, and is weighted by vn and k according to Eq. (6). Depending
on the sign of A, the concentration profile is plotted in Fig. 2(c). If
the bulk solution concentration is larger than the equilibrium sur-
face concentration (supersaturated), namely, Cb > Ceq, nanoparticles
will grow; if Cb < Ceq, nanoparticles will dissolve; and if Cb = Ceq,
nanoparticles are at their equilibrium size, which is the effective
nucleus size of classical nucleation theory.

3. Discussion

3.1. Limiting cases of the diffusion and interface kinetic controlled
growth

Eq. (12) can be rewritten as:

A ¼
DþkR

R2 1þ 4DXkRðCb�CeqÞ
ðDþkRÞ2

� �1=2
� 1

� �
2DX
R3

ð14Þ

Under quasi-static approximation ðCb
0 � Cb), 4DXkR(Cb � Ceq)/

(D + kR)2� 1 (see Appendix 2 in Supplemental information 2), so
that the constant A simplifies to:

A ¼
DþkR

R2 � 1
2�

4DXkRðCb�CeqÞ
ðDþkRÞ2

2DX
R3

¼ kR2ðCb � CeqÞ
Dþ kR

ð15Þ

When the surface kinetics are fast (D� kR), the controlling step for
particle growth is monomer diffusion towards the nanoparticle
from the bulk solution. Under this condition, constant A is approx-
imately equal to:

A � ðCb � CeqÞR ð16Þ

By substituting Eq. (16) into (9), dR/dt can be calculated for diffu-
sion controlled growth:

dR
dt
¼ DAX

R2 ¼
DX

R2 ðCb � CeqÞR ¼
DXðCb � CeqÞ

R
ð17Þ

According to the Gibbs–Thomson equation for crystal growth [27],
Ceq is equal to:

Ceq ¼ C1 exp
2cX
RkBT

� �
ð18aÞ

whose first order expansion is:

Ceq ¼ C1 1þ 2cX
RkBT

� �
ð18bÞ

where c and C1 are the specific surface energy and the equilibrium
concentration of monomers at a flat surface, respectively. Accord-
ingly, for a given bulk monomer concentration (Cb) there is a unique
critical homogeneous nucleation size RC:

Cb ¼ C1 1þ 2cX
RCkBT

� �
) RC ¼

2cX
kBTðCb � C1Þ

ð18cÞ

that when substituted into (17), allows the growth rate of the nano-
particles to be written:

dR
dt
¼ 2DcX2C1

kBT
1
R

1
RC
� 1

R

� �
: ð19Þ

In the limit that the interface kinetics are slow compared to the dif-
fusion of monomers, (D� kR), the controlling step for particle
growth is the monomer adsorption at the surface. Under this condi-
tion, the constant A in Eq. (14) can be reduced to:

A ¼ kR2ðCb � CeqÞ
D

ð20Þ
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By substituting Eq. (20) into (9), dR/dt can be obtained for interface
adsorption controlled growth:

dR
dt
¼ DAX

R2 ¼
DX

R2 �
kR2ðCb � CeqÞ

D
¼ kXðCb � CeqÞ ð21Þ

By substituting Eqs. (18b) and (18c) into (21), the growth rate can
be calculated:

dR
dt
¼ 2kcX2C1

kBT
1
RC
� 1

R

� �
: ð22Þ

The growth rate of a nanoparticle by diffusion-controlled growth in
Eq. (19) and adsorption-controlled growth in Eq. (22) are exactly
the same as the results obtained in the mathematical model devel-
oped by Sugimoto [23], respectively. However, in this new mathe-
matical model, no diffusion layer is assumed.

In Eqs. (19) and (22), when the particle size (R) is smaller (greater)
than the critical size, Rc, the particle growth rate (dR/dt) is negative
(positive) for both diffusion-controlled and adsorption-controlled
growth, which means the particles will dissolve (grow) in both
limiting cases. These results are consistent with the description
of the effective nuclei size and the critical size in Fig. 2(c).

By differentiating the two sides of Eq. (19), and setting it equal
to zero:

@ðdR=dtÞ
dR

¼ 2DcX2C1
kBT

� 1
RCR2 þ

2
R3

� �
¼ 0; ð23Þ

the size of nanoparticle corresponding to the maximum growth rate
is determined to be:

R ¼ 2Rc ð24Þ

The growth rate as a function of particle size is plotted for diffusion
controlled growth in Fig. 3(a) revealing the maximum, and for
adsorption controlled growth in Fig. 3(b) (note that there is no max-
imum growth rate for the case of interface controlled growth
(adsorption controlled growth). As the particle grows larger its
growth rate gradually increases).

For diffusion-controlled growth, after nucleation, an ensemble
of NPs having a size just above the critical nucleation size, RC will
continue to grow. For particles in the size range, RC < R < 2RC, the
growth rate of nanoparticles will quickly increase to the maximum
at 2RC; then, larger growing nanoparticles will grow faster than
smaller ones, broadening the size distribution. However, when
the size of larger particles exceeds 2Rc, their growth rate will
quickly decrease, while the smaller nanoparticles will quickly grow
more rapidly until they pass the 2RC size threshold. After that, the
growth rate of all NPs will slow down; however, the growth rate of
larger particles remains slower than that of the smaller particles. In
the ideal case, this process would result in all NPs having the same
size and growth rate. As a result of the nucleation and growth
kinetics, nearly monodisperse NPs can be obtained for
diffusion-controlled growth. For adsorption-controlled growth on
Fig. 3. Growth rate of nanoparticles as a function of particle size for diffus
the other hand, the growth rate of larger NPs are always quicker
than the smaller ones. As a result, only polydisperse NPs are ob-
tained for adsorption-controlled growth.

3.2. Nanoparticle growth rate in the new model

NP growth rates given by Eqs. (19) and (22) represent the lim-
iting cases of diffusion and adsorption controlled growth, respec-
tively. By substituting A from Eq. (15) into (9), the growth rate of
a nanoparticle is calculated to be:

dR
dt
¼ DAX

R2 ¼
DXðCb � CeqÞ

D
k þ R

ð25Þ

which is valid for coupled interface- and diffusion-controlled
growth thereby bridging the gap between these limiting cases. By
substituting the Gibbs–Thomson equation into Eq. (25) then:

dR
dt
¼ DAX

R2 ¼
DXC1 exp 2cX

RC kBT

� �
� exp 2cX

RkBT

� �� �
D
k þ R

ð26Þ

Setting n = 2cX/kBT, then the general growth rate equation can be
written as:

dR
dt
¼ DAX

R2 ¼
DXC1 exp n

RC

� �
� exp n

R

	 
� �
D
k þ R

ð27Þ

To intuitively illustrate the effect of different parameters on the NP
growth rate, consider a hypothetical system for which at a specific
supersaturation, Cb, the critical nucleation size is Rc� 2 nm =
2�10�9 m. Using the representative values of c � 1 J/m2,
X � (2 � 10�10)3 = 8 � 10�30 m3, for NP growth at high tempera-
ture, T � 573 K, so that kBT � 8 � 10�21 J, then the index n = 2cX/kB-

T � 2 � 10�9 m. By substituting the values of n and Rc into Eq. (27),
dR/dt can be plotted as a function of particle size, R, at different val-
ues of D/k in Fig. 4. The radii corresponding to the maximum growth
rates are also plotted in green at different D/k ratios. Contrary to the
simplified growth model given by Eq. (24) the radius of maximum
growth rate is not twice the critical nucleation radius (Rc). Rather,
it varies with parameters such as the D/k ratio. As the D/k ratio
increases, the radius at the maximum growth rate moves to higher
values.

As shown in Fig. 4, the D/k ratio can exponentially affect the
growth rate of nanoparticles. Interestingly, when the D/k ratio is
large (e.g. D/k P 10R at D/k = 1000 nm), the growth rate does not
monotonously increase as predicted in Fig. 3(b). Rather, it slowly
reaches its maximum growth rate at a large radius and then slowly
decreases. It means that even under growth strongly affected by
adsorption kinetics, the ‘focusing’ effect can still be achieved, albeit
at a much larger particle size and at a slower rate. For NPs with fi-
nal size smaller than R	, the ‘focusing’ effect cannot be achieved be-
fore completion of particle growth, resulting in a polydisperse
distribution of NP sizes. Here R	 is the radius of the particle at
ion controlled growth in (a) and adsorption controlled growth in (b).



Fig. 4. Nanoparticle growth rate (normalized to DXC1) as a function of particle
radius at different D/k ratio for a hypothetic system with n = 2 nm and RC = 2 nm.
The curves are plotted in linear scale in (a) and logarithmic scale in (b).

2 For interpretation of color in Fig. 7, the reader is referred to the web version of
this article.
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which the growth rate is maximum. However, for large NPs, the
size ‘focusing’ effect might also be achieved over an extended per-
iod of time and at a slower growth rate, which is applicable in the
case of large monodisperse colloidal particles, such as silica nano
spheres [28].

To achieve efficient ‘focusing’, according to Fig. 4, R	 should be
minimized while the growth rate, (dR/dt)max should be maximized.
Minimizing R	 and maximizing (dR/dt)max corresponds to maxi-
mizing the slopes of dR/dt with respect to R before and after the
maximum growth rate is achieved, respectively. Under this condi-
tion, the ensemble of NP nuclei can grow rapidly and finish the
defocusing stage at Rc < R < R	 and the ‘focusing’ stage at R > R	

can start as early as possible. This is extremely important for NPs
with small final size. In addition, under this condition, the negative
slope of dR/dt with respect to R at R > R	 is very large after (dR/
dt)max is achieved. As a result, the growth rate of larger NPs will
quickly slow down for R > R	, while the growth rate of smaller
NPs will still be rapid thereby achieving an effective ‘focusing’
dynamics. These two conditions can be achieved by decreasing
the D/k ratio and increasing the diffusivity D. A key finding of this
work is that to make monodisperse NPs, monomer diffusion and sur-
face reaction should be rapid while maintaining a small D/k ratio.

For larger values of specific surface energy, the magnitude of n
increases in Eq. (27) as well. Fig. 5(a) and (b) is plots of the normal-
ized growth rate as a function of particle radius at a fixed D/k ratio
(=1 nm) for different values of the n index. The maximum growth
rate and the corresponding radii are also plotted as a function of
n in Fig. 5(c) and (d) for D/k = 1 nm and 100 nm, respectively. As
n increases, the maximum growth rate increases exponentially
and the corresponding radius decreases at the same time. The
trend is the same as for the case in which the D/k ratio is varied
as shown in Fig. 5(d). According to the two criteria, for an efficient
‘focusing’ effect, a large n index should result in a monodisperse NP
ensemble. The surface energy of a growing nanoparticle can be
modified by using a surface surfactant coating although this is a
complicated procedure in practice. This is part of the reason that
surfactants play a crucial role in practical NP synthesis [29]. This
will also affect the NP growth according to Fig. 5. When the surface
energy is anisotropic, corners and/or facets may appear because
shapes with these features lower the overall surface energy of
the system [30] compared to spherical particles. In addition, sur-
factant coatings would also affect the interface attachment and
reaction kinetics. Stronger binding between NP surface and func-
tional groups of surfactants will make it less efficient for adsorp-
tion of monomers, resulting in larger D/k value. This, according
to Fig. 4, will result in slower growth rate and thus smaller nano-
particles. It will also make it less efficient to make monodisperse
nanoparticles.

Finally, as the temperature T increases, n will decrease by a fac-
tor of less than one while the diffusivity will increase according to
Einstein–Stokes equation. At the same time, as the temperature in-
creases, the monomer concentration is often much higher due to
the temperature assisted generation of monomers (due to the
decomposition of organometallic precursors [31]). A higher mono-
mer concentration can make nucleation much easier, by creating a
smaller effective nucleation size, Rc. Fig. 6(a) shows the normalized
NP growth rate as a function of particle size for different effective
nucleation sizes. The maximum growth rate and the corresponding
radius are also plotted as a function of nuclei size in Fig. 6(b). As
shown in Fig. 6(a), when effective nucleation size decreases from
1 nm to 0.5 nm, the normalized maximum growth rate of nanopar-
ticle increases by a factor of �15, and the radius corresponding to
the maximum growth rate decreases by a factor of �2. According
to Fig. 6(b), the maximum growth rate decreases exponentially
and the corresponding radius increases linearly as the effective
nucleation size increases. As a result, decreasing the effective nu-
clei size (or increasing the monomer concentration) is an effective
way to achieve the ‘focusing’ effect during the growth of nanopar-
ticles. However, at the same time, the monomer concentration
should be kept low relative to the critical supersaturation (Sc) for
nucleation as shown in Fig. 1 to prevent secondary nucleation
events from occurring. For optimal growth conditions leading to
monodisperse NPs, the monomer concentration should be kept as
high as possible without inducing secondary nucleation, as shown
by the curve2 d (red) in Fig. 7. Monodisperse iron oxide nanoparti-
cles are often synthesized by methods developed by Sun group
[32], Hyeon group [33] and Colvin group [34]. Among them, iron
oxide nanoparticles synthesized by Colvin method usually have
highest monodispersity. It can be attributed to the continuous gen-
eration of iron oleate by reaction between FeOH and oleic acid at
high temperature, which keeps the precursor (iron oleate) concen-
tration high at the growth stage. Another method is to continuously
and slowly inject precursor to ensure high concentration of mono-
layer at the growth stage of nanoparticles.
4. Conclusions

In summary, a model of nanoparticle growth at low supersatu-
ration, under the combined effects of monomer diffusion and local
interface adsorption kinetics is presented. The growth model is for-
mulated without any a priori assumptions concerning the diffusion
processes. The limiting cases of growth controlled entirely by dif-
fusion and growth controlled entirely by monomer adsorption re-
duce to previously derived models that were built upon an ad hoc
approximation for the diffusion layer surrounding a growing nano-



Fig. 5. (a) Nanoparticle growth rate (normalized to DXC1) as a function of particle radius for D/k = 1 nm and Rc = 2 nm for different values of n. (b) The same plot is also
shown in a logarithmic scale. (c) The maximum growth rate and corresponding radius are plotted as a function of n index at D/k = 1 nm. (d) The same plot as in (c) but for D/
k = 100 nm.

Fig. 6. (a) Nanoparticle growth rate (normalized to DXC1) as a function of particle
radius for D/k = 1 nm at different critical nucleation radii (Rc). The inset in (a) is the
same plot on a logarithmic scale. (b) The maximum growth rate and corresponding
radius are plotted as a function of Rc at D/k = 0.

Fig. 7. Different supersaturation levels (represented by curve a, b, c and d in the
figure) of monomers at growth stage (stage III). Higher supersaturation level
benefits growth of monodisperse nanoparticles.
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particle. In the model presented in this work, the gap is bridged be-
tween complete interface controlled growth and diffusion con-
trolled growth, and as a result leads to new insight into
nanoparticle growth process. Results show that a monodispersion
of nanoparticles can be obtained both with fast monomer diffusion
and with surface reaction under conditions of small diffusivity to
surface reaction constant ratio that results is growth ‘focusing’. In
addition, the focusing effect can also be affected by the specific sur-
face energy of a growing NPs and the effective nucleation size,
which are manipulated by adding surfactant to the solution. We
expect this model to give a comprehensive prediction of NP growth
and thus help enable tuning of experimental conditions for the
production of monodisperse NPs.
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