Exchange Interactions in Magnetic ZnO Quantum Dots

One Model for Ferromagnetism

This model assumes β is a constant and that only N_0 changes between semiconductors. It does not take into account changes in the LMCT transition.

 $T_c \propto x N_0 S(S+1) \beta^2$

$$N_0 \beta \approx -\frac{1}{S} \left[\frac{\left\langle \Psi_{VB} \left| \hat{H}_{pd} \right| \Psi_{t_2} \right\rangle^2}{E_{LMCT}} \right]$$

Dietl, T.; Ohno, H.; Matsukura, F., Phys. Rev. B 2001, 63, 195205/1-195205/21

CURIE TEMPERATURE [K]

Exchange Between the Dopants and Band Electrons

- External magnetic fields magnetize the ground state of substitutional dopant ions in ZnO.
- In the ground state the ZnO DMSs band electrons are paired, and are confined to the valence band.
- The band electrons of paramagnetic DMS-ZnO are only magnetized in the excited state.

The One Electron Picture of the DMS ZnO Band Structure

Magnetization of Co²⁺:ZnO Quantum Dots

Relationship between CT and Ferromagnetism.

Intensity of LMCT transtion $\psi'_A = \sqrt{1 - c^2} (\psi_A) - c \psi_D$

metal t₂ orbital

VB Oxo

$$\approx \frac{-\langle \psi_A | H | \psi_D \rangle}{E_A - E_D} \qquad N_0 \beta \approx -\frac{1}{S} \left[\frac{\langle \Psi_{VB} | \hat{H}_{pd} | \Psi_{t_2} \rangle^2}{E_{LMCT}} \right]$$

Exchange between the VB and the TM²⁺

Calculation of $N_0\beta$ for Co²⁺:ZnO Nanocrystals

 $N_0\beta = -2.2(\pm 0.3)$ eV from these experimental data. The predicted value is ~ -5.0 eV based on the model presented previously.

 $E_{CB}(m_{j}) = E_{CB} - m_{j}N_{0}\alpha x < S_{z} > E_{VB}(m_{j}) = E_{VB} - 1/3m_{j}N_{0}\beta x < S_{z} >$

Experimental values of $N_0\beta$ in eV

	Co ²⁺	Mn ²⁺
CdTe	-2.33	-0.83
CdSe	-2.12	-1.30
ZnTe	-3.03	-1.10

Angular Momentum Reduction in Quantum Dots

Ni²⁺:ZnO Charge Transfer Transition

 $Ni^{2+} + h\nu \rightarrow Ni^{+} + h^{+}$

$N_0\beta$ and Ni²⁺:ZnO

Experimental LF magnetization

 $N_0\beta$ should actually be larger (~-4.3 eV) for Ni²⁺ than $N_0\beta$ for Co²⁺, but the magnetization of the nickel ground state is one order of magnitude less than cobalt due to the in state spin-orbit coupling found in tetrahedral nickel.

Conclusions

- MCD demonstrates that both the Co²⁺:ZnO and Ni²⁺:ZnO quantum dots are true DMS materials.
- $N_0\beta$ for Co²⁺:ZnO and Ni²⁺:ZnO nanocrystals was calculated using a combination of Zeeman measurements, absorption and MCD spectroscopy.
- The small value of $N_0\beta$ is interesting and possibly due to the reduction of angular momentum found in quantum confined structures.

Acknowledgments

Daniel Gamelin Gamelin Group University of Washington ACS-PRF NSF Research Corporation