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Two mutation rates are the key to understanding the pop-

ulation dynamics of fragile X syndrome. Hagerman (2008)

estimated one of these mutation rates from empirical data:

the rate at which premutation alleles at the fragile X locus,

FMR1, undergo further expansion to the full-mutation

alleles that can give rise to fragile X syndrome. Here, we

use newly published empirical data to estimate the other:

the rate at which premutation alleles arise, de novo, in the

United States population.

Before the molecular characterization of the FMR1

locus, it seemed that almost all full-mutation fragile X

alleles arose through further expansion of existing premu-

tation alleles segregating in families (see, e.g. Smits et al.

1992), with no evidence that new premutation alleles could

be produced through mutational expansion of smaller

alleles. However, several mutation-selection balance

models suggested that fragile X mutation rates would have

to be quite high to explain the observed frequency of males

with fragile X syndrome, especially given the reduced

reproductive fitness of these individuals. Mutation rates

estimated under these population-genetic models ranged

from 0.00010 to 0.00072 (Table 1)—values at the high end

of the range reported for disease-causing alleles at other

human loci (Vogel and Motulsky 1986). Here, we use

published data on FMR1 allele frequencies and expansion

probabilities to calculate the rate at which new FMR1

premutation alleles arise in the United States. Our results

are in accord with several earlier population-genetic esti-

mates of a very high mutation rate for FMR1.

Existing data indicate that new premutation alleles arise

mostly or exclusively via expansion of intermediate alleles,

which are defined as having CGG-repeat numbers ranging

from 45 to 54. In a study of more than 1,000 parent-to-child

transmissions of normal alleles, which have fewer than 45

repeats, Nolin et al. (2011) reported no transitions directly

into the premutation class. These empirical findings inform

our approach of calculating the overall rate at which new

premutation alleles arise, using exclusively mutation rate

and frequency data for intermediate alleles.

Table 1 Estimates of the rate at which new premutation alleles arise,

as inferred in published population-genetic models

Study Estimate of rate

of new premutations

Sherman et al. (1984) 0.00072

Sherman et al. (1985) 0.00024

Vogel et al. (1985) 0.00010

Winter (1987) 0.00017

Vogel et al. (1990) 0.00010

Sved and Laird (1990) 0.00033

Morton and Macpherson (1992) 0.00025

Kolehmainen (1994) 0.00038

Morris et al. (1995) 0.00019

Ashley and Sherman (1995) 0.00025

Estimates highlighted in italics are within the 95 % confidence

interval we calculate here from empirical data (see Table 2). The

estimate from Sherman et al. (1984) is specific to mutations occurring

in the male germ line. Values given for Vogel et al. (1990) and Ashley

and Sherman (1995) are at the upper ends of their respective intervals
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To estimate the overall rate at which premutation alleles

arise de novo, we compiled information from Cronister

et al. (2008) and from Nolin et al. (2011). These studies

reported transition rates for two subsets of intermediate

alleles: those with 45 to 49 CGG repeats and those with 50

to 54 CGG repeats (Table 2). We weighted these reported

transition rates using information on the frequencies of

alleles in these two subsets (Cronister et al. 2008; A.

Cronister, personal communication), yielding a weighted

mean rate of 0.00071 new premutation alleles per con-

ception, with a broad confidence interval (95 % CI

0.00031, 0.0012; Table 2).

The confidence interval on our estimate of the rate of de

novo premutation events spans some of the mutation rate

estimates made previously using mathematical models (in

italics on Table 1: Sherman et al. 1984; Sved and Laird

1990; Kolehmainen 1994), but is somewhat higher than the

values inferred under others of those models (Table 1:

Sherman et al. 1985; Vogel et al. 1985; Winter 1987; Vogel

et al. 1990; Morton and Macpherson 1992; Morris et al.

1995; Ashley and Sherman 1995). Overall, however, all of

these early population-genetic models were consistent in

predicting a high mutation rate either close to or within the

confidence interval on the value we calculate here from

published empirical data (Table 1).

Our present study estimates the rate at which premuta-

tion alleles are produced, de novo, in the US population.

Variation in patterns of AGG interspersion and in other

haplotype features has been found to modulate the stability

of the CGG-repeat region (Eichler et al. 1994, 1995; Curlis

et al. 2005). Global variation in the frequencies of these

haplotypes thus could yield substantial variation in the rate

of such de novo events, as first suggested by Richards et al.

(1992) and Jacobs et al. (1993). To further investigate these

possibilities, it will be necessary to collect allele-frequency

and transition-rate data from populations around the world.

In populations where premutation alleles are very rare (e.g.

Otsuka et al. 2010), it is likely that only very large data sets

will reveal mutation events that gave rise to new premu-

tation alleles. Data on allele frequencies and transition rates

for individual populations will be of clinical value, as it is

increasingly clear that individuals with FMR1 premutations

are at risk of a broad range of clinically relevant pheno-

types, including FXTAS and FXPOI (Cronister et al. 1991;

Chonchaiya et al. 2009).
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