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Abstract

Werner syndrome (WS) is an autosomal recessive premature aging disease manifested by the mimicry of age-related phenotypes
such as atherosclerosis, arteriosclerosis, cataracts, osteoporosis, soft tissue calcification, premature thinning, graying, and lost
of hair, as well as a high incidence of some types of cancers. The gene product defective in WS, WRN, is a member of the RecQ
family of DNA helicases that are widely distributed in nature and believed to play central roles in genomic stability of organisms
ranging from prokaryotes to mammals. Interestingly, WRN is a bifunctional protein that is exceptional among RecQ helicases in
that it also harbors an exonuclease activity. Furthermore, it preferentially operates on aberrant DNA structures believed to exist in
vivo as intermediates in specific DNA transactions such as replication (forked DNA), recombination (Holliday junction, triplex
and tetraplex DNA), and repair (partial duplex with single stranded bubble). In addition, WRN has been shown to physically
and functionally interact with a variety of DNA-processing proteins, including those that are involved in resolving alternative
DNA structures, repair DNA damage, and provide checkpoints for genomic stability. Despite significant research activity and
considerable progress in understanding the biochemical and molecular genetic function of WRN, the in vivo molecular pathway(s)
of WRN remain elusive. The following review focuses on the recent advances in the biochemistry of WRN and considers the
putative in vivo functions of WRN in light of its many protein partners.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction E. coliRecQ, RECQ1, RECQ2/BLM, RECQ3/WRN,

RECQ4 and RECQ5. Mutations in three of these,
Phil Hanawalt has championed the use of bacte- BLM, WRN, and RECQ4, result in genetic insta-

rial genetics to define functions of disease associatedbility syndromes, Bloom’s syndrome (BS), Werner's
human genes. This approach has contributed muchsyndrome (WS), and Rothmund—-Thomson syndrome
to his successes in analyzing mechanisms of DNA (RTS), respectively, and are manifested by tumor pre-
repair, the field that he has fathered from its infancy. disposition and/or premature aging. Inherited muta-
His most recent efforts have focused on UV-induced tions in the Werner helicase are associated with the
DNA damage and he has established the concept of premature onset of a number of age-related problems
strand specificity in DNA repair. Hovering in the back- and an increased incidence of specific human tumors.
ground have been his studies on DNA helicases, the Mutations in BLM helicase are linked with eleva-
enzymes that separate the DNA strands and facilitate tions of sister chromatid exchanges and a substantial
DNA polymerization. Work on RecQ helicases started increase in awide spectrum of malignancies. Mutations
when Hiroaki Nakayama and Phil Hanawalt identi- in RECQ4 helicases give rise to Rothmund—Thomson
fied the prototype RecQ helicasEscherichia coli syndrome, a genetic instability syndrome character-
RecQ. Philis so fond of telling how Hiroaki Nakayama ized by skin and skeletal abnormalities and an above
named the enzyme. At that time a series of recom- average incidence of cancer. In this article, dedicated
bination enzymes were being identified, each adding to Phil Hanawalt, we will review the molecular stud-
a new letter, RecA, B, C,.., P. RecP might have ies on Werner syndrome, a fascinating disease that
been next, except Nakayama lived in Japan and his may offer clues to human aging and to lineage speci-
home city was Kyushu, which they transcribed to Q. ficity in human cancers. We know much about the
It is ironic that Phil now presents evidence that many biochemistry of the WS protein, yet we are unable
of these bacterial recombination enzymes function in to delineate the role of this enzyme in cellular pro-
other DNA processes, and RecQ is not an exception. cesses. Perhaps Phil’s admonition may be correct: we
Studies on RecQ helicases could be an arcane fieldmay be able to understand the role of WRN in DNA
except for an important consideration: inherited muta- transactions only after we understand the function
tions in these enzymes are causally associated withof RecQ inE. coli. Studies on the RecQ family of
human diseases. There are five human homologs ofproteins in genetically tractable organisms may give
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us insights into major human problems of aging and vous system and a reduction in immune function), WS
cancer. provides a unique model for the studying normal aging
The corresponding author is not a product of Phil as well as age-associated diseases in that it might pro-
Hanawalt's laboratory, he is an observant of how alabo- mote new mechanistic insights that are experimentally
ratory should be run, one designed to both create knowl- tractable.
edge and to mentor the careers of future scientists. Phil  Fibroblast cultures from WS patients display a pro-
is exceptional in these endeavors: he has a vision of thelonged S-phasé7], attenuated replicative potential
importance of DNA repair in the cells armamentarium [8,9] that correlates with a faster rate of decline in the
against endogenous and environmental DNA damage, mitotic fraction per population doublinld.0], as well
and he has been unwavering in supporting the careers ofas a variety of chromosomal abnormalities including
colleagues. His generosity to the scientific community reciprocaltranslocations, deletions and invers[éd$
is documented and embedded in the many conferenceg~urthermore, in addition to reports on increased levels
he has organized, culminating in the International Con- of homologous recombinatigf2], some WS cell lines
ference on Environmental Mutagenesis. Phil tradition- also show aberrant mitotic recombinat{d3]. Thereis
ally ends his lectures with pictures from his laboratory an elevated level of large spontaneous deletion muta-
retreatincluding current members, alumni, and visiting tions (>20kb) coupled with sensitivity to a range of
scientists that are selected to “keep them honest.” | was DNA damaging agen{d4]. Thus, WS can be classified
one of the visitors to his retreat and immediately rec- as a genomic instability syndrome anéRNmight be
ognized their importance; we mimicked his wonderful classified as a lineage specific tumor suppressor gene.
tradition and invited Phil to be one of our early critics.

3. WRN protein
2. Werner syndrome
Interestingly, such a diverse collection of cellular

The Werner syndrome (WS) protein, WRN, is a
member of the RecQ family of DNA helicasé¢$]
that are widely distributed in nature and believed to
play central roles in maintaining the genomic stability
of organisms ranging from prokaryotes to mammals
[2]. WRNencodes a single polypeptide of 162 kDa
that contains 1432 amino acids. Individuals harbor-
ing mutations inWRNhave a rare, autosomal reces-

and organismal phenotypes of WS is caused by the
loss-of-function mutations in a single gene product
located at chromosomal position 8pl215]. WRN

is a DNA-dependent ATPase that uses the energy from
ATP hydrolysis to unwind double-stranded DNA in the
3'-5 direction with respect to the single strand that it
binds[16—18] However, unlike other known members
of the human RecQ family, WRN contains three con-

sive genetic disorder manifested by an early onset of served exonuclease motifs with significant sequence
symptoms characteristic of aged individuals. Gener- similarity to the 3-5 proofreading domain oE. coli
ally, Werner syndrome becomes apparent by the failure DNA polymerase | as well as RNasdD9], and thus

ofthe growth spurt at adolescence followed by an accel-

is the only known member of this family to possess a

erated development of atherosclerosis, arteriosclerosis,3 -5 exonuclease activiti20,21]. In addition to the N-
cataracts, osteoporosis, soft tissue calcification, prema-terminal exonuclease domain that spans amino acids 78

ture thinning, graying, and loss of hair. In addition, WS
patients display a higher incidence of ‘late onset’ (Type
II) form of diabetes mellitus, as well as an elevated

through 219, other major domains of WRN are the cen-
trally located RecQ helicase domain covering amino
acid residues 569 through 859 and consisting of seven

cancer frequency that is largely restricted to those of conserved motifs, a direct repeat of 27 amino acids
mesenchymal origin. The age of death varies between between the exonuclease and helicase domains, a puta-

approximately 30 and 65 years, with a mean of 47

years, and usually results from cancer or cardiovas-

cular diseas¢3—6]. Since WS patients display such a

tive transcription activation domain (amino acids 315
through 403), and the C-terminal nuclear localization
element (amino acids 1370 through 1375) (reviewed

remarkable number of progeroid phenotypes (with the in [22]). The C-terminal region of WRN also accom-
exception of the lack of degeneration of the central ner- modates the conserved RQC dom&adQ conserved)
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that includes the nuclear localization signal-dependent presence of other regions of the protein in addition to
nucleolar targeting sequence, as well as the HRDC these minimal domain84].
(Helicase andrnas® C-terminal) domain believed The ATPase activity of WRN is DNA-dependent
to play a role in DNA binding[23,24] As in other [16] and is significantly stimulated by long stretches
members of the superfamily 1 and 2 helicases, motifs of sSSDNA (>250 nt), although short ssDNA oligonu-
I and Il (Walker A and B motifs, respectively) of the cleotides and dsDNA can also act as stimulators of ATP
WRN helicase domain contain the amino acids crit- hydrolysig[35]. The correlation between the maximum
ical for interacting with MgATP/MgADP22,25,26] keat Value of 200 mirt! for ATP hydrolysis and the
Analysis of more than 3SWWRNmutations identified in ~ ability of WRN to translocate along long stretches of
WS patients thus far indicates that all of the mutations ssDNA without additional binding steps suggests pro-
give rise to truncated WRN proteins with a loss up cessive translocation of WRN protein along ssDNA
to 1256 amino acid residues that invariably includes [35]; however, as discussed below, this processivity
the C-terminal nuclear localization signal7]; these does not apply to the helicase and exonuclease activi-
mutations (nonsense, frameshift, or insertion/deletion) ties of the protein.
inactivate both copies of the WS gene and lead to the  The ATP-hydrolysis driven’35 helicase activity
loss of detectable prote[28]. The phenotypes of cell — of WRN [16—18]shows relatively poor processivity on
lines from heterozygous carriers of the mutated WRN long DNA duplexeg36] and is able to unwind only
gene with reduced levels of both WRN protein and heli- short DNA duplexes<£53 bp) in the absence of auxil-
case activity suggests that a WRN dosage effect may iary co-factor§16,17] The initial rate of the unwinding
modulate WS pathogenedi29]; however, so far no  reaction displays a hyperbolic dependence on ATP and
pathology has been established in heterozygous carri-Mg?* concentrations suggesting that WRN helicase
ers. activity is not cooperative with respect to ATP con-
centration[37]. Similar to many phosphotransferases,
Mn2* or Ni2* can substitute for M as a co-factor,
4. Biochemical properties of WRN protein whereas both P& and C#* profoundly inhibit the
helicase activity in the presence of Kig37].

WRN protein is unigue among the five human A characteristic feature of WRN helicase is its
RecQ members in that it is a bipartite and bifunc- specificity in unwinding diverse DNA substrates, some
tional enzyme: not only is it an ATP-dependet3 of which deviate from the canonical B-form duplex
helicase and a DNA-dependent ATPase characteris-DNA that could potentially interfere with cellular
tic of all RecQ family helicases, but unlike any other processes such as replication or transcription, thus
member of the RecQ family, it possesses 'a53 giving rise to genomic instability. A physiologically
exonuclease activijl 6—-21] The two functions of the ~ important alternative DNA structure that WRN can
enzyme are functionally and physically separable from efficiently unwind in vitro is quadruplex DNA (also
each other. Amino acid substitutions that inactivate the called G4 tetraplex DNAJ38], which is held together
exonuclease activity of WRN do not interfere with its by guanine—guanine Hoogsteen base pairing and sta-
helicase function, while mutant proteins with amino bilized by monovalent alkali catiorf89]. Such G-rich
acids substitutions or deletions in the helicase/ATPase DNA sequences that readily form quadruplex struc-
domain are still able to digest DNA exonucleolyti- tures under appropriate in vitro conditions are widely
cally but fail to unwind it[20,21] Similarly, recom- distributed throughout the genome and are found,
binant N-terminal fragments display exonuclease but among other places, atimmunoglobulin switch regions
no helicase activity, while C-terminal fragments that and rDNA gene clusterg9], as well as at telomeric
lack the exonuclease domain retain the helicase func- repeat440]. It is possible that these structures might
tion [30-32] However, stimulation of the exonuclease also form in vivo and have specific functions in regula-
activity by ATP hydrolysi§33] suggests some cooper- tion of gene expression or genetic stability. In addition,
ativity between the ATPase and exonuclease functions WRN can resolve triplex DNARI1] that are most read-
of WRN, and underlines the proposal that full func- ily formed on polypurine:polypyrimidine sequences
tion and regulation of catalytic activity may require the and have been demonstrated both in chromosomes
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[42] and nucle[43], as well as forked DNA molecules
[17], partial DNA duplexes with a single-stranded 3
overhang[20], D-loops[44], and partial DNA—DNA
and DNA-RNA duplexeq17]. Furthermore, it has
been demonstrated that WRN is capable of branch-
migrating Holliday junctions over several kilobases
[45], aremarkable feat considering that WRN normally
displays poor processivity36]. Taken together, these
substrate requirements suggest that a major function
of WRN is to alleviate blocks during DNA synthetic
processes.

Biochemical data on the exonuclease activity of
WRN, which resides at the N-terminus, indicate a
3 — 5 directionality for exonucleolytic DNA degra-
dation and low processivit{20,21,33] In contrast to
what has been observed with WRN helicasé*Zsan
substitute for Mg* as a co-factor for WRN exonucle-
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Fig. 1. Some alternate DNA structures as substrates for WRN. WRN
shows substrate specificity towards alternate DNA structures thought
to exist in vivo as intermediates in specific DNA transactions such as
replication (forked DNA), recombination (Holliday junction, triplex
and tetraplex DNA), and repair (partial duplex with single stranded
bubble).

ase in the absence of ATP, and could act as a molecular

switch, converting WRN from helicase to exonuclease
in vitro [37]. The presence of a 2 binding domain

is suggested by the Zh-dependent stimulation of
exonuclease activity in N-terminal WRN fragments

and further supported by the structure of the sequence-

related DNA polymerase I 3+ 5’ exonuclease domain
which is proposed to function by a two-metalion mech-
anism[46]. Thus, it is conceivable that the catalytic
activities WRN are regulated and its cellular functions
modulated by metal ion availabilif37]. Early studies

on simple substrates showed that WRN exonucle-
ase degrades double-stranded DNA or DNA-RNA
heteroduplexes containing-Bcessed ends more effi-
ciently than double-stranded duplexes with blunt ends,
partial duplexes with srecessed ends, or ssDNA for
which it has essentially no activif¢7]. Interestingly,
the introduction of certain defined structures such as a
centrally located bubble or an extra-helical loop allows
the initiation of digestion from blunt endg0,47]
Moreover, as is the case with its helicase activity, the
preferred “activators” for the WRN exonuclease are
unusual DNA structures: bubble-containing duplex
DNA, DNA with single-stranded loop, stem-loop
DNA molecules, as well as three-way and four-way
DNA junctions[47]. Since both the helicase and the
exonuclease activities of the WRN protein reside on the
same polypeptidg20], this preference for alternative
DNA structures is not surprising. The fact that a single
mismatched terminal nucleotide from &r&cessed

activity of WRN than is an otherwise identical
non-mismatched molecul@1,33] suggests a role in
‘proofreading’ akin to the proofreading activities of
certain DNA polymerases. Furthermore, WRN exonu-
clease is active at nicks and gg@4] and on certain
modified bases such as uracil and hypoxantffid3.

Fig. 1 schematically depicts some of the substrates of
WRN protein.

The function of the WRN exonuclease has not been
established. Since WRN is able to remove a terminal
nucleotide containing’3PQy, it is suggested that it
may play a role in repairing oxidative DNA damage
[33]; however, certain’3terminal oxidative modifica-
tions and bulky lesions in DNA block the exonuclease
activity [32]. On the other hand, association with Ku
enables WRN exonuclease to excise different block-
ing lesiong[48]. Although the exonuclease activity of
WRN can be observed in the absence of ABB], it is
nevertheless dramatically stimulated on every substrate
tested by ATP hydrolysif30,33], suggesting cooper-
ativity between the ATPase and exonuclease domains.
On the other hand, mutant WRN proteins lacking the
entire ATPase/helicase domain still retain exonuclease
activity [32], suggesting a functional independence of
helicase and exonuclease activities.

An important question that remains unanswered is
whether or not the helicase and exonuclease activities
of WRN function coordinately in a common molecular

end is a more effective substrate for the exonuclease pathway. While similar binding affinities and substrate
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preferences suggest coordinate action, it is also pos-to be able to simultaneously process opposite ends
sible that the separate activities of the protein may of the same DNA moleculfs0]. Alternatively, WRN
sequentially play independent roles in discrete steps of helicase, upon binding to a partially melted region of
a single pathway. Alternatively, though less likely, the duplex DNA, may facilitate the movement of the bub-
helicase and exonuclease activities may operate sepable either toward or away from the end or nick slated for
rately in two distinct DNA metabolic pathways. While  exonucleolytic degradatiof80]. These multiple con-
distinct structure-specific DNA binding domaif#9] jectures emphasize the importance of establishing the
and separable helicase and exonuclease activities ofthree dimensional structure of WRN in complex with
mutant WRN protein$20,21,30,31,335upport a dis- different DNA substrates.
tinct pathway hypothesis, recent reports of an enhanced  Further complicating the matter is the fact that the
exonuclease function in the concerted DNA binding quarternary structure of WRN is controversial. The
and exonuclease activities on partially melted duplex initial rate of unwinding increases with WRN con-
DNA [30] and the simultaneous action of WRN heli- centration, suggesting the formation of a functional
case and exonuclease on opposite ends of a long forkedmultimeric enzyme complex, while pre-steady state
DNA duplex as well as their cooperation in the subse- conditions reveal an initial burst phase amplitude at
guent separation of the stran®] favor the coordi- a 1:1 ratio between WRN and the DNA substrate,
nated action model. In addition, ithas been reported that suggesting an active monomeric form of the heli-
a similar cooperation exists in the removal of the invad- cas€[37]. Conversely, full-length WRN was proposed
ing strand of a long D-loop44,51] which isan early  to form a trimer based on observations with size-
intermediate in recombination pathwd$&]. Further- exclusion chromatograpli§4], whereas another study
more, there is evidence indicating that, in addition to utilizing gel-filtration chromatography and atomic-
a structural role it plays independent of its enzymatic force microscopy showed that a minimal exonuclease
activities, balanced helicase and exonuclease activitiesdomain of WRN existed in a trimer-hexamer equi-
of WRN are required in DNA repair via homologous librium in the absence of DNA with the trimer form
recombinatiorf53]. being stabilized in the presence of DNA or PCH&5].
Although these studies suggest that WRN heli- However, WRN and other RecQ helicases have been
case and exonuclease indeed act in concert to procespostulated to exhibit a dynamic change in subunit struc-
alternative DNA structures, how this coordination is ture that affects their activity and function (reviewed in
achieved remains a puzzling question. Earlier studies [51]).
[18,21,33]have shown that the domains have opposing
specificities: whereas WRN helicase function requires
asingle-stranded regiont® the duplex to be unwound 5. WRN and its protein partners
and proceeds in & 3> 5 direction as defined by the
single-stranded template it binds, the exonucleasefunc-  Consistent with the bipartite and bifunctional nature
tion requires a single-stranded regidri&the duplex of WRN and its numerous substrates that resemble
to be degraded while itadvances with' a3 5 polarity various intermediates in DNA replication, recombina-
as defined by the strand on which it acts. Depending tion, and repair processes, WRN has been shown to
on the substrate upon which WRN acts, the two activ- physically and functionally interact with a variety of
ities appear to move towards or away from each other proteins. Since genetics and biochemistry have so far
[22,30,50] It has been hypothesized that WRN might failed to establish a definitive role of WRN in cellular
warp or twist the DNA substrate to allow the helicase function, a thorough examination of physiologically
and exonuclease domains to face the opposite ends ofimportant WRN interactors may help delineate the
the DNA and thus proceed in the same direc{i®?, principal pathway(s) in which WRN participates. How-
while a similar scenario envisions a looping or bend- ever, the large number of WRN-interacting proteins
ing mechanism which can bring a distant DNA end and the fact that many of these interactors participate
or nick in close proximity to the static WRN protein in a variety of DNA synthetic pathways have so far
[30]. Another possibility is that WRN, acting as an prevented a clear definition of the cellular function of
oligomer, is able to span DNA stretches long enough WRN based on associationsig. 2).
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Fig. 2. Evidence for the proposed in vivo functions of WRN. All
lines of evidence discussed so far are compatible with the overall
role of WRN in resolving alternative DNA structures, facilitating a
variety of DNA synthetic processes. However, the large number of
WRN-interacting proteins and the fact that many of these interac-
tors participate in a variety of DNA synthetic pathways prevent the
formulation of the precise cellular function of WRN.

5.1. Replication proteins

5.1.1. PCNA and topoisomerase |

One of the earliest demonstrations of physical and
functional interaction of the WRN protein with mem-
bers of the replication machinery came from co-
immunoprecipitation studies, which identified WRN
as part of the 17S multiprotein DNA replication com-
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replication and repair. Moreover, the size of these foci
could accommodate thousands of protein molecules
and thus co-localization does not imply a direct molec-
ular association.

Topoisomerases change the linking number of
DNA during DNA replication to relieve the torsional
stress caused by the advancing replication fork. The
WRN-topoisomerase | association implies a topolog-
ical role of WRN that might explain the sensitivity of
WS cells to a potent DNA topoisomerase | inhibitor,
camptothecin, during &and S phases of the cell
cycle [60,61] Recent evidence indicates that WRN
physically interacts with topoisomerase | through two
regions located at the C- and N-termini of the WRN
polypeptide and stimulates the ability of topoisomerase
| to relax negatively supercoiled DNA, while in a recip-
rocal functional interaction topoisomerase | inhibits
the ATPase activity of WRNB2]. WS cells also show
hypersensitivity to chromosome damage induced
by topoisomerase Il inhibitors during the;@®hase
of the cell cycle, suggesting defective decatenation
checkpoint that could contribute to genomic instability
through imperfect segregation of sister chromatids and
subsequent chromosome breakage in the absence of
WRN [63].

plex, and established PCNA and topoisomerase | as the5.1.2. DNA polymerasg

two WRN-interacting componenf56].

PCNA is a trimeric scaffolding protein akin to the
E. coli B-clamp, and is involved in both DNA repli-
cation and repair processes. It wraps itself around
the DNA duplex and recruits other proteins, includ-
ing DNA polymerased, to form so called replication
factories (reviewed if57]). The exonuclease domain
of the WRN protein contains a region that is homol-
ogous to the PCNA-binding motif6,58] found in
many proteins involved in DNA replication and repair,
such as FEN-1 and DNA ligase[%7,59] Recently,
it has been demonstrated that WRN and PCNA co-
localize at replication foci, suggesting a physiological
interaction between them in cycling primary c¢88].
Since this interaction occurs through the conserved
PCNA-binding motif, it is proposed that a competitive
interaction between PCNA-binding replication factors
and WRN may play an important role in regulating the
activity of WRN[58]. However, its interaction with the
PCNA does not assign a definitive role to WRN in cel-
lular processes because PCNA is involved in both DNA

The association of WRN with the major replicative
DNA Polymerased (Polk) more directly suggests the
involvement of WRN in DNA replication. The addition
of increasing amounts of WRN dramatically stimulates
the rate of nucleotide incorporation by yeast DNA&ol
in primer extension assays in which PCNA is absent
[64]. Using yeast DNA Pd@, it was demonstrated that
the enhancement in primer extension is dependent
on the presence of the Pol32 subunit. The finding
that WRN does not stimulate primer-extension by the
Pob—PCNA complex, which is required for efficient
replication in vivo, argues that WRN is not involved in
normal processive DNA synthedi84]. The addition
of the WRN helicase allows Pdlto traverse hairpin
and G-quadruplex structures that normally impede the
translocation of replication complexes, and allows the
synthesis of full-length DNA65]. A role for WRN
in resolving alternative DNA structures is reinforced
by studies of Courcelle and Hanawalt showing that
in E. coli RecQ is required to process DNA at
blocked replication fork§6]. The resolution of these
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secondary structures is of biological importance for
they can induce polymerase stalling and prolong
the S-phase as observed in WS cells lacking WRN
protein[67].

Studies using yeast two-hybrid screening indicate
that the C-terminal region of WRN physically interacts
with the p50 subunit of the human DNA polymerase
d, and co-immunoprecipitates with p50 and p125
subunits [68]. Furthermore, ectopically introduced
tagged WRN co-localizes with p50 and p125 in the
nucleolus of HelLa cells, indicating a role for WRN in
sub-cellular localization in addition to its modulation
of catalytic activity [68]. This dichotomy between
stimulation and binding of WRN to Pdimay indicate
that WRN binds to one subunit and stimulation is
dependent on the presence of the other subunit.
All in all, because Pal participates in both DNA
replication and DNA repair, its association with WRN
does not reveal the specific pathway in which WRN
partakes but merely hints at its role as a “genomic
caretaker.”

5.1.3. RPA

Another important protein that associates with
WRN and forms a functional complex is the replica-
tion protein A (RPA). Human RPA is a heterotrimeric,
single-stranded DNA binding protein required for DNA
replication, recombination, and repair (reviewed in
[69]). Direct physical interaction between WRN and
RPA, demonstrated by their co-immunoprecipitation
[36] and through enzyme-linked immunosorbent assay
(ELISA) [70], markedly stimulates the DNA helicase
activity of the WRN protein[36,70] and increases
its ability to unwind forked telomeric DNA struc-
tures[50,71] While WRN alone cannot unwind partial
duplexes longer than 40 bp, its interaction with RPA
allows it to unwind substrates as long as 849 bp, the
longest substrate test§@b]. Compared to other SSBs
such asE. coli SSB and T4 gene 32p, hRPA is the
most effective in enhancing WRN helicase activity. For
example, significantly higher effective concentrations
of E. coli SSB or T4 gene 32 protein than of hRPA are

required to achieve the same extent of helicase stimu-

lation on synthetic oligomer substraf{@s8]. Moreover,

the concentration dependence of stimulation follows a
hyperbolic curve in the case of hRPA and a sigmoidal
curve in the case dt. coli SSB[18]. The sigmoidal
curve observed fdE. coli SSB probably reflects coop-
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erative binding to ssDNA that prevents reannealing
of the displaced oligomer while the hyperbolic curve
found for hRPA may reflect a non-cooperative, direct
interaction between the protein partners rather than
the mere coating of the exposed single-strand&il

It has been recently reported that RPA alleviates the
inhibitory effect of vinylphosphonate internucleotide
linkages on DNA unwinding by the WRN helicase,
suggesting that RPA may tether the helicase to the
DNA substrate at the single-strand/double-strand junc-
tion, thus allowing it to cope with rotational rigidity

in the DNA template during the unwinding reaction
[72]. Although this observation does not provide for
a cellular role for WRN, it does provide an insight
into the translocation mechanism of the WRN helicase
suggesting a combination of base-flipping and phos-
phodiester interactions for its movement along ssSDNA
[72]. Similarly, a direct physical and functional interac-
tion between FFA-1, th¥enopushomologue of WRN,
and RPA has been shown, which stimulates the heli-
case activity of FFA-1 in a fashion similar to that has
been observed with the WRN—-RPA interactigi3].
Further, FFA-1 is essential for the formation RPA foci
associated with replicatiofr4]. Despite these obser-
vations, no specific cellular role can be assigned to the
WRN-RPA complex because RPA is involved in all of
the major DNA pathways.

5.1.4. FEN-1

An interesting replication protein that interacts
with  WRN is the FEN-1 protein[75], a 5-
endonuclease/53-exonuclease that is involved in the
maturation of Okazaki fragments during lagging strand
DNA replication [76], in long-patch base excision
repair (BER)[77], as well as in non-homologous DNA
end joining (NHEJ)[78]. WRN and FEN-1 interact
through the 144-amino acid RQC domain on the C-
terminal region of the WRN proteifr5]. While the
interaction with FEN-1 does not in any obvious way
affect the activity of WRN, WRN greatly stimulates
(more than 80-fold) the nucleolytic activity of FEN-1in
a concentration-dependent manner, even if the helicase
and exonuclease activities of WRN are abolisp#s].
Furthermore, WRN stimulates the cleavage of DNA
structures that are poor substrates of FEN-1 alone,
suggesting that these two proteins are likely to act
together in vivo. Since the C-terminal region of WRN
thatencompasses the FEN-1-interacting region aloneis
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able to enhance FEN-1 activity, the helicase activity of inhibit its helicase and exonuclease activities, a pro-
WRN seems to be not required for FEN-1 stimulation cess that can be reversed by [@6]. Since WRN is
[75,79] Recent fluorescence resonance energy transferphosphorylated in vivo in response to bleomycin- or 4-
(FRET) analyses show that the WRN-FEN-1 complex NQO-induced DNA damag87], and since Ku enables
co-localizes in foci associated with arrested replica- WRN to hydrolyze 8-oxoguanine- and 8-oxoadenine-
tion forks and further biochemical studies demonstrate terminated DNA substratd48], it is possible that Ku

that this complex plays a role in the unwinding and
degradation of chicken-foot Holliday junction struc-
tures associated with regressed replication f¢8k].
While collectively these data argue for an important
biological function of the WRN-FEN-1 complex, the
promiscuous involvement of FEN-1 in DNA replica-
tion, repair, and NHEJ pathways unfortunately shad-
ows any insight into the specific role of this complex.

5.2. Genomic maintenance proteins
5.2.1. Ku-DNA-PK complex

Interestingly, FEN-1 is not the only NHEJ pro-
tein that forms a complex with WRN: the physical

plays a role in the activation of WRN to participate
in the removal of certain replication blocks. Addition-
ally, by modulating the exonuclease activity of WRN,
DNA—-PK complex may limit the processing of DNA
ends prior to end joining in NHEJ or other DNA repair
processes.

5.2.2. PARP-1

Remarkably, it has been shown that WRN and
Ku70/80 participate to form a cellular trimeric com-
plex with poly(ADP-ribose) polymerase-1 (PARP-1)
[88], a highly conserved nuclear factor implicated
in the control of genomic stability and mammalian
longevity[89]. PARP-1 participates in one the earliest

and functional interaction between the components of responses to DNA damage by catalyzing the sequen-
the DNA-PK complex, comprising of DNA-RKand tial transfer of ADP-ribose monomers onto a spectrum
the Ku70/Ku80 heterodimer, and the WRN protein of nuclear proteins, including itse]®0]. Based on in
has been reported by several laboratories. DNA-PK vitro biochemical evidence, as well as affinity purifi-
complex participates in repairing double strand breaks cation, immunoblot analysis, and mass spectroscopy
caused by physiological oxidative stress, recombina- experiments, it has been suggested that PARP-1 modu-

tion, ionizing radiation, as well as genotoxic chemi-
cals[81]. Affinity binding and co-immunoprecipitation

lates WRN exonuclease activity (but not helicase activ-
ity) [88]. Conversely, unmodified PARP-1 has recently

studies revealed a physical interaction between WRN been identified as the most prominent WRN RQC

and Ku [82,83] while the use of deletion mutants

domain binding proteif91].

demonstrated that the N-terminal region of WRN is
necessary and sufficient to bind the Ku heterodimer 5.2.3. DNA polymerasg and APE-1
[84]. However, the Ku heterodimer appears to bind There is considerable evidence that WRN partici-
both N- and C-terminal domains of WRN under normal pates in base excision repair. In vitro, wild type WRN
conditions[85]. This interaction has no effect on the binds to DNA PoB and stimulates strand displace-
helicase activity of WRN, but it broadens the exonucle- ment DNA synthesis on a nicked BER intermediate
ase specificity to hydrolzye blunt ends and protruding in a reaction requiring the helicase domain of WRN
3 single strands and enhancesiits procesqi8RY. Fur- [92]. In addition, recent GST pull-down assays in HeLa
thermore, this stimulation can also be observed with the nuclear extracts, ELISA assays, immunofluorescence
K577M mutant form of the WRN proteif82], which experiments, as well as dot blot assays, demonstrate
displays no helicase activity, as well as by a recombi- that WRN forms a stable complex with the major
nant WRN fragment harboring only the exonuclease human apurinic/apyrimidinic endonuclease (APE-1)
domain[84], indicating that the helicase activity and [93], a key player in the early stages of BER. It is
the C-terminal Ku-binding domain are not required for proposed that, besides simply bringing WRN to sites
this functional interaction. of active BER, APE-1 protein prevents the promiscu-
Recent evidence suggests that WRN can inter- ous unwinding of BER intermediates by WRN until
act directly with DNA—Pk; without the involvement ~ DNA PolB is recruited for strand displacement synthe-
of Ku, and that DNA-PKs phosphorylates WRN to  sis[93].
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5.2.4. p53 TRF2 and WRN mediated by the highly conserved
Recent studies that were initiated on the premises RQC domain of WRN has been demonstrajfed6].

that tumor suppressors may regulate both tumorigen- This physical interaction stimulates the WRN helicase

esis and cellular aging and that WRN and p53 may activity on short-forked substrates containing telom-

possibly be linked in a common pathway determining eric repeats, but shows no effect on the exonuclease

cell aging revealed that the key tumor suppressor pro-

tein p53 directly associates with the C-terminal portion
of WRN, and inhibits its exonuclease activ[84,95]
Wild type p53 attenuates WRN helicase activity and
abolishes its ability to unwind synthetic Holliday junc-
tions in vitro; this inhibition is dependent upon the

activity [106]. Moreover, WRN also binds to TRF1
protein, and the association of TRF2 and TRF1 with
the telomeric D-loop limits the extent of WRN exonu-
clease digestion into the telomeric repgaB7]. This
inhibition is independent of the helicase activity of
WRN in that the unwinding of D-loops in the pres-

phosphorylation status of key serine residues at the ence of RPA is not affected07]. In marked contrast,

C-terminus of p5396]. On a cellular level, the tran-
scription of WRN gene is repressed by ps3]. On
the other hand, when WRN is artificially overexpressed
in normal fibroblasts, p53-dependent transcriptional
activity increases and results in the initiation of p53-
mediated apoptos[98].

5.3. Telomeric maintenance and recombination
proteins

5.3.1. TRF1 and TRF2

Machwe and coworkers have clearly shown that TRF2
specifically facilitates WRN exonuclease activity on
substrates containing telomeric repeats that are consid-
erably largef{108]. On an organismal level, a causal
link between telomere shortening and the manifesta-
tion of Werner syndrome phenotypes has been demon-
strated using mouse models where late-generation mice
null with respect to bottWrn and Terc (encoding the
telomerase RNA template component) elicit classical
WS pathologies accompanied by enhanced telomere
dysfunction[109,110] Finally, recent reports suggest

Early statistical evidence indicating an accelerated that cells lacking WRN exhibit attrition of telomeres

shortening of telomerase restriction fragments in seri-

ally passaged WS culturg®9], together with the
indication that the loss of telomeric DNA may deter-

from lagging strand sister chromatids, and that the
prevention of the loss of telomeres is WRN helicase-
dependenfl11]. Collectively, these results argue that

mine the onset of replicative senescence (reviewed in WRN may be necessary for efficient replication of

[100]), provided an impetus for the investigation of
the role of WRN in telomere maintenance. Initial in
vitro biochemical experiments demonstrated that WRN

G-rich telomeric DNA as well as for the repair and
processing of telomeric end structures.

helicase/exonuclease was able to disrupt and degrades.3.2. Mrell complex

D-loop substrate$44] that are believed to occur in
telomeric region$101], potentially serving to protect
the ends of chromosom¢$02)]. Additional evidence
for the WRN-telomere connection is provided by the
participation of theSaccharomyces cerevisid¥RN

homolog Sgs1p in telomere maintenance in cells lack-

ing telomeras§l03]. These cells and their mammalian

Another protein complex that has recently been pro-
posed to cooperate with WRN is the Mrell complex
[112], a three-subunit complex that is composed of
Mrell, Rad50, and Nbs1/Xrs2 (reviewed [itil3]).
Mutations in these genes result in sensitivity to DNA
damage, genomic instability, telomere attrition, and
aberrant meiosi§l13]. WRN co-localizes and phys-

counterparts prevent the erosion of their telomeres by ically interacts with this complex at stalled replication
a telomerase-independent pathway termed ALT (alter- forks[114]. Further, it has been shown that WRN inter-

native lengthening of telomereg)04] and are distin-

acts with Mrel1 via binding to Nbsl in vivo and in

guished by the presence of nuclear structures referred tovitro, which results in the promotion of its helicase

as promyelocytic leukemia (AA-PML) bodies, which
contain telomeric repeat DNA, telomeric repeat bind-
ing proteins TRF1 and TRF2 protein, and the PML pro-
tein[105]. Furthermore, in addition to co-localization,
a direct physical and functional interaction between

activity [115]. Moreover, both WRN and Mrell are
phosphorylated in an ATR-dependent manner follow-
ing replication blockage and co-localization in nuclear
foci[116,117] On a cellular level, mutations that affect
the functionality of either WRN or that of the Mrell



A. Ozgenc, L.A. Loeb / Mutation Research 577 (2005) 237-251 247

complex result in chromosomal breakage during DNA mutations at an increased rate in an age-dependent
replication and apoptosis following replication arrest manner. Additionally, these cells are hypersensitive
[118]. Since the depletion of Mrel11 complex by RNAi  to some but not all types of DNA damaging agents,
knockdown does not enhance chromosomal breakageand WS lymphoblastoid cell lines show reduced levels
and cell death in WS cells, itis proposed that WRN and of gene-specific and strand specific repair of UV
Mrell complex act in a common pathway in response damage. Furthermore, in concordance with the ability
to replication fork arrest118]. of WRN to resolve three- and four-way junctions, WS
cells are impaired in their capacity to resolve mitotic
recombination products. Then again, in addition to
6. In vivo role(s) of WRN repair, these structural intermediates arise in a variety
of DNA metabolic processes such as replication,
The drive for the study of WRN protein is based repair, and recombination.
on the premise that WS, as a useful model system, can  Finally, the increased loss of telomeres in WS cells,
promote the formulation of directed and experimentally the correlation between aging and telomeric attrition,
tractable mechanistic insights into the process of nor- as well as the high specificity of WRN for G-rich alter-
mal aging as well as age-associated diseases. Howevemative DNA structures found in telomeres, suggest a
as more and more is uncovered regarding this enticing role for WRN in telomere maintenance. Further sub-
enzyme, it becomes clear that WRN, with its intricate stantiating this link is the association of WRN with
biochemistry and cell biology, its multiple interacting telomere repeat binding factors TRF1 and TRF2.
protein partners and the complex phenotypic manifes-
tations its absence creates, participates in more than
a single DNA metabolic pathway. Yet, most lines of 7. Conclusion
evidence presented so far are compatible with an over-
arching role for WRN in the resolution of alternative Werner syndrome hides important clues to the biol-
DNA structures in a variety of DNA synthetic pro- ogy of aging and age-associated diseases. So far, our
cesses. detailed analyses of the biochemistry of the encoded
WRN is proposed to function during DNA replica- protein has defined its function as a helicase and exonu-
tion to clear the path for the replicative apparatus by clease but has not established its precise role in in
resolving alternative DNA structures that would oth- vivo DNA transactions. WRN could be a sticky protein
erwise impede the progression of the replication fork. that associates with a wide variety of partners, each of
The dual helicase/exonuclease functionality of WRN which appears to be involved in multiple DNA syn-
is exceptionally well suited for the processing of non- thetic processes. Again, these associations have so far
canonical DNA structures. The interactions of WRN failed to yield definitive mechanistic insights into cel-
with DNA Pold, its association with topoisomerase | lular pathways. Functional interactions between WRN
and PCNA in the 17S replication complex, as well as and associated proteins are likely to be the most defini-
its physical and functional interactions with RPA and tive in guiding our understanding, particularly those
FEN-1 give further credence to the argument that WRN interactions that involve enhancement in enzyme activ-
isinvolved inreplication. The factthat WS cells display ities. Considering the power &. coligenetics and the
a prolonged S-phase strengthens this argument. How-homologies between WRN and RecQ, our understand-
ever, since many of these proteins are also involved in ing of Werner syndrome may ultimately require our
DNA repair, an exclusively replication-specific role to  understanding of RecQ helicase, as Phil Hanawalt so
WRN cannot be assigned. prognosticated.
In addition to the proteins with dual roles in DNA
replication and repair that are mentioned above, WRN
has been shown to interact with repair proteins such Acknowledgements
as DNA Pop, Ku and its associated DNA-RK
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