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Abstract

HIV-1 and other retroviruses exhibit mutation rates that are 1,000,000-fold greater than their host organisms. Error-prone viral replication
may place retroviruses and other RNA viruses near the threshold of “error catastrophe” or extinction due to an intolerable load of deleterious
mutations. Strategies designed to drive viruses to error catastrophe have been applied to HIV-1 and a number of RNA viruses. Here, we
review the concept of extinguishing HIV infection by “lethal mutagenesis” and consider the utility of this new approach in combination with
conventional antiretroviral strategies.
© 2004 Published by Elsevier B.V.
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1. Introduction In theory, proximity to the threshold of error catastrophe
should render HIV susceptible to extinction due to slight in-
Variation in HIV populations results from the error-prone creases in the mutation rate. This concept is the basis of an
nature of retroviral replication and the rapid turnover of virus antiviral strategy designed to specifically increase the error
in infected individuals Coffin, 1995. Mutations in viral rate of retroviral replication. Here, we review the theoreti-
genomes provide the genetic potential for immune escape,cal and experimental grounds for this strategy, termed “lethal
changes in cellular and species tropism, and the developmenmutagenesis’l{oeb et al., 1999 We begin by examining the
of antiviral drug resistanceDpmingo and Holland, 1997;  sources of spontaneous mutations in retroviral genomes and
Rambaut et al., 2004However, the ability of HIV to adapt  the rate at which these errors are formed during viral repli-
to environmental pressures is not without cost; the available cation. Next, we review data from in vitro studies suggesting
evidence suggests that error-prone replication imposes a subthat mutagenic compounds can increase the mutation rate of
stantial genetic load on retroviral populations, as discussedHIV-1 replication beyond the error threshold. We also address
in this review. Thus, it has been suggested that the muta-recent findings suggesting that specific cellular enzymes can
tion rates of retroviruses and other RNA viruses approach induce a natural form of error catastrophe by directly altering
the maximal value that is compatible with sustained produc- the sequence of the HIV-1 genome. Finally, we examine the
tion of infectious progenyHolland et al., 199 Violation possibility of using virus-specific mutagens in combination
of this theoretical threshold is predicted to result in a sudden with conventional antiretroviral drugs, and discuss potential
and irreversible collapse of the population structure due to anchallenges to this new therapeutic approach.
intolerable number of deleterious mutatioli&gen, 1971
The ensuing loss of replicative potential is referred to as “er-

ror catastrophe”Eigen, 2002 2. Retroviral mutagenesis

. Genetic diversity and phenotypic variation are intrinsic
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serially-passaged strains of Rous sarcoma virus (RSV) oftentribute little to the genetic diversity of actively-replicating
developed tumor types that differed from those produced by retroviruses Gojobori and Yokoyama, 1985This view is

the parental virus isolatd&rRpus and Murphy, 19)3Pheno-

supported by data showing that a large proportion of the mu-

typic variation was also documented in pioneering studies tations formed during a single cycle of viral replication in
by Howard Temin, who observed heritable differences in the culture can be attributed to RKim et al., 1996; O’Neil et

morphology of cells infected with different strains of RSV

al., 2002; Zhang, 20Q4In contrast, much less is known about

(Temin, 1960. As other retrovirus species were isolated and the role of RNA polymerase Il in retroviral mutation. Exper-
characterized, it became apparent that independent isolategments with prokaryotic and plant RNA polymerases suggest
of the same species often varied greatly in tumorigenic and that transcription is a relatively error-prone proceBiaik

cytopathic potential, cell tropism, and drug sensitivipdt,
1997. This inherent instability placed retroviruses among
other RNA viruses, which exhibit similar propensities for
phenotypic changerémin, 1989.

et al., 1986; de Mercoyrol et al., 1992; Libby and Gallant,
1991), though the fidelity of RNA synthesis can be modulated
by other components of the cellular transcription machinery
(Erie et al., 1993; Jeon and Agarwal, 1996; Koyama et al.,

DNA sequence analyses later demonstrated that retro-2003; Lange and Hausner, 2004; Shaw et al., 2002; Thomas
viruses are subject to substantial genotypic variation, as ex-et al., 1998. Analyses of mutations produced during retro-

tensively documented in HIV-1Qoffin, 1986, 1995Desai
etal., 1986; Goodenow et al., 1989; Hahn et al., J9B6ti-

viral vector replication also suggest that RNA pol Il fidelity
contributes to viral variationim et al., 1996; O’Neil et al.,

mates of the average number of nucleotide differences in pair-2002. However, the magnitude of this contribution remains
wise comparisons of patient isolates range from 15 to 25% unclear.

for portions of theenvgene Buonaguro et al., 1995; Learn
et al., 1996; Murphy et al., 1993; Wang et al., 1295lonal

Other sources of errors are also likely to generate diversity
in viral populations. Fluctuations in nucleotide pool levels

analyses demonstrate that multiple subclasses of variants si{Julias and Pathak, 1998; Vartanian et al., J38/or incor-

multaneously coexist in HIV-1-infected individuals and that

poration of dUTP Chen et al., 2002; Lerner et al., 199bay

the relative frequencies of these genotypes often fluctuate dur-generate mutations during viral DNA synthesis. Spontaneous
ing the course of natural infectiotspodenow et al., 1989; chemical decay of viral RNA or DNA produces aberrant
Liu et al., 2002; Meyerhans et al., 1989; Shankarappa etbases that miscode during transcription or reverse transcrip-
al., 1999. These findings have contributed to the widely- tion (Lindahl, 1993. RT incorporates damaged nucleotides
accepted view that retroviruses and RNA viruses exist asduring DNA synthesis in vitroBebenek et al., 1999; Feig
complex mixtures of related but genetically-distinct subtypes, et al., 1994; Furge and Guengerich, 1997; Hizi et al., 1997,

frequently referred to as “swarmsTémin, 1989 or “quasis-
pecies” Domingo etal., 1985; Domingo, 2003; Eigen, 1993

2.1. Sources of mutations in retroviral genomes

The diversity of retroviral populations is a direct re-
sult of the error-prone nature of retroviral replication. Mu-
tations in HIV-1 genomes primarily arise during three
distinct polymerization steps in the retroviral life cycle
(Fig. 1:

1) RNA-templated, minus-strand DNA synthesis by the viral
reverse transcriptase (RT).

2) DNA-templated, plus-strand DNA synthesis by RT.

3) DNA-templated, plus-strand RNA synthesis by host-
encoded RNA polymerase Il (RNA pol II).

Measurements of the fidelity of RT-catalyzed DNA synthe-
sis in vitro (reviewed irMenendez-Arias, 2002; Preston and

Kamath-Loeb et al., 1997a; Preston et al., )9&&d inserts
incorrect nucleotides across from damaged bases in RNA and
DNA templates Furge and Guengerich, 1997These find-
ings supported the suggestion that exposure of HIV-infected
cells to damaged nucleosides might increase the viral muta-
tion rate, thereby driving HIV to error catastropheréston

et al., 1988see below).

Modification of bases in viral RNA or DNA by host-
encoded enzymes also represents a potential source of
mutations. Studies in both RNA viruses and retroviruses sug-
gest that host enzymes other than DNA polymerases pro-
duce ‘hypermutations’, which occur as clusters of specific
base substitutions in the viral genon@aftaneo et al., 1988;
Pathak and Temin, 199p&or example, the pattern ofA G
hypermutations observed in avian retroviruses suggests that
these mutations result from the editing activity of double-
stranded RNA deaminaseBdss, 1997; Felder et al., 1994;
Hajjar and Linial, 1995; Pathak and Temin, 19R0dore re-

Garvey, 1992; Preston and Dougherty, 1996; Svarovskaiacently, the cellular enzyme APOBEC3G has been shown to

et al., 2003 indicate that reverse transcriptases are sub-

stantially less accurate than cellular replicative DNA poly-

generate G> A hypermutations in HIV-1,Bhagwat, 2004,
Goff, 2003; KewalRamani and Coffin, 2003; Vartanian et al.,

merases. Much of the difference in fidelity is due to the lack 2003 see below). Thus, as with other RNA virus€aftaneo

of an associated' 3> 5' exonucleolytic proofreading activ-
ity in RT (Battula and Loeb, 1976; Roberts et al., 1p8he

et al., 1988; Macnaughton et al., 2003; Murphy et al., 1991;
O’Hara et al., 1984; Polson et al., 1996; Rueda et al., 1,994

disparity in the error rates of RT and cellular replicative DNA host-encoded enzymes influence the biological properties of
polymerases suggests that mutations produced during copy+etroviral genomes by directly altering the viral coding se-
ing of integrated proviral DNA are relatively rare and con- quence.
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Fig. 1. Outline of the retroviral life cycle. Error-prone polymerization steps that substantially contribute to the viral mutation rate aredrasrdeseribed in
the text. RT: reverse transcriptase; RNA pol II: cellular RNA polymerase II; DNA pfii%: cellular DNA polymerases, 8, and/ore. (+) Plus-strand;<),
minus strand.

2.2. Retroviral mutation and recombination rates mutation per genome per replication cycle. The majority of
errors are single base substitutions, which occur at an av-
Measurements of mutation rates require assays that con-erage rate of % 10~° per nucleotide per round of replica-
strain the virus to a known number of replication cycles. Early tion. A similar base substitution rate was also observed for
studies of murine leukemia virus (MLV) and RSV used spe- the yeast retroelement TY-I5@briel et al., 1996 Simple
cific host cell types and culture conditions to limit the virusto  frameshifts and rearrangements are observed at average rates
a single round of replicatiorLgider et al., 1988; Monk etal.,  of ~5x 1078 per nucleotide per replication cycl@reston
1992. These approaches were superceded by the use of retroand Dougherty, 1996 The average mutation rate for HIV-1
viral vectors that are genetically restricted to a single replica- (~5 x 10~ mutations per nucleotid&able 1 is comparable
tion cycle Dougherty and Temin, 1988; Gabriel et al., 1996; to the rates observed for several other retroviruses, and about
Gao et al., 2004Halvas et al., 2000a;Qulias et al., 1997;  a million-fold greater than the mutation rates of eukaryotic
Kim et al., 1996 Mansky and Temin, 1994, 1998ansky, cells Orake et al., 1998; Drake, 1999
1996a,bh Mansky, 2000; O’'Neil et al., 2002; Parthasarathiet ~ Vector viruses have also been used to determine the
al., 1995 Pathak and Temin, 1990a,Yarela-Echavarria et  rates of recombination between the two strands of ge-
al., 1992; Zhang et al., 20D2The majority of these assays nomic RNA that are co-packaged in retroviral virions. For
measure mutation rates in nonessential target geeefp, HIV-1, homologous recombination occurs throughout the
LacZu or tk). genome at a rate of 2—3 crossovers per round of replica-
Based on the results of vector virus experiments, retro- tion in cultured fibroblastsHu et al., 2003; Jetzt et al.,
viral mutation rates range from>610~% to 9 x 10~° (aver- 2000; Negroni and Buc, 2001; Onafuwa et al., 2003;
age =5x 10~°) mutations per nucleotide per cycle of virus Rhodes et al., 2003; Yu et al., 1998; Zhuang et al., 2002
replication Table ). Given an average genome length of and 10-30 crossovers per replication cycle in T lympho-
~10,000 nucleotides, this equates to approximately 0.1-1cytes and macrophagetelry et al., 2004 Recombina-
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Table 1
Forward mutation rates of retroelements

Element Target Mutations per base pair per replication cycle References

Base substitutions All classes

Retroviruses

HIV-1 LacZo 2x10°° 3x10°° Mansky and Temin (199%ndMansky (1996a)
Viral genome  4x 10°° 5x10°° Gao et al. (2004)
LTR 6x10°° 9x10°° O'Neil et al. (2002)

MLV LacZy 3x 10750 NDS¢ Halvas et al. (2000a,l§ndZhang et al. (2002)
Gfp 3x10°5b ND Zhang et al. (2002)
Tk 3x 10> 3x10°° Parthasarathi et al. (1995)

SNV LacZx 1x10°3 2x10°° Julias et al. (1997Kim et al. (1996)andPathak and Temin (1990a,b)

HTLV-1  LacZe 4x10°6 7x10°8 Mansky (2000)

BLV LacZx 1x10°8 5x 1076 Mansky and Temin (1994)

Retrotransposon

TY-1 TY genome 2 10°° ND Gabriel et al. (1996)

Average 3x10°° 5x10°°

2 Includes base substitutions, frame shifts, genetic rearrangements (insertions/deletions) and hypermutations.
b As calculated irBvarovskaia et al. (2003)

¢ Not determined.

d As calculated irDrake et al. (1998)

tion also frequently results from template switching dur- 3. Error catastrophe in HIV
ing obligatory primer strand transfer steps in the reverse
transcription processHu et al., 1997; Yu et al.,, 1998; 3.1. Evidence for an error threshold in HIV replication
Zhang and Temin, 1993Clearly recombination events con-
tribute to viral diversity in HIV-infected individuals, as strains The same error-prone replication strategy that provides
that are hybrids of differing subtypes are endemic in cer- retroviruses with exceptional adaptability also imposes a
tain geographic region&(iken et al., 2001 Recent analy-  substantial load on the population by continually produc-
ses of splenocytes from HIV-1 infected patients show that ing defective genomes. The highly defective character of
cells harboring three or more genetically-distinct proviral retroviral isolates was appreciated in early studies of avian
copies are relatively common in vivdyng et al., 2002 retroviruses, which revealed that a significant proportion
These multiply infected cells provide ample opportunity of the proviral copies isolated from infected cells con-
for recombination-mediated rescue of defective genomes, asained deletions, rearrangements or other defects in the
demonstrated in vitrodfang et al., 2004; Li et al., 1992 viral genome Fung et al., 1981; Hughes et al., 1978;
and likely contributes to the sustained viability of HIV-1 O’Rear and Temin, 1981 Similar findings were also re-
and other retroelements that exhibit high mutation rates. In- ported for other retrovirusesd¢ Noronha et al., 1996;
terestingly, HIV-1 is about 10-times more recombinogenic Hiramatsu and Yoshikura, 1986; Shields et al., J9Fdr
than several other retroviruses including spleen necrosis virusHIV-1, the frequency of defective proviruses in various tis-
(SNV), MLV and human T-cell leukemiavirus type 1 (HTLV-  sue compartments ranges from 10 to 70%, based on anal-
1) (Jetzt et al., 2000; Levy et al., 2004; Onafuwa et al., yses of specific portions of the genomla €t al., 1991;
2003; Rhodes et al., 2003; Yu et al., 1998ethal mu- Sanchez et al., 1997Experiments with retroviral vectors
tagenesis may be particularly effective against retroviruseshave confirmed that deletions, insertions, duplications and
with low recombination rates, due to their presumably di- frameshift mutations arise at high rates during retroviral
minished capacity for recombination-mediated repair of de- replication Gao et al., 2004Mansky and Temin, 1994,
fective genomes. 1995 Mansky, 2000; Parthasarathi et al., 199%athak
Collectively, the aforementioned studies reveal many of and Temin, 1990a)b For example, as many as 50% of
the mechanistic details underlying the generation of diver- MLV proviruses produced during a single cycle of replica-
sity in retroviral populations. This diversity provides the raw tion contain gross sequence rearrangemergstiasarathi
material for viral adaptation, as withessed by the rapid emer- et al., 199%. Deleterious point mutations also arise at high
gence of variants that thwart containment by the hostimmunerates in HIV-1 Gao et al.,, 2004and other retroviruses
system Klenerman et al., 2002; Stebbing et al., 2p@ad (Table 3. Thus, it is clear that spontaneous mutations are
the common appearance of drug-resistant mutants during ana significant cause of defective particles in retroviral popula-
tiviral therapy Shafer, 200p tions.
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Support for the idea that retroviruses exist near the er- netically engineered viruses result from reduced RT activity
ror threshold can be found in experiments that examine theand not error catastrophe. This is supported by recent stud-
effects of mutagenic conditions on viral replication and mu- ies showing that combinations of drugs and mutator RTs can
tation. Early studies of SNV showed that exposure of infected increase HIV-1 mutation rates up to 30-foldgnsky et al.,
cells to 5-azacytidine (5-azaC) conferred a 15-fold increase 2009. Clearly, additional experiments are required to firmly
in the viral mutation rate and a concomitant 95% reduction establish the upper limit of the retroviral mutation rate.
in titer, with minimal cellular toxicity Pathak and Temin,

1992. Similarly, agents that alter the intracellular concen- 3.2. HIV-1 restriction by APOBEC3G: host

trations of dNTPs (i.e. hydroxyurea or thymidine) modestly cell-mediated error catastrophe?

increase the mutation frequencies and/or rates of SNV, MLV

and HIV-1 vectors £5-fold), often with significant reduc- Recent studies of host cell factors that restrict HIV
tionsinreplication capacityl(lias and Pathak, 1998lansky infection have revealed what may be a natural form of error
et al., 2002, 2003Pfeiffer et al., 1998 Chain-terminating catastrophe (reviewedboff, 2003; Gu and Sundquist, 2003;
nucleoside analogs with potent antiviral activities also perturb KewalRamani and Coffin, 2003; Vartanian et al., 2D0thas
nucleotide pools and cause elevated mutation frequencies irlong been recognized that the viral protein Vif is essential for
cultured retroviruseslewell et al., 2003; Julias et al., 1997; replication of HIV in primary CD4 T lymphocytes and some
LaCasse et al., 1996; Mansky and Bernard, 2008nsky immortalized T cell linesChowdhury et al., 1996; Fisher et
et al., 2002, 2008 Together, these observations are consis- al., 1987; Strebel etal., 1987; von Schwedler etal., 1908
tent with the idea that as the error threshold is approached,diminished infectivity ofAvif virions results from the pack-
small increases in mutation rates result in disproportion- aging of host-encoded apolipoprotein B mRNA-editing com-
ately large declines in viability fomingo, 2003; Eigen, plex 3G (APOBEC3G, formerly known as CEM1SHeehy
2002. etal., 2002. This enzyme is a member of the cytidine deami-

Similar studies suggest that the high mutation rates of nase superfamily, which includes activation-induced cytidine
RNA viruses also approach the error threshold. In early exper-deaminase (AID), adenosine deaminases that act on RNA
iments with poliovirus and vesicular stomatitis virus (VSV), (ADARs), and other APOBEC family memberGérber and
exposure of virus stocks to increasing doses of chemical mu-Keller, 200). Incorporation of APOBEC3G into virions re-
tagens resulted in up to 100-fold reductions in infectious titer, sults in deamination of minus-strand cytidines, thereby lead-
with corresponding increases in mutation frequency of three-ing to G— A hypermutation of the plus-strand of newly
fold (Holland et al., 199 Similar results have been obtained synthesized HIV-1 DNA lfarris et al., 2003; Lecossier et
inmore recent studies of RNAviruses cultured inthe presenceal., 2003; Mangeat et al., 2002hang et al., 2003b Thus,
of mutagenic nucleoside analogaifaksinen et al., 2003 APOBEC3G appears to inhibit HIV-1 replication by direct
Crotty et al., 2000, 2005Grande-Perez et al., 200Rariente modification of the viral genome. Vif counteracts this inhi-
et al., 2001, 2003Ruiz-Jarabo et al., 2003; Severson et al., bition by interacting with APOBEC3G and preventing its
2003; Sierra et al., 2000; Zhou et al., 20@8e other arti- incorporation into virions Xu et al., 2004and references
cles this issue). In most cases, dramatic losses in titer weretherein).
coincident with slight increases in mutation frequency. With The pattern of G> A hypermutations observed invif
the exception of the Iytic bacteriophag@ RNA virus and genomes suggests that APOBEC3G-catalyzed deamination
retrovirus mutation rates are similddrgke, 1993; Drake et  occurs during and/or immediately following minus-strand
al., 1998; Drake and Holland, 1999 hus, it appears thatthe = DNA synthesis Harris et al., 2003; Mangeat et al., 2003
spontaneous mutation rates of both retroviral and RNA viral Zhang et al., 2003b However, the exact stage of the re-
genomes are close to the error thresh@arfingo, 2003; verse transcription process that is targeted by APOBEC3G is
Eigen, 2002 unclear. One possibility is that APOBEC3G begins deaminat-

Other experiments have taken a genetic approach to ex-ing single-stranded DNA following the degradation of plus-
amine the effects of increased mutation burden on retroviral stranded RNA by the RNase H function of RT. This would
replication. Amino acid substitutions that reduce HIV-1 RT be consistent with the preferential ability of APOBEC3G
fidelity in biochemical assays yield only modest (three- to to deaminate cytidine residues in single-stranded DNA in
four-fold) increases in virus mutation ratdddnsky, 2000 vitro (Harris et al., 2003; Suspene et al., 2004; Yu et al.,
Mansky et al., 2002, 2003Similar RT fidelity mutantsintro- 2004, and would also be in agreement with the substrate
duced into MLV result in a maximal increase in virus muta- specificities observed for related nucleic acid deaminases
tion frequency of six-fold, with the majority of substitutions (Bhagwat, 2004; Gerber and Keller, 2Q0For example,
greatly reducing viral replicationHalvas et al., 2000a)b APOBEC1 deaminates cytosine in single-stranded DNA
This pattern of modest mutation rate increases coupled withand RNA but not double-stranded DNAdtersen-Mahrt
substantial replication loss suggests error catastrophe. How-and Neuberger, 2003; Teng et al., 1998nd activation-
ever, many amino acid substitutions that reduce RT fidelity induced deaminase targets cytidine bases in single-stranded
also compromise enzyme activity, and it is likely that the DNA but not double-stranded DNA or DNA—-RNA hybrids
reduced replication capacities observed in many of these ge<(Bransteitter et al., 2003; Dickerson et al., 2RQ3owever,
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the possibility remains that APOBEC proteins act on RNA the adducted base into host cell MRNA is expected to have
and/or DNA-RNA hybrid duplexes that are formed during relatively minor consequences, due to the short half-lives
reverse transcriptiomBishop et al., 2004hFurther biochem-  of these moleculesRoss, 199 and the fact that mRNA
ical studies would reveal specific substrate requirements forcopies do not become part of the cellular genome unless the
deamination of the HIV genome. RNA is retrotransposed by an endogenous RT (a relatively

While the evidence suggests that miscoding resulting rare event). However, a fraction of the analog may be con-
from deamination is the primary mechanism of APOBEC3G- verted to the deoxy-form and polymerized into both viral and
mediated restriction, other processes may also contributehost DNA. The cellular genotoxicity of these adducts would
to the antiviral action of this host cell enzyme. First, con- likely be mitigated by the activities of specific repair en-
version of cytidine to uridine by APOBEC3G may result zymes, lesion bypass polymerases, and proteins that facilitate
in aberrant initiation of plus-strand DNA synthesis by RT recombination-mediated repair of cellular DNM¢Gowan,
(Klarmann et al., 2003 which would presumably result in  2003. Thus, mutagenic analogs would presumably be sig-
loss of viral infectivity. In addition, deoxyuridines generated nificantly more deleterious to the virus than to the host cell.
by APOBECS3G are likely substrates for host-encoded uracil  In the second strategy, lethal mutagenesis is achieved
DNA-glycosylases, which generate abasic sites in the DNA using a mutagenic deoxyribonucleoside analog that is me-
strand Krokan et al., 200R Abasic sites are recognized and tabolized to its Striphosphate by cellular enzymes and in-
cleaved by apurinic/apyrimidinic endonucleasBsgafov et corporated into nascent viral DNA by RTLdeb et al.,
al., 2003, and the resulting strand breaks would likely re- 1999. Analogs that are incorporated into viral DNA during
sult in degradation of the viral DNA. This may explain the RT-catalyzed minus-strand DNA synthesisg. 2, Step 2)
reduced levels and increased lability of viral DNA formed af- generate mispairs during subsequent plus-strand DNA syn-
ter infection of cells withAvif virions (Fouchier et al., 1996;  thesis (Step 3) and are likely to avoid repair in the precursor
Mangeat et al., 2003; Mariani et al., 2003 RNA-DNA duplex Kamath-Loeb et al., 199FbSimilarly,

The discovery of APOBEC3G as a mechanism of host cell analogs incorporated during plus-strand synthesis (Step 3)
restriction provides an avenue for the development of agentsgenerate mispairs when copied by host DNA polymerases
that specifically enhance the antiviral activity of this editing (Step 4). As noted above, analogs that are incorporated into
enzyme Harris and Liddament, 2004lt may be possibleto  cellular DNA are subject to repair, bypass or avoidance
design small-molecule inhibitors that interfere with the bind- through recombinationMcGowan, 2008 Although addi-
ing of Vif to APOBEC3G, resulting in lethal deamination tional specificity can theoretically be accomplished using
of viral genomes in cells that are otherwise permissive for analogs that are better substrates for RT than for host poly-
HIV infection. In addition, it is plausible that other cellular merases, this important goal remains to be achieved.
enzymes target the HIV genome for editing or modification,
and that these activities are normally inhibited by viral pro- 4.1. Initial studies with 5-OH-dC
teinsin a manner analogousto the interaction between Vif and

APOBECSG (see note added in proof). Thus, the induction  Efforts to develop strategies for lethal mutagenesis of HIV

of “lethal editing” (Mangeat et al., 20030y promoting the
enzymatic modification of viral RNA or DNA may provide
an important therapeutic tool to control HIV infection.

4. Mutagenic nucleoside analogs as antiretroviral
agents

have focused primarily on the antiviral properties of muta-
genic deoxyribonucleoside analogs. Initial experiments in-
volved a series of deoxyribonucleosides known to generate
mutations during DNA synthesis by RT and/or cellular DNA
polymerased(oebetal., 1999 These analogs were screened
for the ability to increase the viral mutation frequency during
seven serial transfers of HIV-1 in culture. Two analogs that

produced the largest increases in mutation frequency (three-

Two strategies for lethal mutagenesis of HIV have been to five-fold) were chosen for further study. Passage of virus
proposed, both involving nucleic acid precursors that are stocks for an additional seven transfers in the presence of
incorporated into the viral genome and mispair at high O*methyl-dT did not cause a significant reduction in titer, as
frequencies Fig. 2). In the first scenario, a mutagenic measured by the concentration of HIV-1 capsid p24 in culture
ribonucleoside-5triphosphate analog is incorporated into supernatants. In contrast, passage of the virus in the presence
newly-transcribed viral RNA by cellular RNA polymerase Il  of 1 mM 5-hydroxydeoxycytidine (5-OH-dC) resulted in a
(Fig. 2, Step 1), resulting inincorrect base-pairing during sub- sudden and dramatic drop in p24 levels in passages 15 and
sequent RT-catalyzed minus-strand DNA synthesis in newly 16. No loss of titer was observed in parallel HIV-1 cultures
infected cells (Step 2.6eb and Mullins, 200)). Given the passaged in the absence of the analog. Sequence analyses
absence of RT-associated proofreading actiiRplferts et of PCR products amplified from passage 16 virus revealed a
al., 198§ and the relatively poor activity of DNA repair  six-fold increase in the frequency of-G A substitutions in
enzymes on RNA-DNA hybrid duplexeK&math-Loeb et  cloned DNA fragments from the analog-treated cultures rel-
al., 19970, these mismatched nucleotides are unlikely to ative to the untreated control cultures. This result is consis-
be excised from the nascent viral DNA. Incorporation of tentwith the incorporation of 5-OH-dCMP opposite template
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Fig. 2. Proposed strategies for lethal mutagenesis of HIV. Left: Incorporation of a mutagenic ribonuclédsjutesSphate analog (rNTP) into the nascent

RNA genome of HIV by RNA polymerase Il (RNA pol II). Right: Incorporation of a mutagenic deoxyribonucleosidigfosphate analog (dNP) into

the viral DNA by RT and generation of mutations (chevron symbols) during subsequent polymerization steps. A portion of the analogs incorptgated duri
RT-catalyzed plus-strand DNA synthesis are likely to be repaired by cellular enzymes, and thus would not result in mispair formation. Nuntheifseefet t

steps in the replication cycle at which base analogs are inserted and/or copied by polymerases, as described in the text.

G residues during RT catalyzed minus-strand synthesis, fol-analog-treated cultures may have been due to the emergence
lowed by incorporation of JAAMP opposite the lesion site dur- of 5-OH-dC-resistant mutants, although this possibility re-
ing plus-strand synthesiKfeutzer and Essigmann, 1998; mains to be addressed.
Purmal et al., 1994 The mutator effect of 5-OH-dC was
specific for G— A substitutions; no significant increase in  4.2. Other mutagenic nucleosides
overall virus mutation frequency was observed in the analog-
treated cultures. The results obtained with 5-OH-dC suggest that specific
Two additional serial passage experiments were per- nucleoside analogs containing modified bases are effective
formed to verify the effects of 5-OH-dC treatment on HIV-1 HIV mutagens. However, the relative high concentrations of
replication. In four of the six analog-treated cultures, titers 5-OH-dC used in these experiments (0.5-1.0 mM) and the
declined to levels below the limit of detection after 8-25 long culture periods required to reduce viral titers make this
passages and were not recovered in additional passages gfarticular compound a guestionable candidate for clinical de-
the culture supernatants. The remaining two analog-treatedvelopment.
HIV-1 cultures retained detectable titers after 25 passages; To identify mutagenic deoxyribonucleosides with im-
detectable levels of virus in one of these were abolished afterproved potency, purine and pyrimidine analogs containing
a total of 58 passages (Loeb, unpublished data). As in theaberrant bases have been screened for anti-HIV activity in
first experiment, titer loss was coincident with an increase cell culture. These experiments have produced two deoxy-
(three-fold) in the frequency of & A substitutions. Viral cytidine compounds for further study. The first of these,
titers were not significantly diminished in any of the untreated 5-formyl-2-deoxycytidine (5-fo-dC), is an oxidation prod-
control cultures passaged in parallel. uct formed by exposure of 5-methyl-8eoxycytidine to ul-
Based on these data, we can conclude that exposure otraviolet or gamma radiatiorBfenvenu et al., 1996; Privat
HIV-1-infected cells to 5-OH-dC frequently results in loss of and Sowers, 19965-fo-dC readily base pairs with A or T,
detectable levels of virus, with a concomitant increase in the forming C— T or C— A mutations during cell-free DNA
G — A mutation frequency. These observations are consis- synthesis byEscherichia colDNA polymerase | Karino et
tent with the idea that the dramatic drop in viral titers resulted al., 200) and in mammalian cellsk@miya et al., 2002
from the entry of HIV-1 into error catastroph®g¢mingo, Treatment of cells with 5-fo-dC inhibited HIV replication
2003; Eigen, 200R Continued viral replication in one of the  within a single passage, with an Ef(the concentration
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of inhibitor required to reduce virus replication by 50%) of combinationsAhluwalia et al., 1994; Balzarini et al., 1991,
3uM (Daifuku, 2003. Inhibition of viral replication cor- Borroto-Esoda et al., 2004; Folietal., 1997; Gao et al., 1999;
related with a two-fold increase in mutation frequency. No Johns et al., 1993and is the mechanistic basis for the clini-
cytotoxic effects were observed at 5-fo-dC concentrations ascal use of hydroxyurea with chain-terminating RT inhibitors
high as 1 mM. The second compound, 5,6-dihydro-5-dza-2 (Lori and Lisziewicz, 2000; Rossero et al., 2003; Stebbing et
deoxycytidine (SN1212), provides even greater potency of al., 2004. Interestingly, alterations of dNTP precursor pool

inhibition, with an EGg of 10 nM (Daifuku, 2003. The an- levels also enhance error formation during retroviral repli-
tiretroviral efficacy of SN1212 is currently being evaluated cation Julias and Pathak, 199Blansky et al., 2002, 2003
in an animal model of HIV-1 infection. Pfeiffer et al., 1999 as discussed above. Thus, potent viral

The potential for using mutagenic ribonucleosides to in- inhibition might be achieved using mutagenic nucleosides
hibit HIV infection has been largely unexplored. However, that simultaneously exhibit two modes of action; modulation
the observation that 5-azaC inhibits SNV replication and con- of dNTP pools to enhance chain termination and induce a
fers a substantial increase in mutation r&athak and Temin, = mutagenic state in the host cell, and enhancement of mispair
1992 suggests that certain ribonucleoside base analogs mayormation by incorporation into the HIV genome.
be effective retroviral mutagens. The antiviral activity of 5-
azaC has been confirmed in conventional drug susceptibility

assays with HIV-1 in vitro (Eggs = 1uM; (Bouchard et al., 5. Potential challenges to antiretroviral mutagenesis
1990. Thus, 5-azaC may represent a prototypic ribonucleo-
side for lethal mutagenesis of HIV. Many of the same barriers to conventional antiretroviral

Additional efforts to identify mutagenic nucleosides have therapy are likely to present obstacles for lethal mutagenesis.
used a cell-free reaction system that mimics the transcrip- A primary concern is the issue of viral latency. Several cel-
tion and reverse transcription steps of the retroviral life cycle lular and anatomical reservoirs contribute to the long-term
(Moriyama et al., 2001 In this assay, plasmid DNA serves persistence of HIV-1, even in patients whose peripheral vi-
as a template for T7 RNA polymerase-catalyzed transcrip- ral loads are suppressed to undetectable levels (reviewed in
tion, and the resulting RNA copies are reverse-transcribed Pierson et al., 2000 Of these, the latent population of in-
using avian myeloblastosis virus (AMV) RT. cDNA copies tegrated, replication-competent genomes in resting'Ch4
from the RT reaction are amplified by PCR, recloned into cells is perhaps the most worrison@hun et al., 1996 This
the plasmid vector and sequenced to score mutation fre-reservoir is believed to be extremely stalile(~1-4 years)
quency. This system was used to evaluate the mutagenicand may be continually reseeded by low levels of ongoing
potential of nucleoside “P” which contains the tautomeric viral replication during suppressive therapy. Activation of
base analog 6H,8H-3,4-dihydropyrimido[4,5-c][1,2]oxazin- resting CD4 T-cells by antigenic or mitogenic stimuli re-
7-one (P) Moriyama et al., 200l The deoxyribose’s sults in the production of infectious virions in vitro, and is
triphosphate form of this analog (dPTP) base pairs with likely to contribute to the resurgence of viral loads following
template bases A or G\ggishi et al., 199yand generates interruption of drug treatment in vivd’{erson et al., 2000
high frequencies of all four possible transition mutations in Therefore, the maximum therapeutic benefit that can be real-
cell-free polymerase reactionggccolo et al., 1996 Simi- ized from lethal mutagenesis is probably durable suppression
larly, the ribonucleotide analog rPTP enhanced the frequencyof viral load, rather than complete clearance.
of error formation in the transcription/reverse transcription  Another potential obstacle to antiviral mutagenesis is the
system, primarily due to an increase in£T and T— C development of drug resistance. HIV-1 variants resistant to all
mutations Moriyama et al., 2001 The ability of rP or dP to currently approved drugs have been extensively documented
increase retroviral mutation frequencies and/or inhibit viral and characterizedP@rikh et al., 2001; Shafer, 2002nd pa-

replication has not been reported. tients failing combination therapy frequently harbor viruses
resistant to one or more drugs in the regiméndlund et al.,
4.3. Antiviral mutagens in combination therapy 2004; Gallego et al., 2001; Havlir et al., 200th addition,

detection of resistant variants prior to initiation of treatment

Ideally, analogs that increase mutational loads would in- is often an independent predictor of therapy failuétle
teract favorably with other drugs currently used to treat HIV et al., 2002; Van Vaerenbergh et al., 2D0Thus, the de-
infection. A beneficial synergistic action may result from velopment of drug resistance is generally associated with a
therapeutic regimens involving combinations of mutagenic poor clinical outcome. The use of mutagenic nucleosides in
base analogs and conventional chain-terminating nucleosidecombination with conventional drugs is unlikely to prevent
inhibitors. The inhibitory potential of a chain-terminator de- the development of resistance, as similar treatments of cul-
pends in part on its relative concentration with respect to tures infected with the RNA virus FMDV readily select for
its corresponding physiological dNTP. Thus, improved po- inhibitor-resistant variant$@ariente et al., 2003The identi-
tency can be achieved by diminishing the intracellular con- fication of ribavirin-resistant mutants in cultureféiffer and
centration of the competing substrate. This effect has beenKirkegaard, 2003; Scheidel et al., 1987; Scheidel and Stollar,
demonstrated in vitro for a number of inhibitor/pool modifier 1991) and in patients infected with hepatitis C virdé&(ng
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et al., 2003 suggests that resistance to mutagenic analogsmay be useful both for the treatment of drugveapatients
is also a likely outcome. These findings raise the intriguing and for salvage therapy of individuals harboring virus resis-
question of how HIV might evolve to acquire a mutagen- tantto conventional antiretroviral drugs. Similarly, strategies
resistant phenotype. One possibility is that mutations in RT that induce a mutagenic state by altering nucleotide pool
would compromise the binding and/or insertion of ANTP base levels, enhancing the lethal editing activity of APOBEC3G,
analogs at the primer terminus, thereby diminishing their in- or activating other nucleic acid-editing enzymes represent
corporation during DNA synthesis. In the case of ribonucle- novel approaches to antiretroviral therapy. Further research
oside analogs, resistance may be more difficult to achievein the emerging field of viral error catastrophe should provide
since incorporation is dependent on the host cell RNA poly- valuable insights into the effects of elevated mutation rates
merase. However, substitutions in RT that favor insertion of on viral replication and inspire promising new approaches
the “correct” nucleotide opposite adducted bases in the RNA for treating HIV infection.
template strand could potentially produce resistance to the
mutagen. While evidence for such a mechanism is lacking, Note added in proof
the ability of HIV to tolerate substantial genetic change in RT
(Smith et al., 200fsuggests that resistance to mutagens will  whjle this review was in preparation, several other deam-
not be prevented by functional constraints in the viral poly- jases in the APOBEC family have been shown to generate
merase. Selection and characterization of mutagen-resistang _, A hypermutations in HIV-1 and/or simian immunode-
HIV mutants in cell culture could readily address this issue. ficiency virus Bishop et al., 2004a; Liddament et al., 2004;
Wiegand et al., 2004; Yu et al., 2004a; Zheng et al., 2004

. For a review of these and other recent discoveries related to

6. Perspectives APOBEC-mediated restriction, seddrris and Liddament,

2004.
Although lethal mutagenesis has been demonstrated in

HIV-1 and a variety of other RNA viruses, several impor-
tant questions concerning this strategy remain unanswered.
Perhaps the most important experimental task is delineating”Cknowledgements
the exact mechanism by which mutagenic nucleosides exert . . .
antiviral effects. Specifically, the possibility that viral muta- ~ 1his_study was supported by Public Health Service
gens reduce titers by blocking other steps in viral replication 9rants CA39903 and Al42570 (L.A.L), AI34834 (B.D.P) and
should be more thoroughly addressed. Important examples®110139 (R.A.S). We thank Diana Lim for preparing the il-
of the pleiotropic effects of viral mutagens can be found in lustrations.
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