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Lethal mutagenesis of HIV
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Abstract

HIV-1 and other retroviruses exhibit mutation rates that are 1,000,000-fold greater than their host organisms. Error-prone viral replication
may place retroviruses and other RNA viruses near the threshold of “error catastrophe” or extinction due to an intolerable load of deleterious
mutations. Strategies designed to drive viruses to error catastrophe have been applied to HIV-1 and a number of RNA viruses. Here, we
review the concept of extinguishing HIV infection by “lethal mutagenesis” and consider the utility of this new approach in combination with
conventional antiretroviral strategies.
© 2004 Published by Elsevier B.V.
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. Introduction

Variation in HIV populations results from the error-prone
ature of retroviral replication and the rapid turnover of virus

n infected individuals (Coffin, 1995). Mutations in viral
enomes provide the genetic potential for immune escape,
hanges in cellular and species tropism, and the development
f antiviral drug resistance (Domingo and Holland, 1997;
ambaut et al., 2004). However, the ability of HIV to adapt

o environmental pressures is not without cost; the available
vidence suggests that error-prone replication imposes a sub-
tantial genetic load on retroviral populations, as discussed
n this review. Thus, it has been suggested that the muta-
ion rates of retroviruses and other RNA viruses approach
he maximal value that is compatible with sustained produc-
ion of infectious progeny (Holland et al., 1990). Violation
f this theoretical threshold is predicted to result in a sudden
nd irreversible collapse of the population structure due to an

ntolerable number of deleterious mutations (Eigen, 1971).
he ensuing loss of replicative potential is referred to as “er-
or catastrophe” (Eigen, 2002).

In theory, proximity to the threshold of error catastro
should render HIV susceptible to extinction due to sligh
creases in the mutation rate. This concept is the basis
antiviral strategy designed to specifically increase the
rate of retroviral replication. Here, we review the theor
cal and experimental grounds for this strategy, termed “le
mutagenesis” (Loeb et al., 1999). We begin by examining th
sources of spontaneous mutations in retroviral genome
the rate at which these errors are formed during viral r
cation. Next, we review data from in vitro studies sugges
that mutagenic compounds can increase the mutation r
HIV-1 replication beyond the error threshold. We also add
recent findings suggesting that specific cellular enzyme
induce a natural form of error catastrophe by directly alte
the sequence of the HIV-1 genome. Finally, we examine
possibility of using virus-specific mutagens in combina
with conventional antiretroviral drugs, and discuss pote
challenges to this new therapeutic approach.

2. Retroviral mutagenesis
∗ Corresponding author. Tel.: +1 206 543 6015; fax: +1 206 543 3967.
E-mail addresses:smithra@u.washington.edu (R.A. Smith),

oebla@u.washington.edu (L.A. Loeb), bradp@u.washington.edu
B.D. Preston).

Genetic diversity and phenotypic variation are intrinsic
properties of retroviral populations. This fundamental aspect
of retroviral biology was appreciated as early as 1913, when
Rous and Murphy demonstrated that chickens infected with
168-1702/$ – see front matter © 2004 Published by Elsevier B.V.
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serially-passaged strains of Rous sarcoma virus (RSV) often
developed tumor types that differed from those produced by
the parental virus isolate (Rous and Murphy, 1913). Pheno-
typic variation was also documented in pioneering studies
by Howard Temin, who observed heritable differences in the
morphology of cells infected with different strains of RSV
(Temin, 1960). As other retrovirus species were isolated and
characterized, it became apparent that independent isolates
of the same species often varied greatly in tumorigenic and
cytopathic potential, cell tropism, and drug sensitivity (Vogt,
1997). This inherent instability placed retroviruses among
other RNA viruses, which exhibit similar propensities for
phenotypic change (Temin, 1989).

DNA sequence analyses later demonstrated that retro-
viruses are subject to substantial genotypic variation, as ex-
tensively documented in HIV-1 (Coffin, 1986, 1995; Desai
et al., 1986; Goodenow et al., 1989; Hahn et al., 1986). Esti-
mates of the average number of nucleotide differences in pair-
wise comparisons of patient isolates range from 15 to 25%
for portions of theenvgene (Buonaguro et al., 1995; Learn
et al., 1996; Murphy et al., 1993; Wang et al., 1995). Clonal
analyses demonstrate that multiple subclasses of variants si-
multaneously coexist in HIV-1-infected individuals and that
the relative frequencies of these genotypes often fluctuate dur-
ing the course of natural infection (Goodenow et al., 1989;
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tribute little to the genetic diversity of actively-replicating
retroviruses (Gojobori and Yokoyama, 1985). This view is
supported by data showing that a large proportion of the mu-
tations formed during a single cycle of viral replication in
culture can be attributed to RT (Kim et al., 1996; O’Neil et
al., 2002; Zhang, 2004). In contrast, much less is known about
the role of RNA polymerase II in retroviral mutation. Exper-
iments with prokaryotic and plant RNA polymerases suggest
that transcription is a relatively error-prone process (Blank
et al., 1986; de Mercoyrol et al., 1992; Libby and Gallant,
1991), though the fidelity of RNA synthesis can be modulated
by other components of the cellular transcription machinery
(Erie et al., 1993; Jeon and Agarwal, 1996; Koyama et al.,
2003; Lange and Hausner, 2004; Shaw et al., 2002; Thomas
et al., 1998). Analyses of mutations produced during retro-
viral vector replication also suggest that RNA pol II fidelity
contributes to viral variation (Kim et al., 1996; O’Neil et al.,
2002). However, the magnitude of this contribution remains
unclear.

Other sources of errors are also likely to generate diversity
in viral populations. Fluctuations in nucleotide pool levels
(Julias and Pathak, 1998; Vartanian et al., 1994) and/or incor-
poration of dUTP (Chen et al., 2002; Lerner et al., 1995) may
generate mutations during viral DNA synthesis. Spontaneous
chemical decay of viral RNA or DNA produces aberrant
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iu et al., 2002; Meyerhans et al., 1989; Shankarapp
l., 1999). These findings have contributed to the wide
ccepted view that retroviruses and RNA viruses exis
omplex mixtures of related but genetically-distinct subty
requently referred to as “swarms” (Temin, 1989) or “quasis-
ecies” (Domingo et al., 1985; Domingo, 2003; Eigen, 199).

.1. Sources of mutations in retroviral genomes

The diversity of retroviral populations is a direct
ult of the error-prone nature of retroviral replication. M
ations in HIV-1 genomes primarily arise during th
istinct polymerization steps in the retroviral life cy
Fig. 1):

) RNA-templated, minus-strand DNA synthesis by the v
reverse transcriptase (RT).

) DNA-templated, plus-strand DNA synthesis by RT.
) DNA-templated, plus-strand RNA synthesis by h

encoded RNA polymerase II (RNA pol II).

easurements of the fidelity of RT-catalyzed DNA synt
is in vitro (reviewed inMenendez-Arias, 2002; Preston a
arvey, 1992; Preston and Dougherty, 1996; Svarov
t al., 2003) indicate that reverse transcriptases are
tantially less accurate than cellular replicative DNA p
erases. Much of the difference in fidelity is due to the
f an associated 3′ → 5′ exonucleolytic proofreading acti

ty in RT (Battula and Loeb, 1976; Roberts et al., 1988). The
isparity in the error rates of RT and cellular replicative D
olymerases suggests that mutations produced during

ng of integrated proviral DNA are relatively rare and c
ases that miscode during transcription or reverse tran
ion (Lindahl, 1993). RT incorporates damaged nucleoti
uring DNA synthesis in vitro (Bebenek et al., 1999; Fe
t al., 1994; Furge and Guengerich, 1997; Hizi et al., 1
amath-Loeb et al., 1997a; Preston et al., 1986) and insert

ncorrect nucleotides across from damaged bases in RN
NA templates (Furge and Guengerich, 1997). These find

ngs supported the suggestion that exposure of HIV-infe
ells to damaged nucleosides might increase the viral m
ion rate, thereby driving HIV to error catastrophe (Preston
t al., 1988; see below).

Modification of bases in viral RNA or DNA by hos
ncoded enzymes also represents a potential sour
utations. Studies in both RNA viruses and retroviruses
est that host enzymes other than DNA polymerases
uce ‘hypermutations’, which occur as clusters of spe
ase substitutions in the viral genome (Cattaneo et al., 198
athak and Temin, 1990a). For example, the pattern of A→ G
ypermutations observed in avian retroviruses suggest

hese mutations result from the editing activity of dou
tranded RNA deaminases (Bass, 1997; Felder et al., 199
ajjar and Linial, 1995; Pathak and Temin, 1990a). More re-
ently, the cellular enzyme APOBEC3G has been show
enerate G→ A hypermutations in HIV-1, (Bhagwat, 2004
off, 2003; KewalRamani and Coffin, 2003; Vartanian et
003; see below). Thus, as with other RNA viruses (Cattaneo
t al., 1988; Macnaughton et al., 2003; Murphy et al., 1
’Hara et al., 1984; Polson et al., 1996; Rueda et al., 19),
ost-encoded enzymes influence the biological properti
etroviral genomes by directly altering the viral coding
uence.
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Fig. 1. Outline of the retroviral life cycle. Error-prone polymerization steps that substantially contribute to the viral mutation rate are numbered as described in
the text. RT: reverse transcriptase; RNA pol II: cellular RNA polymerase II; DNA pols�/�/�: cellular DNA polymerases�, �, and/or�. (+) Plus-strand; (−),
minus strand.

2.2. Retroviral mutation and recombination rates

Measurements of mutation rates require assays that con-
strain the virus to a known number of replication cycles. Early
studies of murine leukemia virus (MLV) and RSV used spe-
cific host cell types and culture conditions to limit the virus to
a single round of replication (Leider et al., 1988; Monk et al.,
1992). These approaches were superceded by the use of retro-
viral vectors that are genetically restricted to a single replica-
tion cycle (Dougherty and Temin, 1988; Gabriel et al., 1996;
Gao et al., 2004; Halvas et al., 2000a,b; Julias et al., 1997;
Kim et al., 1996; Mansky and Temin, 1994, 1995; Mansky,
1996a,b; Mansky, 2000; O’Neil et al., 2002; Parthasarathi et
al., 1995; Pathak and Temin, 1990a,b; Varela-Echavarria et
al., 1992; Zhang et al., 2002). The majority of these assays
measure mutation rates in nonessential target genes (neo,gfp,
LacZ� or tk).

Based on the results of vector virus experiments, retro-
viral mutation rates range from 5× 10−6 to 9× 10−5 (aver-
age = 5× 10−5) mutations per nucleotide per cycle of virus
replication (Table 1). Given an average genome length of
∼10,000 nucleotides, this equates to approximately 0.1–1

mutation per genome per replication cycle. The majority of
errors are single base substitutions, which occur at an av-
erage rate of 3× 10−5 per nucleotide per round of replica-
tion. A similar base substitution rate was also observed for
the yeast retroelement TY-1 (Gabriel et al., 1996). Simple
frameshifts and rearrangements are observed at average rates
of ∼5× 10−6 per nucleotide per replication cycle (Preston
and Dougherty, 1996). The average mutation rate for HIV-1
(∼5× 10−5 mutations per nucleotide,Table 1) is comparable
to the rates observed for several other retroviruses, and about
a million-fold greater than the mutation rates of eukaryotic
cells (Drake et al., 1998; Drake, 1999).

Vector viruses have also been used to determine the
rates of recombination between the two strands of ge-
nomic RNA that are co-packaged in retroviral virions. For
HIV-1, homologous recombination occurs throughout the
genome at a rate of 2–3 crossovers per round of replica-
tion in cultured fibroblasts (Hu et al., 2003; Jetzt et al.,
2000; Negroni and Buc, 2001; Onafuwa et al., 2003;
Rhodes et al., 2003; Yu et al., 1998; Zhuang et al., 2002)
and 10–30 crossovers per replication cycle in T lympho-
cytes and macrophages (Levy et al., 2004). Recombina-



218 R.A. Smith et al. / Virus Research 107 (2005) 215–228

Table 1
Forward mutation rates of retroelements

Element Target Mutations per base pair per replication cycle References

Base substitutions All classesa

Retroviruses
HIV-1 LacZα 2× 10−5 3× 10−5 Mansky and Temin (1995)andMansky (1996a)

Viral genome 4× 10−5 5× 10−5 Gao et al. (2004)
LTR 6× 10−5 9× 10−5 O’Neil et al. (2002)

MLV LacZα 3× 10−5b NDc Halvas et al. (2000a,b)andZhang et al. (2002)
Gfp 3× 10−5b ND Zhang et al. (2002)
Tk 3× 10−5d 3× 10−5 Parthasarathi et al. (1995)

SNV LacZα 1× 10−5 2× 10−5 Julias et al. (1997), Kim et al. (1996)andPathak and Temin (1990a,b)

HTLV-1 LacZα 4× 10−6 7× 10−6 Mansky (2000)
BLV LacZα 1× 10−6 5× 10−6 Mansky and Temin (1994)

Retrotransposon
TY-1 TY genome 2× 10−5 ND Gabriel et al. (1996)

Average 3× 10−5 5× 10−5

a Includes base substitutions, frame shifts, genetic rearrangements (insertions/deletions) and hypermutations.
b As calculated inSvarovskaia et al. (2003).
c Not determined.
d As calculated inDrake et al. (1998).

tion also frequently results from template switching dur-
ing obligatory primer strand transfer steps in the reverse
transcription process (Hu et al., 1997; Yu et al., 1998;
Zhang and Temin, 1993). Clearly recombination events con-
tribute to viral diversity in HIV-infected individuals, as strains
that are hybrids of differing subtypes are endemic in cer-
tain geographic regions (Kuiken et al., 2001). Recent analy-
ses of splenocytes from HIV-1 infected patients show that
cells harboring three or more genetically-distinct proviral
copies are relatively common in vivo (Jung et al., 2002).
These multiply infected cells provide ample opportunity
for recombination-mediated rescue of defective genomes, as
demonstrated in vitro (Dang et al., 2004; Li et al., 1992),
and likely contributes to the sustained viability of HIV-1
and other retroelements that exhibit high mutation rates. In-
terestingly, HIV-1 is about 10-times more recombinogenic
than several other retroviruses including spleen necrosis virus
(SNV), MLV and human T-cell leukemia virus type 1 (HTLV-
1) (Jetzt et al., 2000; Levy et al., 2004; Onafuwa et al.,
2003; Rhodes et al., 2003; Yu et al., 1998). Lethal mu-
tagenesis may be particularly effective against retroviruses
with low recombination rates, due to their presumably di-
minished capacity for recombination-mediated repair of de-
fective genomes.

Collectively, the aforementioned studies reveal many of
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3. Error catastrophe in HIV

3.1. Evidence for an error threshold in HIV replication

The same error-prone replication strategy that provides
retroviruses with exceptional adaptability also imposes a
substantial load on the population by continually produc-
ing defective genomes. The highly defective character of
retroviral isolates was appreciated in early studies of avian
retroviruses, which revealed that a significant proportion
of the proviral copies isolated from infected cells con-
tained deletions, rearrangements or other defects in the
viral genome (Fung et al., 1981; Hughes et al., 1978;
O’Rear and Temin, 1981). Similar findings were also re-
ported for other retroviruses (de Noronha et al., 1996;
Hiramatsu and Yoshikura, 1986; Shields et al., 1978). For
HIV-1, the frequency of defective proviruses in various tis-
sue compartments ranges from 10 to 70%, based on anal-
yses of specific portions of the genome (Li et al., 1991;
Sanchez et al., 1997). Experiments with retroviral vectors
have confirmed that deletions, insertions, duplications and
frameshift mutations arise at high rates during retroviral
replication (Gao et al., 2004; Mansky and Temin, 1994,
1995; Mansky, 2000; Parthasarathi et al., 1995; Pathak
and Temin, 1990a,b). For example, as many as 50% of
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he mechanistic details underlying the generation of d
ity in retroviral populations. This diversity provides the r
aterial for viral adaptation, as witnessed by the rapid e
ence of variants that thwart containment by the host imm
ystem (Klenerman et al., 2002; Stebbing et al., 2003) and
he common appearance of drug-resistant mutants durin
iviral therapy (Shafer, 2002).
LV proviruses produced during a single cycle of repl
ion contain gross sequence rearrangements (Parthasarath
t al., 1995). Deleterious point mutations also arise at h
ates in HIV-1 (Gao et al., 2004) and other retroviruse
Table 1). Thus, it is clear that spontaneous mutations
significant cause of defective particles in retroviral pop

ions.
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Support for the idea that retroviruses exist near the er-
ror threshold can be found in experiments that examine the
effects of mutagenic conditions on viral replication and mu-
tation. Early studies of SNV showed that exposure of infected
cells to 5-azacytidine (5-azaC) conferred a 15-fold increase
in the viral mutation rate and a concomitant 95% reduction
in titer, with minimal cellular toxicity (Pathak and Temin,
1992). Similarly, agents that alter the intracellular concen-
trations of dNTPs (i.e. hydroxyurea or thymidine) modestly
increase the mutation frequencies and/or rates of SNV, MLV
and HIV-1 vectors (≈5-fold), often with significant reduc-
tions in replication capacity (Julias and Pathak, 1998; Mansky
et al., 2002, 2003; Pfeiffer et al., 1999). Chain-terminating
nucleoside analogs with potent antiviral activities also perturb
nucleotide pools and cause elevated mutation frequencies in
cultured retroviruses (Jewell et al., 2003; Julias et al., 1997;
LaCasse et al., 1996; Mansky and Bernard, 2000; Mansky
et al., 2002, 2003). Together, these observations are consis-
tent with the idea that as the error threshold is approached,
small increases in mutation rates result in disproportion-
ately large declines in viability (Domingo, 2003; Eigen,
2002).

Similar studies suggest that the high mutation rates of
RNA viruses also approach the error threshold. In early exper-
iments with poliovirus and vesicular stomatitis virus (VSV),
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netically engineered viruses result from reduced RT activity
and not error catastrophe. This is supported by recent stud-
ies showing that combinations of drugs and mutator RTs can
increase HIV-1 mutation rates up to 30-fold (Mansky et al.,
2002). Clearly, additional experiments are required to firmly
establish the upper limit of the retroviral mutation rate.

3.2. HIV-1 restriction by APOBEC3G: host
cell-mediated error catastrophe?

Recent studies of host cell factors that restrict HIV
infection have revealed what may be a natural form of error
catastrophe (reviewed inGoff, 2003; Gu and Sundquist, 2003;
KewalRamani and Coffin, 2003; Vartanian et al., 2003). It has
long been recognized that the viral protein Vif is essential for
replication of HIV in primary CD4+ T lymphocytes and some
immortalized T cell lines (Chowdhury et al., 1996; Fisher et
al., 1987; Strebel et al., 1987; von Schwedler et al., 1993). The
diminished infectivity of�vif virions results from the pack-
aging of host-encoded apolipoprotein B mRNA-editing com-
plex 3G (APOBEC3G, formerly known as CEM15 (Sheehy
et al., 2002). This enzyme is a member of the cytidine deami-
nase superfamily, which includes activation-induced cytidine
deaminase (AID), adenosine deaminases that act on RNA
(ADARs), and other APOBEC family members (Gerber and
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xposure of virus stocks to increasing doses of chemica
agens resulted in up to 100-fold reductions in infectious
ith corresponding increases in mutation frequency of th

old (Holland et al., 1990). Similar results have been obtain
n more recent studies of RNA viruses cultured in the pres
f mutagenic nucleoside analogs (Airaksinen et al., 2003;
rotty et al., 2000, 2001; Grande-Perez et al., 2002; Pariente
t al., 2001, 2003; Ruiz-Jarabo et al., 2003; Severson et
003; Sierra et al., 2000; Zhou et al., 2003; see other art
les this issue). In most cases, dramatic losses in titer
oincident with slight increases in mutation frequency. W
he exception of the lytic bacteriophage Q�, RNA virus and
etrovirus mutation rates are similar (Drake, 1993; Drake e
l., 1998; Drake and Holland, 1999). Thus, it appears that th
pontaneous mutation rates of both retroviral and RNA
enomes are close to the error threshold (Domingo, 2003
igen, 2002).
Other experiments have taken a genetic approach t

mine the effects of increased mutation burden on retro
eplication. Amino acid substitutions that reduce HIV-1
delity in biochemical assays yield only modest (three
our-fold) increases in virus mutation rates (Mansky, 2000;
ansky et al., 2002, 2003). Similar RT fidelity mutants intro
uced into MLV result in a maximal increase in virus mu

ion frequency of six-fold, with the majority of substitutio
reatly reducing viral replication (Halvas et al., 2000a,b).
his pattern of modest mutation rate increases coupled
ubstantial replication loss suggests error catastrophe.
ver, many amino acid substitutions that reduce RT fid
lso compromise enzyme activity, and it is likely that
educed replication capacities observed in many of thes
eller, 2001). Incorporation of APOBEC3G into virions r
ults in deamination of minus-strand cytidines, thereby l
ng to G→ A hypermutation of the plus-strand of new
ynthesized HIV-1 DNA (Harris et al., 2003; Lecossier
l., 2003; Mangeat et al., 2003; Zhang et al., 2003b). Thus,
POBEC3G appears to inhibit HIV-1 replication by dir
odification of the viral genome. Vif counteracts this in
ition by interacting with APOBEC3G and preventing

ncorporation into virions (Xu et al., 2004and reference
herein).

The pattern of G→ A hypermutations observed in�vif
enomes suggests that APOBEC3G-catalyzed deamin
ccurs during and/or immediately following minus-stra
NA synthesis (Harris et al., 2003; Mangeat et al., 20;
hang et al., 2003b). However, the exact stage of the
erse transcription process that is targeted by APOBEC
nclear. One possibility is that APOBEC3G begins deam

ng single-stranded DNA following the degradation of pl
tranded RNA by the RNase H function of RT. This wo
e consistent with the preferential ability of APOBEC

o deaminate cytidine residues in single-stranded DN
itro (Harris et al., 2003; Suspene et al., 2004; Yu et
004b), and would also be in agreement with the subs
pecificities observed for related nucleic acid deamin
Bhagwat, 2004; Gerber and Keller, 2001). For example
POBEC1 deaminates cytosine in single-stranded D
nd RNA but not double-stranded DNA (Petersen-Mah
nd Neuberger, 2003; Teng et al., 1993), and activation

nduced deaminase targets cytidine bases in single-stra
NA but not double-stranded DNA or DNA–RNA hybri

Bransteitter et al., 2003; Dickerson et al., 2003). However
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the possibility remains that APOBEC proteins act on RNA
and/or DNA–RNA hybrid duplexes that are formed during
reverse transcription (Bishop et al., 2004b). Further biochem-
ical studies would reveal specific substrate requirements for
deamination of the HIV genome.

While the evidence suggests that miscoding resulting
from deamination is the primary mechanism of APOBEC3G-
mediated restriction, other processes may also contribute
to the antiviral action of this host cell enzyme. First, con-
version of cytidine to uridine by APOBEC3G may result
in aberrant initiation of plus-strand DNA synthesis by RT
(Klarmann et al., 2003), which would presumably result in
loss of viral infectivity. In addition, deoxyuridines generated
by APOBEC3G are likely substrates for host-encoded uracil
DNA-glycosylases, which generate abasic sites in the DNA
strand (Krokan et al., 2002). Abasic sites are recognized and
cleaved by apurinic/apyrimidinic endonucleases (Dianov et
al., 2003), and the resulting strand breaks would likely re-
sult in degradation of the viral DNA. This may explain the
reduced levels and increased lability of viral DNA formed af-
ter infection of cells with�vif virions (Fouchier et al., 1996;
Mangeat et al., 2003; Mariani et al., 2003).

The discovery of APOBEC3G as a mechanism of host cell
restriction provides an avenue for the development of agents
that specifically enhance the antiviral activity of this editing
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the adducted base into host cell mRNA is expected to have
relatively minor consequences, due to the short half-lives
of these molecules (Ross, 1996) and the fact that mRNA
copies do not become part of the cellular genome unless the
RNA is retrotransposed by an endogenous RT (a relatively
rare event). However, a fraction of the analog may be con-
verted to the deoxy-form and polymerized into both viral and
host DNA. The cellular genotoxicity of these adducts would
likely be mitigated by the activities of specific repair en-
zymes, lesion bypass polymerases, and proteins that facilitate
recombination-mediated repair of cellular DNA (McGowan,
2003). Thus, mutagenic analogs would presumably be sig-
nificantly more deleterious to the virus than to the host cell.

In the second strategy, lethal mutagenesis is achieved
using a mutagenic deoxyribonucleoside analog that is me-
tabolized to its 5′-triphosphate by cellular enzymes and in-
corporated into nascent viral DNA by RT (Loeb et al.,
1999). Analogs that are incorporated into viral DNA during
RT-catalyzed minus-strand DNA synthesis (Fig. 2, Step 2)
generate mispairs during subsequent plus-strand DNA syn-
thesis (Step 3) and are likely to avoid repair in the precursor
RNA–DNA duplex (Kamath-Loeb et al., 1997b). Similarly,
analogs incorporated during plus-strand synthesis (Step 3)
generate mispairs when copied by host DNA polymerases
(Step 4). As noted above, analogs that are incorporated into
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nzyme (Harris and Liddament, 2004). It may be possible t
esign small-molecule inhibitors that interfere with the b

ng of Vif to APOBEC3G, resulting in lethal deaminati
f viral genomes in cells that are otherwise permissive
IV infection. In addition, it is plausible that other cellu
nzymes target the HIV genome for editing or modificat
nd that these activities are normally inhibited by viral p

eins in a manner analogous to the interaction between V
POBEC3G (see note added in proof). Thus, the induc
f “lethal editing” (Mangeat et al., 2003) by promoting the
nzymatic modification of viral RNA or DNA may provid
n important therapeutic tool to control HIV infection.

. Mutagenic nucleoside analogs as antiretroviral
gents

Two strategies for lethal mutagenesis of HIV have b
roposed, both involving nucleic acid precursors that

ncorporated into the viral genome and mispair at h
requencies (Fig. 2). In the first scenario, a mutagen
ibonucleoside-5′-triphosphate analog is incorporated i
ewly-transcribed viral RNA by cellular RNA polymerase
Fig. 2, Step 1), resulting in incorrect base-pairing during s
equent RT-catalyzed minus-strand DNA synthesis in n
nfected cells (Step 2, (Loeb and Mullins, 2000)). Given the
bsence of RT-associated proofreading activity (Roberts e
l., 1988) and the relatively poor activity of DNA repa
nzymes on RNA–DNA hybrid duplexes (Kamath-Loeb e
l., 1997b), these mismatched nucleotides are unlikel
e excised from the nascent viral DNA. Incorporation
ellular DNA are subject to repair, bypass or avoida
hrough recombination (McGowan, 2003). Although addi
ional specificity can theoretically be accomplished u
nalogs that are better substrates for RT than for host
erases, this important goal remains to be achieved.

.1. Initial studies with 5-OH-dC

Efforts to develop strategies for lethal mutagenesis of
ave focused primarily on the antiviral properties of m
enic deoxyribonucleoside analogs. Initial experiment
olved a series of deoxyribonucleosides known to gen
utations during DNA synthesis by RT and/or cellular D
olymerases (Loeb et al., 1999). These analogs were scree

or the ability to increase the viral mutation frequency du
even serial transfers of HIV-1 in culture. Two analogs
roduced the largest increases in mutation frequency (t

o five-fold) were chosen for further study. Passage of v
tocks for an additional seven transfers in the presen
4-methyl-dT did not cause a significant reduction in tite
easured by the concentration of HIV-1 capsid p24 in cu

upernatants. In contrast, passage of the virus in the pre
f 1 mM 5-hydroxydeoxycytidine (5-OH-dC) resulted in
udden and dramatic drop in p24 levels in passages 1
6. No loss of titer was observed in parallel HIV-1 cultu
assaged in the absence of the analog. Sequence an
f PCR products amplified from passage 16 virus revea
ix-fold increase in the frequency of G→ A substitutions in
loned DNA fragments from the analog-treated cultures
tive to the untreated control cultures. This result is co

ent with the incorporation of 5-OH-dCMP opposite temp
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Fig. 2. Proposed strategies for lethal mutagenesis of HIV. Left: Incorporation of a mutagenic ribonucleoside-5′-triphosphate analog (r N∗ TP) into the nascent
RNA genome of HIV by RNA polymerase II (RNA pol II). Right: Incorporation of a mutagenic deoxyribonucleoside-5′-triphosphate analog (dN* TP) into
the viral DNA by RT and generation of mutations (chevron symbols) during subsequent polymerization steps. A portion of the analogs incorporated during
RT-catalyzed plus-strand DNA synthesis are likely to be repaired by cellular enzymes, and thus would not result in mispair formation. Numbers refer to different
steps in the replication cycle at which base analogs are inserted and/or copied by polymerases, as described in the text.

G residues during RT catalyzed minus-strand synthesis, fol-
lowed by incorporation of dAMP opposite the lesion site dur-
ing plus-strand synthesis (Kreutzer and Essigmann, 1998;
Purmal et al., 1994). The mutator effect of 5-OH-dC was
specific for G→ A substitutions; no significant increase in
overall virus mutation frequency was observed in the analog-
treated cultures.

Two additional serial passage experiments were per-
formed to verify the effects of 5-OH-dC treatment on HIV-1
replication. In four of the six analog-treated cultures, titers
declined to levels below the limit of detection after 8–25
passages and were not recovered in additional passages of
the culture supernatants. The remaining two analog-treated
HIV-1 cultures retained detectable titers after 25 passages;
detectable levels of virus in one of these were abolished after
a total of 58 passages (Loeb, unpublished data). As in the
first experiment, titer loss was coincident with an increase
(three-fold) in the frequency of G→ A substitutions. Viral
titers were not significantly diminished in any of the untreated
control cultures passaged in parallel.

Based on these data, we can conclude that exposure of
HIV-1-infected cells to 5-OH-dC frequently results in loss of
detectable levels of virus, with a concomitant increase in the
G→ A mutation frequency. These observations are consis-
tent with the idea that the dramatic drop in viral titers resulted
f
2 e

analog-treated cultures may have been due to the emergence
of 5-OH-dC-resistant mutants, although this possibility re-
mains to be addressed.

4.2. Other mutagenic nucleosides

The results obtained with 5-OH-dC suggest that specific
nucleoside analogs containing modified bases are effective
HIV mutagens. However, the relative high concentrations of
5-OH-dC used in these experiments (0.5–1.0 mM) and the
long culture periods required to reduce viral titers make this
particular compound a questionable candidate for clinical de-
velopment.

To identify mutagenic deoxyribonucleosides with im-
proved potency, purine and pyrimidine analogs containing
aberrant bases have been screened for anti-HIV activity in
cell culture. These experiments have produced two deoxy-
cytidine compounds for further study. The first of these,
5-formyl-2′-deoxycytidine (5-fo-dC), is an oxidation prod-
uct formed by exposure of 5-methyl-2′-deoxycytidine to ul-
traviolet or gamma radiation (Bienvenu et al., 1996; Privat
and Sowers, 1996). 5-fo-dC readily base pairs with A or T,
forming C→ T or C→ A mutations during cell-free DNA
synthesis byEscherichia coliDNA polymerase I (Karino et
al., 2001) and in mammalian cells (Kamiya et al., 2002).
T n
w n
rom the entry of HIV-1 into error catastrophe (Domingo,
003; Eigen, 2002). Continued viral replication in one of th
reatment of cells with 5-fo-dC inhibited HIV replicatio
ithin a single passage, with an EC50 (the concentratio
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of inhibitor required to reduce virus replication by 50%) of
3�M (Daifuku, 2003). Inhibition of viral replication cor-
related with a two-fold increase in mutation frequency. No
cytotoxic effects were observed at 5-fo-dC concentrations as
high as 1 mM. The second compound, 5,6-dihydro-5-aza-2′-
deoxycytidine (SN1212), provides even greater potency of
inhibition, with an EC50 of 10 nM (Daifuku, 2003). The an-
tiretroviral efficacy of SN1212 is currently being evaluated
in an animal model of HIV-1 infection.

The potential for using mutagenic ribonucleosides to in-
hibit HIV infection has been largely unexplored. However,
the observation that 5-azaC inhibits SNV replication and con-
fers a substantial increase in mutation rate (Pathak and Temin,
1992) suggests that certain ribonucleoside base analogs may
be effective retroviral mutagens. The antiviral activity of 5-
azaC has been confirmed in conventional drug susceptibility
assays with HIV-1 in vitro (EC50s = 1�M; (Bouchard et al.,
1990). Thus, 5-azaC may represent a prototypic ribonucleo-
side for lethal mutagenesis of HIV.

Additional efforts to identify mutagenic nucleosides have
used a cell-free reaction system that mimics the transcrip-
tion and reverse transcription steps of the retroviral life cycle
(Moriyama et al., 2001). In this assay, plasmid DNA serves
as a template for T7 RNA polymerase-catalyzed transcrip-
tion, and the resulting RNA copies are reverse-transcribed
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combinations (Ahluwalia et al., 1994; Balzarini et al., 1991;
Borroto-Esoda et al., 2004; Foli et al., 1997; Gao et al., 1999;
Johns et al., 1993) and is the mechanistic basis for the clini-
cal use of hydroxyurea with chain-terminating RT inhibitors
(Lori and Lisziewicz, 2000; Rossero et al., 2003; Stebbing et
al., 2004). Interestingly, alterations of dNTP precursor pool
levels also enhance error formation during retroviral repli-
cation (Julias and Pathak, 1998; Mansky et al., 2002, 2003;
Pfeiffer et al., 1999), as discussed above. Thus, potent viral
inhibition might be achieved using mutagenic nucleosides
that simultaneously exhibit two modes of action; modulation
of dNTP pools to enhance chain termination and induce a
mutagenic state in the host cell, and enhancement of mispair
formation by incorporation into the HIV genome.

5. Potential challenges to antiretroviral mutagenesis

Many of the same barriers to conventional antiretroviral
therapy are likely to present obstacles for lethal mutagenesis.
A primary concern is the issue of viral latency. Several cel-
lular and anatomical reservoirs contribute to the long-term
persistence of HIV-1, even in patients whose peripheral vi-
ral loads are suppressed to undetectable levels (reviewed in
Pierson et al., 2000). Of these, the latent population of in-
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sing avian myeloblastosis virus (AMV) RT. cDNA cop
rom the RT reaction are amplified by PCR, recloned
he plasmid vector and sequenced to score mutation
uency. This system was used to evaluate the muta
otential of nucleoside “P” which contains the tautom
ase analog 6H,8H-3,4-dihydropyrimido[4,5-c][1,2]oxa
-one (P) (Moriyama et al., 2001). The deoxyribose-5′-

riphosphate form of this analog (dPTP) base pairs
emplate bases A or G (Negishi et al., 1997) and generate
igh frequencies of all four possible transition mutation
ell-free polymerase reactions (Zaccolo et al., 1996). Simi-

arly, the ribonucleotide analog rPTP enhanced the frequ
f error formation in the transcription/reverse transcrip
ystem, primarily due to an increase in C→ T and T→ C
utations (Moriyama et al., 2001). The ability of rP or dP t

ncrease retroviral mutation frequencies and/or inhibit v
eplication has not been reported.

.3. Antiviral mutagens in combination therapy

Ideally, analogs that increase mutational loads woul
eract favorably with other drugs currently used to treat
nfection. A beneficial synergistic action may result fr
herapeutic regimens involving combinations of mutag
ase analogs and conventional chain-terminating nucle

nhibitors. The inhibitory potential of a chain-terminator
ends in part on its relative concentration with respec

ts corresponding physiological dNTP. Thus, improved
ency can be achieved by diminishing the intracellular
entration of the competing substrate. This effect has
emonstrated in vitro for a number of inhibitor/pool modi
egrated, replication-competent genomes in resting CDT-
ells is perhaps the most worrisome (Chun et al., 1995). This
eservoir is believed to be extremely stable (t1/2 ∼1–4 years
nd may be continually reseeded by low levels of ong
iral replication during suppressive therapy. Activation
esting CD4+ T-cells by antigenic or mitogenic stimuli r
ults in the production of infectious virions in vitro, and
ikely to contribute to the resurgence of viral loads follow
nterruption of drug treatment in vivo (Pierson et al., 2000).
herefore, the maximum therapeutic benefit that can be

zed from lethal mutagenesis is probably durable suppre
f viral load, rather than complete clearance.

Another potential obstacle to antiviral mutagenesis is
evelopment of drug resistance. HIV-1 variants resistant
urrently approved drugs have been extensively docum
nd characterized (Parikh et al., 2001; Shafer, 2002), and pa

ients failing combination therapy frequently harbor viru
esistant to one or more drugs in the regimen (Englund et al.
004; Gallego et al., 2001; Havlir et al., 2000). In addition,
etection of resistant variants prior to initiation of treatm

s often an independent predictor of therapy failure (Little
t al., 2002; Van Vaerenbergh et al., 2000). Thus, the de
elopment of drug resistance is generally associated w
oor clinical outcome. The use of mutagenic nucleosid
ombination with conventional drugs is unlikely to prev
he development of resistance, as similar treatments o
ures infected with the RNA virus FMDV readily select
nhibitor-resistant variants (Pariente et al., 2003). The identi-
cation of ribavirin-resistant mutants in culture (Pfeiffer and
irkegaard, 2003; Scheidel et al., 1987; Scheidel and St
991) and in patients infected with hepatitis C virus (Young
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et al., 2003) suggests that resistance to mutagenic analogs
is also a likely outcome. These findings raise the intriguing
question of how HIV might evolve to acquire a mutagen-
resistant phenotype. One possibility is that mutations in RT
would compromise the binding and/or insertion of dNTP base
analogs at the primer terminus, thereby diminishing their in-
corporation during DNA synthesis. In the case of ribonucle-
oside analogs, resistance may be more difficult to achieve
since incorporation is dependent on the host cell RNA poly-
merase. However, substitutions in RT that favor insertion of
the “correct” nucleotide opposite adducted bases in the RNA
template strand could potentially produce resistance to the
mutagen. While evidence for such a mechanism is lacking,
the ability of HIV to tolerate substantial genetic change in RT
(Smith et al., 2004) suggests that resistance to mutagens will
not be prevented by functional constraints in the viral poly-
merase. Selection and characterization of mutagen-resistant
HIV mutants in cell culture could readily address this issue.

6. Perspectives

Although lethal mutagenesis has been demonstrated in
HIV-1 and a variety of other RNA viruses, several impor-
tant questions concerning this strategy remain unanswered.
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may be useful both for the treatment of drug-naı̈ve patients
and for salvage therapy of individuals harboring virus resis-
tant to conventional antiretroviral drugs. Similarly, strategies
that induce a mutagenic state by altering nucleotide pool
levels, enhancing the lethal editing activity of APOBEC3G,
or activating other nucleic acid-editing enzymes represent
novel approaches to antiretroviral therapy. Further research
in the emerging field of viral error catastrophe should provide
valuable insights into the effects of elevated mutation rates
on viral replication and inspire promising new approaches
for treating HIV infection.

Note added in proof

While this review was in preparation, several other deam-
inases in the APOBEC family have been shown to generate
G→ A hypermutations in HIV-1 and/or simian immunode-
ficiency virus (Bishop et al., 2004a; Liddament et al., 2004;
Wiegand et al., 2004; Yu et al., 2004a; Zheng et al., 2004).
For a review of these and other recent discoveries related to
APOBEC-mediated restriction, see (Harris and Liddament,
2004).
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