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The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic
diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to
accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype.
Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a
substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation

frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-
selection balance, and above which the population is no longer viable, i.e., the population undergoes
an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold,
viral populations are susceptible to further increases in mutational load and, recently this phenomenon
has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we
review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis

erape
may represent a novel th

. Introduction

Evolutionary changes are driven by selection of stochastically
enerated pre-existing variants. The key processes of spontaneous
utation, competition and selection, which underlie adaptation

nd drive evolution, are evident throughout biology. Human
ancers, for example, represent a microcosm of Darwinian evo-
ution: tumor progression is a mutation-driven process that
esults from the adaptation of a heterogeneous cell population
o different microenvironments through the preferential repli-
ation of the most suitable variants [1,2]. Similarly, viruses, by
utating at exceptionally high rates, extensively explore phe-

otypic space and maximize adaptability to their environment
3]. Thus a high mutation rate offers a powerful mechanism to
rovide a spectrum of mutants for rapid adaptation to changes
n the environment, including, for example, evading the host’s
mmunological defenses. In addition, the high frequency of

utations in viral and tumor populations facilitates the rapid
mergence of resistance to therapies. In both cases the underly-

Abbreviations: 5-OH-dC, 5-hydroxy-2′-deoxycytidine; AZT, azidothymidine;
BV, Hepatitis B virus; HCV, Hepatitis C virus; HCC, hepatocellular carcinoma; KP-
212, 5-aza-5,6,-dihydro-2′-deoxycytidine; MMR, mismatch repair; TCID50, 50%
issue culture infective dose.
∗ Corresponding author at: Department of Pathology, HSB K072 Box 357705, 1959
E Pacific St., Seattle, WA 98195, USA. Tel.: +1 206 543 6015; fax: +1 206 543 3967.

E-mail address: laloeb@uw.edu (L.A. Loeb).

044-579X/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.semcancer.2010.10.005
utic approach for the treatment of solid cancers.
© 2010 Elsevier Ltd. All rights reserved.

ing evolutionary principle is the same: adaptation occurs through
phenotypic selection from a large number of randomly generated
mutants.

Spontaneous mutations, which underlie selection, recombina-
tion, gene flow, and genetic drift, alter fitness and ultimately
facilitate adaptation [4]. In all organisms these processes combine
as the predominant mechanism for adaptive response to changing
environments. Spontaneous mutations in-of-themselves, however,
are more likely to be deleterious than beneficial [5,6], and in the
absence of the need for adaptation to an environmental pressure,
random mutation leads to a reduction in overall population fit-
ness. In a changing environment, however, survival depends on
the production of new mutations [7]. This balancing between fit-
ness reduction and the need for variation to facilitate adaptation
results in an optimized mutation rate that is characteristic for each
species and organism (see Table 1). The key to adaptation is there-
fore genetic variation or, more precisely, productive variation –
namely sequence variations that do not compromise organismal
fitness under the current state but maintain the potential to adapt
to new states [8].

Because of their high mutation rates, certain viruses are sus-
ceptible to further increases in mutational load [9,10]. This can be
exploited therapeutically by what has been termed lethal mutage-

nesis [11]. An error catastrophe occurs once the level of mutation
induced is sufficient to reduce the overall population fitness and so
prevent further propagation of the virus [3]. Here we extend this
concept to cancer and propose that lethal mutagenesis of cancer
may offer a new therapeutic avenue in selected solid tumors.

dx.doi.org/10.1016/j.semcancer.2010.10.005
http://www.sciencedirect.com/science/journal/1044579X
http://www.elsevier.com/locate/semcancer
mailto:laloeb@uw.edu
dx.doi.org/10.1016/j.semcancer.2010.10.005
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Table 1
Relationship between species, genome size and mutation rate.

Genome size (bp) Mutation Ratesa (mutations/basepair/replication) (Mutations/genome/replication)

Riboviruses
Bacteriophage Q� ∼3.5 × 103 1.9 × 10−3 6.5
Poliovirus ∼7.5 × 103 1.1 × 10−4 0.8
Vesicular stomatitis ∼1.1 × 104 3.2 × 10−4 3.5
Influenza A 1.36 × 104 7.4 × 10−5 ∼1.0
Retroviruses
Murine leukemia virus ∼8 × 103 3.3 × 10−5 0.2
Human immunodeficiency virus type 1 9.75 × 103 2.1 × 10−5 0.2
DNA-based
Escherichia coli 4.6 × 106 5.4 × 10−10 0.0025
Mus musculus 2.7 × 109 1.8 × 10−10 0.49
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Homo sapiens 3.2 × 109 5.0 ×
a Data are from Ref. [13].

. The high mutation rates of viral genomes

The mutation rates of RNA viruses range from 10−3 to 10−5 sub-
titutions per nucleotide copied [12]; more than one million fold
reater than the mutation rate exhibited by human cells [13,14].
s a result, a significant proportion of viral progeny are non-viable

15,16]. This high mutation rate coupled with rapid replication,
owever, allows the virus to extensively explore sequence space
nd, for example, to evade the host’s immune system [17]. The
utation rate of retroviruses is nearly as high as riboviruses; the
utation rate of the retrovirus HIV-1 is ∼8.5 × 10−5 mutations

er base pair per replication cycle (reviewed in [18]). Viral muta-
ions are, for the most part, caused by infidelity during replication
f the viral genome, with studies on purified reverse transcrip-
ase documenting a frequency of single base mis-incorporation as
reat as 10−4 to 10−5 [19]. In order to overcome the detrimen-
al effects of this level of self-mutagenesis, many viruses maintain
heir population density by rapidly replicating their genomes. For
xample, during the acute stage of HIV-infection as many a 1010

o 1011 new virions are produced daily [15,17]. Recombination
rovides another mechanism to counterbalance the negative con-
equences of high mutation rates [20], and allows the virus to make
arge leaps in sequence space that would otherwise be difficult to
ridge by sequentially accumulating mutations. Recombination can
lso facilitate the rescue of viral genomes from nonviable parental
trains.

.1. Viral quasispecies

Based initially on mathematical considerations, Manfred Eigen
ypothesized that RNA viruses within an infected individual exist
ot as a single unique variant but rather are a complex, self-
erpetuating population of diversely related entities acting as a
hole [21]. While the initial infection may only require a few viable

irions, viral diversity is generated by the progressive accumula-
ion of mutations during subsequent viral replication, producing
“cloud” of genetically distinct yet related genotypes, termed a

uasispecies [9,22a,b,23]. In a viral quasispecies, it is the fitness of
he entire population, not the fitness of individual members, that
etermines infectivity and the wildtype of a species refers, not to
particularly fit individual, but to an average for all members [9].
owever, as the proportion of a single mutant in the quasispecies
epends on its individual fitness, well-adapted mutants have a bet-
er chance of producing offspring while deleterious mutants fail to

o so. As the chances of finding a well-adapted or advantageous
utant is greatest in a region of sequence space associated with

igh fitness, there is a large bias towards the accumulation of these
utants [21]. In addition, the viral quasispecies is not simply a col-

ection of diverse mutants but rather a group of interactive variants,
0.16

which cooperate to contribute to maintain the population. Direct
complementation between members of a viral quasispecies indi-
cates that selection indeed occurs at the population level rather
than on individual variants [24]. Thus, this collection of genotypes
exists at a mutation-selection balance and modeling show that this,
in effect, speeds up the “evolutionary opportunization” of viruses by
many orders of magnitude, as compared to random accumulation
of mutations within a population [3].

2.2. Error catastrophe

A direct prediction of the quasispecies model is the existence
of an error threshold [9,25], a frequency of mutation above which
population extinction occurs due to loss of a significant fraction
of genotypes through deleterious mutation, i.e., the virus under-
goes an error catastrophe. Indeed Eigen and Schuster showed that
there are states in which an apparently trivial elevation in the muta-
tion rate could lead to a fundamental change in the composition of
genotypes within a population [21]. The mutation rate of a quasis-
pecies is consequently fine-tuned below this error threshold such
that the viral population equilibrates in a traditional mutation-
selection balance [3,26]. This error-catastrophe model has inspired
treatments aimed at extinguishing viral populations by elevating
their mutation frequencies [11]. The concept, termed “lethal muta-
genesis,” predicts that even a modest increase in mutation rate
can result in the extinction of the viral population and has been
experimentally verified for several viruses [11,27–38].

2.3. Lethal mutagenesis of viruses

Experiments with RNA viruses provide proof for the concept
of lethal mutagenesis: a small increase in the frequency of muta-
tions in the viral genome can ablate the viral population [11].
Chemical and X-irradiation of poliovirus- or vesicular stomatitis
virus-infected cells, for example, results in a two-fold increase in
viral mutation frequency and is associated with a much larger
decrease in viral replicative capacity [39]. These observations argue
that the mutation rates of retroviruses and other RNA viruses do
approach the maximal value that is compatible with sustained
production of infectious progeny and increases exceeding this
threshold result in lethal mutagenesis. Similarly, lethal mutagene-
sis may be one of the mechanism underlying ablation of hepatitis C
infection by ribavirin, which in combination with interferon alpha
is the most frequently used treatment for chronic liver inflam-

mation caused by hepatitis C and other RNA viral infections [28].
Specifically, ribavirin, once it has entered the cell, is phosphory-
lated to ribavirin triphosphate, is incorporated into viral RNA by
the virally encoded RNA polymerase, and during subsequent RNA
amplification mis-pairs at a high frequency [40]. Ribavirin induces
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Fig. 1. Lethal mutagenesis by 0.1 �M 5-aza-5,6,-dihydro-2′-deoxycytidine (KP-
1212) ablates HIV infection. Supernatants from HIV infected human lymphoblastoid
CEM cells, cultured in the absence (blue) or presence (red) of 0.1 �M of the mutagenic
nucleoside analog KP-1212, were serially transferred to uninfected CEM cells. Viral
production was quantified by the detection of p24 antigen (histogram; left scale)
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nd by viral infectivity, measured by TCID50 (lines; right scale). In cells incubated
ith 0.1 �M KP-1212, the amount of p24 was permanently reduced to less than the

imit of detection (4 ng/ml) by passage 8, and no infectious HIV was recovered after
assage 12.

ultiple changes in cells; it also limits viral replication directly
y inhibiting HCV RNA-dependent RNA-polymerase and inosine
onophosphate dehydrogenase, reduces the immune response by

ffecting the secretion of interleukins and modifies the activity of
ytotoxic lymphocytes [41,42].

While riboviruses require only a modest ∼1.1–2.8-fold increase
n their mutation frequency in order to reach error catastro-
he [39], the retroviral genome may be more tolerant to further

ncreases in mutation frequency [43]. Nonetheless, studies with
-hydroxy-2′-deoxycytidne (5-OH-dC) and 5-aza-5,6,-dihydro-2′-
eoxycytidine (KP-1212) unequivocally demonstrate the potential
f lethal mutagenesis for the treatment of HIV. Serial transfer of
ulture supernatants from HIV infected cells grown in the pres-
nce of 0.5 mM 5-OH-dC or a little as 10 nM KP-1212 resulted in
blation of HIV infection after 19-48 and 9-13 transfers, respec-
ively (Fig. 1) [11,33]. In the case of treatment with KP-1212, HIV
everse transcriptase incorporates KP-1212 triphosphate in place
f dCTP (Anderson and Loeb, unpublished results), resulting in a
wo-fold increase in mutation frequency [33]. The analog-induced

utations are predominantly A > G and G > A transitions, consistent
ith the predicted base-pairing properties of KP-1212 as deter-
ined by NMR (Li, Essigmann and Loeb, unpublished results). In a

ubsequent phase II clinical trial with KP-1212, newly introduced
utations progressively increased in treated individuals after 56

nd 125 days of treatment (Mullins et al., unpublished results).
hile there was no significant reduction in viral titer over the short

ourse of the trial, the types of mutations observed in the treated
roup again showed an excess of A > G and G > A single nucleotide
ubstitutions. Depending on the turnover of HIV in sequestered
ocations, lethal mutagenesis may therefore have the potential to
ompletely eradicate active HIV-infection.

. Mutation frequencies in normal and malignant cells

Unlike viruses, eukaryotes replicate their DNA with remarkable
ccuracy [13]. This accuracy is achieved through a network of con-
erved and frequently redundant pathways that correct replication

rrors and repair DNA damage [44]. The multiple mechanisms for
he repair of DNA damage in human cells are adequate to guar-
ntee the genetic integrity of cells despite the large number of
NA damaging events that occur each day [45]. Roach et al., for
xample, have recently shown that as few as 70 mutations accumu-
r Biology 20 (2010) 353–359 355

late between successive human generations [14]. In contrast to the
rarity of mutations in normal human cells, cancer cells contain mul-
tiple mutations. We have argued that normal mutation rates cannot
account for the number of mutations found in human cancers, and
thus we proposed that cancers must exhibit a mutator phenotype,
i.e., the mutation rate of cancer cells must be much greater than
that of normal cells [1,46]. The mutator phenotype results from
disruption of the function of genes that maintain genetic stability
in normal cells and is therefore the driving force for the accumula-
tion of large numbers of mutations in tumors. The resulting genetic
diversity, by enabling the selection of tumor promoting events, pro-
vides the basis for the emergence of adaptive phenotypes that allow
incipient cancer cells to evolve, invade, and metastasize.

3.1. Early evidence for the mutator phenotype

Until recently, evidence for the involvement of large numbers of
mutations in tumor progression was based mainly on chromosomal
aberrations and molecular features of certain hereditary cancers.
Early indications of a central role of genome alterations in cancer
development emerged in the late nineteenth and early twenti-
eth centuries from studies by von Hansemann and Boveri [47,48].
Techniques such as array comparative genomic hybridization and
spectral karyotyping have enabled higher resolution than early
cytological observations [49,50], and have been used to demon-
strate that individual metastatic cancer cells harbor a diverse
spectrum of unique chromosomal aberrations [51]. Using comple-
mentary techniques, Stoler et al. estimated that the mean number
of genomic events per carcinoma cell is greater than 10,000 [52].
Additional evidence for thousands of mutations in cancer cells came
from the observation of changes in the length of microsatellites
in tumor DNA from patients with Lynch syndrome (also known
as hereditary nonpolyposis colorectal cancer or HNPCC). These
patients harbor mutations in mismatch repair (MMR) genes [53,54],
and as a result accumulate thousands of point mutations as well
as mutations in as many as 100,000 repetitive sequences per can-
cer genome [55]. Microsatellite instability has also been detected
in tumors without mutations in MMR genes, and in premalignant
conditions associated with chronic inflammation [56]. These find-
ings suggest that changes in cellular environments, such as hypoxia
[57], may result in a transient deficiency in MMR and give rise to
a mutator phenotype. Alterations in the length of poly(dG) repeats
in otherwise normal appearing colonic epithelium have even been
shown to identify colon cancers at distant sites [58,111].

The importance of maintaining genome integrity in prevent-
ing tumorigenesis is highlighted by a number of inherited diseases
which are associated with elevated risks of specific cancers, and
are caused by germline mutations in genes involved in DNA
repair. This association between DNA repair and suppression of
carcinogenesis was established, for example, by the seminal find-
ings of the UV-induced DNA damage repair defects in patients
with xeroderma pigmentosum [59]. Inherited defects in compo-
nents of several other DNA-repair pathways also underlie a variety
of cancer predisposing syndromes including: mismatch repair
(Lynch syndrome) [53,54], base excision repair (MYH-associated
polyposis) [60], homologous recombination (early onset breast
cancer) [61], non-homologous DNA end joining (Lig4 syndrome)
[62], and translesion synthesis (xeroderma pigmentosum variant)
[63]. Hereditary mutations in other genes that are believed to be
required for DNA maintenance are also associated with cancer.
For instance, mutations in TP53 are found in Li-Fraumeni syn-

drome [64,65], a highly cancer-prone condition most frequently
associated with sarcomas and breast adenocarcinomas. Addition-
ally, polymorphisms in a large number of genetic stability genes,
including OGG1 and XRCC1, are emerging as risk alleles for many
cancers (reviewed in [66]).
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Table 2
Number of clonal mutations per cancer identified by whole genome sequencing.

Genome Clonal mutations Non-silent mutations Refs.

Acute myeloid leukemia (n = 1) 500–1000 10 [77]
Acute myeloid leukemia (n = 1) 750 12 [78]
Small cell lung cancer (n = 1) 22,910 101 [80]
Melanoma (n = 1) 33,345 182 [79]
Breast cancer (n = 3) 27,173 ∼200 [72]
Non-small cell lung cancer (n = 1) 50,675 302 [76]
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pathogenicity [24]. Since mutation accumulation is likely rate lim-
iting for tumor progression, a reduction in mutation rate would
also decrease the overall fitness of the tumor cell population and so
lengthen the interval between the initiation of cancer and its clin-
ical sequelae. For example, an individual diagnosed with prostatic

Fig. 2. Lethal mutagenesis of cancer. Due to the high fidelity of DNA replication and
multiple mechanisms for the repair of DNA damage, normal human cells accumu-
Normal human (between generations) 70

.2. Recent evidence for the mutator phenotype

Recent evidence strongly supporting the mutator phenotype
ypothesis comes primarily from three sources (reviewed in
67,68]): first, mathematical models that quantitatively predict the
fficiency of carcinogenesis with and without a mutator pheno-
ype, indicate that mutator mutations are required for the multiple
teps involved in tumor progression [112]; second, human tumors
ave been shown to have a high frequency of random single base
ubstitutions [69,70]; and third, DNA sequencing projects have
ow catalogued large numbers of clonal mutations in individual
umors. These sequencing studies, in particular, have shown that
he mutational load in cancer is substantial and highly heteroge-
eous [71–82].

The International Cancer Genome Consortium, formed in 2008,
s currently coordinating efforts to sequence 500 tumors from each
f 50 cancer types [83]. It includes two older large-scale projects:
he Cancer Genome Atlas and the Cancer Genome Project. Both
f these projects were initially undertaken with the expectation
hat exhaustive sequencing of tumor DNA would reveal a small
umber of key mutations in each cancer type, which would then
erve as targets for novel, molecularly directed anticancer ther-
pies [82]. The opposite, however, was found: very few genes
re commonly mutated in human cancers. While early cancer
enome studies focused primarily on protein coding regions of the
enome, the most recent phase of these studies has seen the whole
enome characterization of a number of specimens (Table 2). These
ater studies have unequivocally established that tens of thou-
ands of clonal mutations are present in each cancer genome. As
redicted by the mutator phenotype hypothesis, mutations were
ound to be distributed throughout the nuclear genome of these
umors, with on average one to ten mutations per million basepairs
72,76–80].

Most of the mutations identified by these studies do not appear
o be causally involved in the pathogenesis of cancer and only a
mall subset of the nonsynonymous substitutions are even believed
o have been affected by selection [84]. What then do these “pas-
enger” mutations represent? While the substitution trends may
artially reflect underlying mutational processes, their distribution
ay also correspond to hotspots for mutagenesis. If so, one would

nticipate that many of these mutations are found in regions of
NA that can assume secondary structures such as hairpins, triple-

tranded or quadruplex DNA [85,86]. Another prediction of the
utator phenotype hypothesis is that subclonal mutations would

e present in large numbers. Many of these mutations are likely
o be in the “driver” genes identified by current methods of DNA
equencing. In addition to the extensive clonal heterogeneity being
ncovered, additional mutational diversity exists within individual

umors themselves. Thus a large number of subclonal and ran-
om mutations are also present, conferring a unique mutational
ignature on each cell [51,69]. This deeper mutational complexity
rovides a genetic basis for the wide variations observed in tumor
ehavior and responsiveness to therapy [67].
�1 [14]

3.3. Mutation rate as a therapeutic target in cancer

While the extensive genetic variation within a cancer cell pop-
ulation represents the clinically most important consequence of
the mutator phenotype, it may also provide unique therapeutic
options. Genetic instability in cancer, similar to that of a viral
quasispecies, is likely thresholded such that appropriate levels of
instability exist to allow selection barriers to be overcome, but
excessive instability, which would lead to extinction of the unstable
clone, is limited (Fig. 2). The mutation burden of cancer may itself
present an unexplored therapeutic target [68]. Conceivably, modu-
lating the mutation frequency of the cancer genome to decrease the
overall fitness of the tumor cell population could be achieved either
(1) by reducing the mutation rate and thus delaying tumor progres-
sion or (2), similar to lethal mutagenesis of viruses, by increasing
the mutation burden beyond an error threshold for tumor cell via-
bility.

3.3.1. Treatment and prevention by delay
Vignuzzi et al., have shown that increasing the fidelity

of poliovirus replication markedly limits viral adaptation and
late few mutations (on average approximately 70 per sexual generation). Cancer
cells, however, accumulate large numbers of mutations (see Table 2). We propose
that genetic instability in cancer cells is limited and, analogous to the situation for
RNA viruses, a threshold of mutations exists above which cancer cells are no longer
viable. Given their pre-existing mutational load, cancers can therefore be selectively
ablated by the incorporation of mutagenic nucleosides.
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ypertrophy at age fifty will usually not develop overt malignancy
ntil his eighties [87]. If one could double the number of years it
akes for tumor cells to accumulate the requisite number of muta-
ions for invasiveness and/or metastasis, one would significantly
educe the life-threatening manifestations of cancer.

For most solid tumors, there is more than a 20-year inter-
al between exposure of an individual to a carcinogenic insult
nd detection of malignancy. Epidemiologically, the link between
hronic infection with hepatitis B virus (HBV) and hepatocellular
arcinoma (HCC) is, for example, well established. In a prospective
opulation study of 22,707 men, the incidence of HCC in adulthood
as found to be greater than 200-fold higher among individuals

nfected in infancy with HBV as compared to age-matched non-
arriers [88]. In the developing world, while hepatitis B infection
sually occurs before adolescence, the median age at presentation
or HCC is 45 years [89]. Therefore even a two-fold reduction in
he rate of mutation accumulation would result in a substantial
eduction in associated morbidity and mortality. However, while
reventing exposure to carcinogenic insults is a well-established
eans for reducing cancer incidence, strategies for directly attenu-

ting mutation accumulation in incipient cancer cells have not yet
een developed.

.3.2. Lethal mutagenesis of human cancers
As discussed in Section 2, the evolutionary success of many RNA

iruses is attributable to the persistent generation of high levels of
iversity within the viral population. To maximize adaptive poten-
ial, the mutation rate of the viral quasispecies is fine-tuned to
stablish a mutation-selection balance beyond which the popula-
ion undergoes an error catastrophe, i.e. no Darwinian selection
perates [9,90]. Consequently, it has been demonstrated exper-
mentally, both in cell culture and in vivo, that increasing the

utation frequency with mutagenic agents can results in extinc-
ion of certain viral populations [11,27–38]. The fitness of a tumor
ell population results from a similar balance between the benefi-
ial effects of mutational variation, which can facilitate adaptation
nder changing environmental pressures, and the detrimental
ffects of mutation. A limit to the amount of genetic instability
hat can be tolerated by cancer cells also must exist [68,91–94],
nd we propose that human cancers can be selectively ablated by
he incorporation of mutagenic nucleosides. Given the pre-existing

utational load of cancer cells, their capacity to tolerate further
utagenesis is most probably thresholded in a manner analogous

o the error threshold displayed by RNA viruses (Fig. 2). Indeed many
ommonly used chemotherapeutic agents, such as 5-fluorouracil
nd temozolomide, are mutagenic and the resultant mutations
ay, in part, be responsible for their anticancer effects [95,96].
Studies with RNA viruses demonstrate the possibility of induc-

ng an error catastrophe using mutagenic nucleoside analogs. While
he use of mutagenic deoxynucleoside analogs, as opposed to
gents that induce DNA adducts, will minimize damage to non-
ucleic acid cellular macromolecules [97,98], several factors have
o be considered in selecting compounds for the induction of lethal

utagenesis [27]. First, the compounds must readily enter human
ells, be converted to nucleoside triphosphates by normal cellular
ucleosides/nucleotide kinases or phosphotransferases, and there-
fter be efficiently incorporated into nuclear DNA [99,100]. Second,
he analogs must not be subject to significant DNA repair once
ncorporated or subject to sanitization while in the nucleotide pool
101]. Lastly, the analogs must mispair at high frequency during
eplication, leading to the progressive accumulation of mutations.

he accumulation of these analogs may be augmented in cer-
ain cancers where the mutator phenotype is due to mutations
n replicative DNA polymerases that decrease base selection [1],
r to dysregulation of low-fidelity specialized DNA polymerases
102,113].
r Biology 20 (2010) 353–359 357

A major limitation to molecularly targeted therapies, both
antiviral and anticancer, has been the emergence of resistance
[103,104]. One potentially attractive feature of lethal mutagene-
sis is that the mechanism of killing is uncoupled from exposure.
Molecularly targeted therapies, such as azidothymidine (AZT) for
HIV [105], create a direct selective pressure for resistant sub-
populations. Even in the instance of the important BCR-Abl kinase
inhibitors used in the treatment of chronic myelogenous leukemia,
such as iminitab (Gleevec), nilotinib and dasatnib, resistance to
third line inhibitors has emerged [106,107]. However, as the dele-
terious consequences of lethal mutagenesis will not manifest for
several generations after incorporation of the mutagenic analog,
the possibility of directly selecting for resistance to these agents
is minimized. Resistance of viral populations to certain lethal
mutagens has been demonstrated experimentally, however only
following exposure to very high concentrations of these agents
[108].

Enhanced mutagenesis is a major causative factor in the induc-
tion of human cancers and the use of mutagenic nucleoside analogs
for the treatment of human tumors may therefore have certain
limitations. For example, base analogues can be toxic to cells by
mechanisms other than lethal mutation induction; thus this strat-
egy will only be useful with analogs that are effective at doses which
do not produce acute toxic effects. We appreciate that, irrespective
of acute toxicity, the frequency of mutations in non-malignant cells
may also increase, potentially resulting in secondary tumors. How-
ever, because tumor cells are inherently more error-prone than
normal cells, they should preferentially accumulate mutagenic
nucleosides, and we envision that it may be possible to calibrate the
exposure of normal cells such that it is largely within levels tolera-
ble by their repair capacities but saturates the repair mechanisms of
cells possessing a mutator phenotype. The emergence of secondary
tumors could be carefully monitored for and would be predicted
not to be an immediate event [109,110]. Lastly, we propose that
lethal mutagenesis of cancer would, at least initially, be restricted to
patients who have failed extensive prior conventional chemother-
apy and as such, have predictably limited life expectancies.
Concerns regarding the induction of secondary malignancies would
thus be reduced, and as tumors in these individuals will likely have
accumulated additional mutations due to prior chemotherapy, they
may be more susceptible to lethal mutagenesis.

4. Concluding remarks

The discovery that the mutation rate of viral quasispecies is fine-
tuned below an error threshold lead to the prediction that even
modest increases in mutation rate could result in the extinction
of a viral population. This has been experimentally verified, both
in cell culture and in vivo, for several viruses [11,27–38]. Cancers
express a mutator phenotype, and their mutational burden may
be limited in a manner analogous to the error threshold displayed
by RNA viruses. We envision that treatment of cancer cells with
mutagenic nucleoside analogs will result in the accumulation of
mutations until a critical level is obtained that results in an error
catastrophe-like ablation of the tumor.
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