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ABSTRACT

To understand how potential for G-quadruplex
formation might influence regulation of gene
expression, we examined the 2 kb spanning the
transcription start sites (TSS) of the 18 217 human
RefSeq genes, distinguishing contributions of tem-
plate and nontemplate strands. Regions both
upstream and downstream of the TSS are G-rich,
but the downstream region displays a clear bias
toward G-richness on the nontemplate strand.
Upstream of the TSS, much of the G-richness and
potential for G-quadruplex formation derives from
the presence of well-defined canonical regulatory
motifs in duplex DNA, including CpG dinucleotides
which are sites of regulatory methylation, and motifs
recognized by the transcription factor SP1. This
challenges the notion that quadruplex formation
upstream of the TSS contributes to regulation of
gene expression. Downstream of the TSS,
G-richness is concentrated in the first intron, and
on the nontemplate strand, where polymorphic
sequence elements with potential to form
G-quadruplex structures and which cannot be
accounted for by known regulatory motifs are
found in almost 3000 (16%) of the human RefSeq
genes, and are conserved through frogs. These
elements could in principle be recognized either as
DNA or as RNA, providing structural targets for
regulation at the level of transcription or RNA
processing.

INTRODUCTION

Genomic DNA sequences are not random, but relatively
little is known about how their non-randomness con-
tributes to biological functions such as gene expression,
genome stability and evolution. Among the most

intriguing non-random sequences are G-rich regions,
which characterize single-copy genes and also repetitive
genomic domains including telomeres, ribosomal DNA
and the immunoglobulin heavy-chain switch regions.
G-rich DNA sequences have the potential to form G4
DNA (also known as G-quadruplex DNA or G-tetraplex
DNA), a structure in which intra- or inter-strand
interactions are stabilized by G-quartets, planar arrays
of four guanines, paired by Hoogsteen bonding (1–3). G4
DNA forms spontaneously in synthetic oligonucleotides
which contain at least four runs of guanines, with at least
three guanines per run. RNA can form a similar structure,
and G4 DNA and G4 RNA are both very stable
once formed, with stability derived from hydrogen
bonding between guanines and stacking of G-quartets,
as well as by the length of the guanine runs and the
intervening sequences that form the loops of the structures
(4,5). Systematic analysis of quadruplexes formed by
synthetic oligonucleotides has shown that there is an
enormous potential for structural diversity, and that the
strands that connect the stacked quartets may be
antiparallel, parallel or a mix of these orientations (1).
Many genomic G-rich regions carry more than four
G-runs, creating the potential for combinatorial diversity
that could contribute to formation of polymorphic
G-quadruplex structures.
For G4 DNA to form in the genome of a living cell,

G-rich regions must be released from the DNA duplex, as
occurs during transient denaturation that accompanies
replication, transcription and recombination (2). G4
DNA is recognized by a number of conserved proteins,
including RecQ family helicases and MutSa (6–10), which
may remove G4 DNA formed during replication or
transcription to maintain genomic stability; nucleolin
(11), the major component of the vertebrate nucleolus,
where the G-rich rDNA is transcribed and rRNA
biogenesis occurs; and factors associated with mRNA
processing, including hnRNP D and hnRNP A1 (12,13).
Some proteins that interact with G4 DNA do so with high
affinity (nanomolar), consistent with the notion that

*To whom correspondence should be addressed. Tel: +1 206 221 6876; Fax: +1 206 221 6781; Email: maizels@u.washington.edu

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Nucleic Acids Research Advance Access published January 10, 2008

http://creativecommons.org/licenses/


G-quadruplexes could provide a target for regulation of
genomic stability or gene expression in vivo.
In the human genome, the number of sites with

potential for formation of G-quadruplex structures is
estimated to exceed 300 000 (14,15). Some of these sites are
within genes, and potential for G4 DNA formation in
genes correlates with gene function; in particular, proto-
oncogenes are G-rich and tumor suppressor genes are
depleted for G-runs relative to the genomic average (16).
Promoter regions are also G-rich (17–19). To understand
if and how G-richness and G-quadruplex formation might
contribute to regulation of gene expression, it is important
to take into account contributions of well-defined
mechanisms unrelated to G-quadruplex formation that
target individual guanines or runs of guanines. The CpG
dinucleotide, site of regulatory methylation, is enriched in
‘CpG islands’ within promoters (20,21). Some very
common transcription factors recognize G-rich sites
in duplex DNA, including SP1 (RGGCGKR), KLF
(GGGGTGGGG), EKLF (AGGGTGKGG), MAZ
(GGGAGGG), EGR-1 (GCGTGGGCG) and AP-2
(CGCCNGSGGG) (22–24). And, during pre-mRNA
processing, G-rich sites in RNA are recognized by the
hnRNP A (UAGGGU/A) (25) and hnRNP H family
(GGGA) proteins (26). It is also important to distinguish
between the potential contributions of the template
(transcribed) and nontemplate DNA strands.
Downstream of the transcription start site (TSS), G-rich
regions in the nontemplate strand will become part of the
pre-mRNA or (if outside of introns) the mRNA, where
they could in principle provide structural targets for
regulation. Moreover, transcription of G-rich regions,
either in vitro or intracellularly, readily produces char-
acteristic structures, G-loops, containing a stable cotran-
scriptional RNA/DNA hybrid on the template strand and
G4 DNA interspersed with single stranded regions on the
nontemplate strand (27–29). G4 DNA in the nontemplate
strand of a G-loop could similarly provide a regulatory
target. In either case, elements would be predicted to
display strand bias, and to be concentrated in the
nontemplate DNA strand.
Thus far, there has been no systematic effort to integrate

our understanding of well-recognized regulatory mechan-
isms or transcriptional strand bias with the potential for
G-quadruplex formation within promoter regions. We
have now compared G-richness that predicts potential for
DNA or RNA G-quadruplex formation in the upstream
and downstream regulatory regions of the 18 217 human
RefSeq genes (NCBI 36). We examined the 2 kb flanking
the TSS, including 1 kb of upstream sequence (�1000
to �1) and 1 kb of downstream transcribed sequence
(+1 to +1000), distinguishing the contributions of the
template and nontemplate strands. As documented by
others (17–19), we found that regions both upstream and
downstream of the TSS are G-rich. However, upstream of
the TSS, much G-richness and potential for G4 DNA
formation derives from the presence of well-defined
canonical regulatory motifs, including CpG dinucleotides,
sites of regulatory cytosine methylation; and motifs
recognized by the transcription factor SP1. Downstream
of the TSS, we identified G-rich elements on the

nontemplate DNA strand which were not eliminated by
masking G-rich motifs for known factors which bind
either DNA or RNA, or by masking CpG dinucleotides.
These elements map to the 50-most 100 bp of the first
intron. These elements are in the nontemplate strand, and
could therefore be recognized in either the pre-mRNA
transcript or in DNA that has been transiently denatured
during transcription. Examination of first intron
sequences from the genomes of other organisms showed
that these G-rich elements are conserved in mouse,
chicken, and frog, but not zebrafish. G-rich elements at
the 50-end of intron 1 may provide structural targets for
regulation of gene expression at the level of transcription
or RNA processing.

METHODS

Sequence data

Sequence data for the 18 217 human RefSeq genes (NCBI
36 assembly) were downloaded from the Ensembl
database 46 using BioMart (30,31). From BioMart, we
obtained the complete gene sequences, as well as flanking
sequences extending 5 kb upstream and downstream of the
gene sequences. The regulatory regions analyzed included
the 1 kb of sequence flanking TSSs. Intergenic regions
included 2 kb of sequence which spanned from 3 to 5 kb
upstream of the 50 ends and downstream of the 30 ends of
the 18 217 RefSeq genes. From Biomart, we also obtained
cDNA sequences and coding sequences for the human
RefSeq genes.

Intron sequences do not have an Ensembl identifier;
therefore, intron sequences were derived from the
transcript sequences downloaded from Ensembl database
46 using BioMart (30,31), along with the transcript start
and end positions, exon start and end positions, exon
rank, and transcribed strand orientation. The first, second
and third introns (between exons with rank 1 and 2, 2
and 3, or 3 and 4, respectively) were extracted from the
transcript sequences. Each unique intron was distin-
guished by its Ensembl gene identifier and sequence
length, yielding 18 222 first introns, 16 930 second introns
and 15 466 third introns for the human genome. Some of
these intron sequences may derive from different tran-
scripts of the same gene. First intron sequences were
similarly derived from the mouse (Mus musculus, NCBIM
36, 18543 RefSeq genes), chicken (Gallus gallus,
WASHUC 2, 4782 known protein coding genes), frog
(Xenopus tropicalis, JGI 4.1, 5530 known protein coding
genes), and zebrafish (Danio rerio, ZFISH 7, 10578
RefSeq genes) genomes, using transcripts downloaded by
BioMart from Ensembl 46.

Control sequences

Pseudo-coding sequences were generated by using the
online Sequence Manipulation Site (32). Using the
‘Random Coding DNA’ applet, we generated 1000
pseudo-coding sequences 3 kb in length, and made up of
random codons as defined by the NCBI standard code.
To generate random sequences with the same GC content
as typical human cDNA, coding or intron sequences, we
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shuffled each of the sequences of the human RefSeq gene
sequences for each type of sequence. To shuffle the
sequences, we used a random number generator to provide
an index into each source sequence, deleting each
randomly chosen base from the original sequence as it
was moved into the newly assembled shuffled sequence.

Sequence analysis

For intramolecular G4 DNA to form within a single-
stranded region, four runs of three or more consecutive
guanines must be in some proximity, but the limits of
this proximity are not known. We elected to evaluate
sequences in 100 bp intervals, which represents half the
typical spacing between nucleosomes, and is therefore a
relatively short region in genomic terms. We thus define
a ‘G-run’ as three or more consecutive guanines, and
‘G-richness’ as any 100-bp sequence that contains four
or more G-runs. We counted G-runs in 100-bp intervals
for both nontemplate and template strands of DNA
sequences. This analysis separately tallied G-runs within
100-bp intervals, and omitted from the tally G-runs split
between two adjacent non-overlapping intervals. This
analysis identifies locations in each sequence where the
potential for G4 DNA formation exists, thus differing
from calculation of potential for G4 DNA formation,
‘G4P’ (16), which yields one value for an entire sequence.

Regulatory motifs

Conserved regulatory motifs for transcription factors that
bind duplex DNA were obtained from the TRANSFAC
database 7.0 (24). The following SP1 sequences from
consensus RGGCGKR were chosen for analysis because
of their frequency and their potential effect on calculations
of G-richness: GGGGCGGGG, GGGCGGG, AGGCG
GG, GGGCGTG, GGGCGGA. Additional transcription
factor binding sites analyzed were: KLF (GGGGTG-
GGG), EKLF (AGGGTGKGG), MAZ (GGGAGGG),
EGR-1 (GCGTGGGCG) and AP-2 (CGCCNGSGGG).
G-rich motifs for RNA binding factors included in the
analysis were those for the hnRNP A (UAGGGU/A) (25);
and hnRNP H family (GGGA) proteins that includes
hnRNP H/H’/F/2H9 (26), which we will refer to
collectively as hnRNP H motifs.

Masking regulatory motifs

The transcription factor motifs (above) and their reverse
complements were masked by converting them to N’s, as
were CpG dinucleotides, to eliminate them from both
DNA strands. The motifs for hnRNP proteins were
masked only on the nontemplate strand that corresponds
to the mRNA sequence. Some of these motifs may over-
lap within a sequence, and thus when multiple motifs
are evaluated the order of masking motifs can affect
the results. For example, the sequence GGGCGGG
would be completely masked upon scoring SP1 motifs
(GGGCGGG), but if CpG dinucleotides were masked
first, the SP1 motif would be eliminated and only the
50-most GGG motif retained. To minimize this, multiple
motifs were masked in the following order: SP1, MAZ,
KLF, EKLF, EGR-1, AP-2, hnRNP A, hnRNP H, CpG.

Statistical analysis

The Gaussian curve fits were determined with OriginPro
v7.5, and correlation reported by the R2 value. Spearman
correlation was calculated by using the R 2.4.0 statistics
package. To determine the significance of strand bias, we
compared the numbers of G-runs in a 100-bp interval
between the template and nontemplate strands by a two-
tailed, paired t-test performed with Excel 2003. This
analysis establishes if a group of sequences is significantly
more G-rich on the template or nontemplate strands.
Individual genes can always be exceptions.

RESULTS

The nontemplate strand is G-rich downstream of the TSS

Four ‘G-runs’ (three or more consecutive guanines) are
typically required for the formation of a G-quadruplex, so
the density of G-runs provides one measure of potential
for G-quadruplex formation. We analyzed the density of
G-runs within the promoter regions of all 18 217 RefSeq
genes (NCBI 36), examining the 2 kb region surrounding
the TSS (range �1000 to +1000). We counted G-runs in
100-bp intervals throughout this region, and calculated
the ‘G-richness’ (four or more G-runs within a span of
100 bp). This confirmed that regions upstream and down-
stream of the TSS are G-rich (Figure 1A), as documented
by others (17–19). We identified two peaks of G-richness,
one upstream (�100 to +1) and one downstream (+200
to +300) of the TSS. Within the upstream peak, 55% of
genes are G-rich; and within the downstream peak, 57%
of genes are G-rich (Figure 1A).
To determine if G-richness exhibits strand bias, the

nontemplate and template DNA strands were analyzed
separately (Figure 1B). Both strands contribute to both
peaks of G-richness. Upstream of the TSS, the two DNA
strands are comparably G-rich, and at the peak (�100
to +1) a slightly greater fraction of genes are G-rich on
the nontemplate strand (29% and 26%, respectively).
Downstream of the TSS, a considerably greater fraction of
genes are G-rich on the nontemplate strand. The peak of
G-richness on the nontemplate strand is in the region
+200 to +300 (Figure 1B). Within this region, 34% of
genes are G-rich on the nontemplate strand and 24% on
the template strand. Analyses of strand bias by paired
t-tests for each 100 bp interval showed that the differences
at both peaks are significant (Supplementary Figure 1),
with significance especially high in the interval +200 to
+300 (P=1E–166). It is important to emphasize that the
significance between what appear to be small differences
(e.g. interval �100 to TSS, P=2E–7) is greatly influenced
by the large number (>18K) of sequences included in the
analyses. The strand bias downstream of the TSS was
especially intriguing, because G-richness of the nontem-
plate strand within a transcribed region could permit
formation of G-quadruplexes in either the newly synthe-
sized RNA transcript or the DNA within a G-loop.
For comparison, we analyzed the profile of G-richness

of DNA sequences from two other sources not likely to be
enriched in regulatory sequences. One sequence set was

Nucleic Acids Research, 2007 3



derived from 1000 pseudo-coding sequences composed of
random codons. Only 3% of the pseudo-coding sequences
were G-rich, and G-richness was evenly distributed along
the 2 kb of DNA analyzed, with no evident strand bias
(Figure 1B, blue lines). The other sequence set was derived
from 2 kb intergenic regions of the human genome which
mapped 3 kb away from either the 50 or 30 ends of the
18 217 RefSeq genes. Only 7% and 8% of the upstream
and downstream intergenic regions, respectively, were
G-rich; and there were neither peaks of G-richness nor any
strand bias (Figure 1B, cyan and green lines, respectively).

We also examined the 30 termini of the human RefSeq
genes, separately analyzing the nontemplate and template
strands. This analysis showed that 30 termini are much less
G-rich than the region surrounding the TSS (Figure 1C).
Furthermore, within the range �2000 to �1500 upstream
of the 30 termini, where 10% of the genes exhibit
G-richness on either strand, G-richness does not differ
significantly between the two strands (P> 0.01). Within
the 30 terminal 1500 bp, fewer genes are G-rich on the
nontemplate strand than the template strand; and in the
terminal 100 bp, the fraction of genes that are G-rich on
the template and nontemplate strands drops to 6% and
4%, respectively. Thus, at the 30 end of genes, there is not
strong potential for formation of G-quadruplex structures
or G-loops. Quadruplex structures are therefore in general
unlikely to contribute to regulation at the 30 UTR, either
within mRNA transcripts or DNA templates, although
specific genes may always be exceptions.

G-richness near the TSS is not due to enrichment of CpG
dinucleotides

Many TSSs are embedded in CpG islands (20), and the
CpG dinucleotides within these islands are targets of
cytosine methylation usually associated with transcription
suppression (21,33). To assess the contribution of CpG
dinucleotides to G-richness near the TSS, we determined
the frequency of genes that are G-rich with all CpG
dinucleotides masked (Figure 2A, black lines) and the
frequency that can be attributed to CpG dinucleotides
(Figure 2A, blue lines). A plot of the contribution of CpG
dinucleotides to nontemplate strand G-richness con-
formed to a nearly perfect Gaussian distribution
(R2=0.99) centered in the range +100 to +200
(Figure 2A, solid blue line). Therefore masking CpG
dinucleotides did not alter two characteristic features of
the profile near the TSS: the presence of two peaks of
G-richness on either side of the TSS, or the strand-biased
G-richness of the nontemplate strand downstream of the
TSS (Figure 2A, black lines). Thus, G-richness within
regions spanning TSS cannot be explained solely by the
density of CpG dinucleotides in this region.

Figure 1. Strand-biased G-richness in human genes. Percentage of
genes with four or more G-runs per 100 bp interval was calculated for
the indicated regions: (A) G-richness of duplex DNA within the 2 kb
window spanning the TSS; analysis includes 18 217 human RefSeq
genes. (B) Strand bias of G-richness. Nontemplate strands (solid lines)
and template strands (dashed lines) of human RefSeq genes (black);
1000 random pseudo-coding sequences (blue); intergenic sequences 3 kb

upstream of the TSS (cyan); and intergenic sequences 3 kb downstream
of the 30 ends of the genes (green). G-richness of nontemplate and
template strands is indistinguishable within intergenic sequences.
(C) Strand bias of G-richness within 2 kb of the 30 ends of genes.
Nontemplate strands (solid line) and template strands (dashed line).
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Motifs for SP1 contribute to G-richness upstream but not
downstream of the TSS

To ask how other canonical regulatory motifs might
contribute to the overall G-richness of promoters, we next
assessed the contributions of motifs for transcription
factors that recognize duplex DNA. Duplex DNA-binding
sites for transcription factors map both upstream and
downstream of the TSS (34). The TRANSFAC database
(24), which compiles transcription factors and the
sequence motifs that they recognize, lists a number of
G-rich consensus motifs for factors that bind duplex
DNA. Among the most common regulatory motifs in
mammalian genomes is GGGCGGG, recognized by the
transcription factor SP1 (RGGCGKR) (22,23). Other
common G-rich regulatory motifs recognized by

transcription factors include those for KLF (GGGGTGG-
GG), EKLF (AGGGTGKGG), MAZ (GGGAGGG),
EGR-1 (GCGTGGGCG) and AP-2 (CGCCNGSGGG)
(22–24).
To establish whether SP1 motifs might contribute to

G-richness near the TSS, we searched for SP1 motifs in the
2 kb window flanking the TSS (�1000 to +1000). SP1
motifs contribute significantly to G-richness and account
for approximately one third of the G-richness in the region
�100 to �1 (Figure 2B). This echoes the position bias
identified for SP1 at �63, just upstream of the TSS (23).
Moreover, masking SP1 motifs nearly eliminated the peak
of genes which are G-rich in the template strand upstream
of the TSS (Figure 2B, solid black line). However,
masking SP1 motifs did not eliminate the peak of genes

Figure 2. G-richness upstream but not downstream of the TSS can be attributed to canonical regulatory motifs in duplex DNA. Percentage of genes
in which G-richness of nontemplate (solid lines) and template (dashed lines) strands was contributed by specific motifs was analyzed for all 18 217
human RefSeq genes within the 2 kb window spanning the TSS. In each panel G-richness of unmasked sequences is shown for comparison (gray).
Motifs tested were: (A) G-richness contributed solely by CpG dinucleotides (blue); G-richness calculated with CpG dinucleotides masked (black).
Gaussian fit (data not shown) for nontemplate strand G-richness contributed by CpG dinucleotides only, represented by the solid blue line
(R2=0.99). (B) G-richness contributed solely by SP1 motifs (blue); G-richness calculated with SP1 motifs masked (black). Gaussian fits (data not
shown) for nontemplate strand, SP1 motifs only (R2=0.80); and for SP1 motifs masked (R2=0.95). (C) G-richness contributed by motifs for
5 transcription factors, MAZ, KLF, EKLF, EGR-1, and AP-2 (blue); G-richness with these 5 transcription factor motifs masked (black).
(D) G-richness with CpG dinucleotides and motifs for transcription factors SP1, MAZ, KLF, EKLF, EGR-1 and AP-2 masked (black).
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which are G-rich in the nontemplate strand downstream
of the TSS (+200 to +300). Within this region, 30% of
genes are G-rich even after eliminating the contribution of
potential SP1 sites (Figure 2B, solid black line).
To ensure that these results were robust, we duplicated

the analysis using the ‘Quadparser’ software (15).
Quadparser employs a different algorithm for identifying
motifs with potential for G-quadruplex formation, scoring
motifs based on the presence of four or more G-runs
separated by ‘loops’ containing from one to seven
nucleotides that may also include G. A motif with more
than four G-runs would be counted as one potential
quadruplex (provided that it meets the loop criteria),
producing a lower estimate of potential quadruplex
structures than by our calculation of G-richness. The
results from Quadparser reproduced the results of our
analyses of G-richness, either with or without SP1 sites
masked (Supplementary Figure 2).
Analysis by either our software or by Quadparser

showed that the distribution of nontemplate strand
G-richness approximates a Gaussian distribution from
�1000 to +1000, but with a dip just downstream of the
TSS. The evidence that SP1 sites contribute considerably
to G-richness upstream of the promoter suggests that the
distribution around the TSS might be better represented as
the sum of two Gaussian distributions, one contributed by
SP1 motifs and centered upstream of the TSS (R2=0.80;
Figure 2B, solid blue line), and another not associated
with SP1 motifs and centered downstream of the TSS
(R2=0.95; Figure 2B, solid black line).

Motifs for transcription factors other than SP1 make minor
contributions to promoter G-richness

Common transcription factors other than SP1 also
recognize G-rich motifs in duplex DNA. The most
prominent of these factors are KLF, EKLF, MAZ,
EGR-1 and AP-2 (22,24). Graphical representation
shows that G-richness contributed by motifs for these
five factors in the 2 kb window spanning the TSS is low,
and contains a very minor peak (�100 to �1; Figure 2C,
blue lines). Correspondingly, masking these five motifs
only modestly diminished G-richness upstream of the
TSS, and had even less effect on G-richness downstream of
the TSS (Figure 2C, black lines). Thus, these five motifs
appear to make a minor contribution relative to the SP1
motif, as would be predicted by the relative frequencies of
motifs for SP1 and these five other factors established by
Xie et al. (23).
Masking CpG dinucleotides, as well as the six G-rich

motifs for transcription factors SP1, KLF, EKLF, MAZ,
EGR-1 and AP-2, flattened the distribution of G-richness
upstream of the TSS, so that fewer than 10% of genes
remained in the class identified as G-rich (Figure 2D). This
approaches the level of G-richness identified within
nonregulatory regions, but is still above that of random
codons (Figure 1B). The effect of masking was compar-
ably evident when applied to specific genes. Elements with
potential for quadruplex formation have been identified
upstream of the TSS in the MYC, KIT and VEGF proto-
oncogenes, prompting speculation that G-quadruplex

formation by these elements might provide highly specific
targets for regulation, since both structure and sequence
could contribute to making them unique within the
genome (35–39). However, potential for quadruplex
formation at the prototype element in each of these
genes was eliminated upon masking canonical regulatory
sites (Supplementary Figure 3).

Mapping G-richness to functional regions within genes

The analysis above showed that enrichment of common
motifs for transcriptional regulation, particularly CpG
dinucleotides and SP1 binding motifs, could explain the
peak of G-richness of the nontemplate strand upstream of
the TSS but not downstream of the TSS (Figure 2). We
therefore sought to identify other functional elements that
might account for G-richness downstream of the TSS.
To map G-richness within transcribed regions of human
genes, we separately examined cDNA sequences, corre-
sponding to all exons in the mature mRNA; coding
regions, corresponding to all sequences between the ATG
start site and the stop site for translation; and the first and
second introns (Figure 3A). Within each of those regions,
two subregions were separately analyzed: the 1 kb at the
very 50-end (i.e. just downstream of the TSS of cDNAs,
the ATG start codon for coding regions, or the 50 splice
site for introns), and the 1 kb at the very 30-end (i.e. just
upstream of the polyA site of cDNAs, the stop codon for
coding regions, or the 30 splice site for introns). We res-
tricted the analysis of cDNAs, coding regions and introns
to regions at least 1 kb in length, which includes more than
11 000 unique sequences for each group; sequences less
than 2 kb were included in analysis of both the 50 and 30

subregions. Significance of strand bias was determined by
paired t-tests as in Supplementary Figure 1.

The frequency of genes with G-rich cDNAs is maximal
at the very 50 end, drops precipitously within the first few
hundred basepairs, and drops further at the very 30-end
(Figure 3B, green lines). Just downstream of the TSS, 22%
of genes are G-rich on the template strand, and 18% are
G-rich on the nontemplate strand (P< 10�16). A shift in
strand bias is evident after the first 100 bp, resulting in
a small but significant bias (P< 10�16) toward G-richness
of the template strand. As the median length of 50 UTR
sequences is greater than 100 bp (156 bp), in most cases
G-richness at the very 50-end of the nontemplate strand
maps to 50-UTRs.

Analysis of coding sequences showed that only 11% can
be classified as G-rich at the 50-end of the nontemplate
strand (Figure 3B; blue lines). No significant strand bias
is evident in the 50-most 100 bp region (P=0.9); while
further downstream, there is a small but significant bias
(P< 10�16) toward G-richness of the template strand.

In contrast, analysis of first introns showed that nearly
half (48%) are G-rich on the nontemplate strand within
the 50-most 100 bp (Figure 3C, solid red line). There is
clear strand bias: G-richness is concentrated on the
nontemplate strand, and only half as many first introns
are G-rich on the template strand (24%; P< 10�16;
Figure 3C, red lines). G-richness is concentrated in the
50-most region of first introns, but the strand bias is
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evident throughout, in both 50- and 30-intronic regions;
and absent at the very 30-end, near the 30 splice site.
Second introns are characterized by a similar profile of
nontemplate strand-biased G-richness (Figure 3C, gold
lines), but a lower percentage of second introns than first
introns are G-rich at the 50 end (16% compared to 48%).
The profile for third introns is similar to that of second
introns (not shown), and the profile for genes that
have only one intron is similar to that of all first introns
(data not shown). We conclude that G-rich regions at the
50-end of the first intron, present in 48% of genes,
constitute the major component of the strand-biased
G-richness evident in RefSeq genes (Figure 1B). In
addition, G-rich regions are also present near the 50-end
of cDNA sequences of 22% of genes, where they may
in many cases map to the 50-UTRs. G-rich regions in
50-UTRs would have the potential to form G-quadruplex
structures in mature mRNA transcripts and contribute
to regulation of translation, as has been previously
suggested (40,41).

Motifs for hnRNP proteins andCpG dinucleotides contribute
to but do not account for G-richness of first introns

The bias toward G-rich nontemplate DNA strands in
the first intron suggests that G-quadruplex structures
may form in this region either as DNA or as RNA.

Two hnRNP proteins involved in RNA processing
recognize motifs containing runs of three or more
guanines in single-stranded DNA or RNA, hnRNP A
(UAGGGU/A) and hnRNP H (GGGA) (25,26). These
motifs account for more than half of G-rich first introns
(Figure 4A, left, compare black and gray lines). However,
it is important to note that, in contrast to sites for
sequence-specific duplex DNA binding proteins, these
motifs may not be sufficient for binding by hnRNP A or
hnRNP H, so this calculation almost certainly over-
estimates the contribution of motifs for these factors.
Despite that, masking of these motifs did not eliminate the
peak of G-richness at the very 50-end of the first introns, as
28% of genes were G-rich even after masking (Figure 4A,
left, black line). CpG dinucleotides were the major source
of G-richness in the +100 to +200 region downstream of
the TSS (Figure 2A, blue line), a region which could
overlap with the 50-end of the first intron. Masking CpG
dinucleotides and hnRNP A and hnRNP H motifs
eliminated more G-rich genes; but even after this stringent
masking, 16% of genes are classified as G-rich at the 50-
end of intron 1 (Figure 4A, left, green line). Moreover, the
profile of G-richness was little changed, with a high
concentration of G-richness at the very 50-end.
Motifs for hnRNP A and H similarly account for about

half of genes with G-rich second introns (Figure 4A, right,

Figure 3. G-richness mapped to functional regions within human genes. (A) Diagram of a prototype gene with 50 UTR (reverse hatched boxes),
coding exons (gray boxes), introns (carats), and 30 UTR (forward hatched boxes) indicated. (B) G-richness of 19 056 unique cDNA sequences (green),
and 13 640 unique coding sequences (blue). G-richness was calculated for the first 1 kb of each sequence relative to the 50 end, and the last 1 kb of
each sequence relative to the 30 end, for specific elements of a typical gene, for all sequences greater than 1 kb in length, and distinguishing
nontemplate (solid lines) and template (dashed lines) strands. Vertical lines separate analyses of 50 and 30 regions. (C) G-richness of 13 433 unique
first intron sequences (red), and 11 540 unique second intron sequences (gold). Analyses and notations as in (C).
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compare black and gray lines). With hnRNP A and
hnRNP H motifs masked, masking CpG dinucleotides
had very little additional effect on second intron sequences
(Figure 4A, right, green line).
Increased multiplicity of G-runs would increase poten-

tial for formation of polymorphic G-quadruplexes.
We therefore determined the fraction of genes with five
or more G-runs per 100 nt in the 50-most 1 kb of the first
intron sequences, with motifs for hnRNP A, hnRNP H,
and CpG dinucleotides masked. We found that 8% of
genes have five or more G-runs at the 50-end of intron 1
(Figure 4B, plum line) compared to 16% with four or
more G-runs (Figure 4B, green line).

Elements with high potential to form polymorphic
G-quadruplex structures at the 5’-end of first introns

Results above demonstrate that first introns of 48% of
human genes have potential to form G-quadruplex
structures, as they contain four or more G-runs per
100 nt on the nontemplate strand. In addition, half of the
G-rich first introns have the potential to form

polymorphic G-quadruplexes, even after masking for
known regulatory motifs. As increased multiplicity of
G-runs would increase combinatorial potential for forma-
tion of G-quadruplexes, we determined the frequency of
numbers of G-runs per 100 nt of the nontemplate strand in
first and second introns, as well as in cDNA and coding
regions (Figure 3A) as controls. This analysis evaluated all
such sequences >100 bp in length. To provide comparison
of observed and predicted values for sequences of identical
base composition, the distribution of the numbers of
G-runs was calculated for the same groups of sequences
randomly shuffled. This analysis showed that all sequences
are depleted for low numbers of G-runs (zero or one) in
the region +1 to +100 as compared to their correspond-
ing shuffled sequences, with the difference between
observed (Figure 5A, bars) and predicted (Figure 5A,
lines) values most striking in first introns (red). There is a
modest enrichment of the frequency of cDNAs and second
introns with four or more G-runs, while coding sequences
conform very closely to the expected distribution.
Strikingly, the frequency of first introns containing four
or more G-runs is considerably greater than predicted

Figure 4. hnRNP A and hnRNP H motifs and CpG dinucleotides contribute to but do not account for G-richness of human first introns.
(A) Percentage of 13 433 unique first intron sequences (left) or 11 540 unique second intron sequences (right) in which G-richness of nontemplate
(solid lines) strands was contributed by specific motifs, within the first 1 kb of each sequence relative to the 50 end, and the last 1 kb of each sequence
relative to the 30 end, for all sequences that are greater than 1 kb in length. G-richness of unmasked sequences (gray) is shown for comparison with
G-richness with motifs for hnRNP A and hnRNP H masked (black), and hnRNP A and hnRNP H plus CpG dinucleotides masked (green). Vertical
lines separate the 50 and 30 analyses. (B) Multiplicity of G-runs in first intron sequences with motifs for hnRNP A and hnRNP H and CpG
dinucleotides masked. G-richness with four or more G-runs (green) as in (A), and G-richness redefined as five or more G-runs (plum).
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based on sequence composition (Figure 5A, compare red
bars and line).

In the human genome, GC content of first introns is
inversely correlated with intron length (42). To ensure that
the results above were applicable to longer introns, we also
determined distribution of G-runs in human first introns
greater than 1 kb in length. This produced essentially
identical results (data not shown) to analysis of first
introns >100 bp (Figure 5A).

In addition, we asked if intron length correlates with the
number of G-runs in the first 100 bp, but found that it
does not (Spearman correlation, �=�0.014, P=0.07).
Thus, in contrast to GC content (42), G-richness and
multiplicity of G-runs at the 50-end of first introns are not
a function of intron length.

To compare G-richness at 50-ends and elsewhere, we
carried out an identical analysis of the same panel of
cDNA, coding, and first and second intron sequences, but
focused on the region from +900 to +1000. Overall, the
differences between observed and predicted values were
not striking in this region, although a modest enrichment
of genes containing four or more G-runs in first intron
sequences was evident (Figure 5B, red).

The results above identify elements with high potential
for G4 DNA formation in the nontemplate DNA strand
at the 50-end of first introns in the human genome.
Notably, the frequencies of genes containing four, five, six,
seven or eight or more G-runs in the first 100 nt of intron 1
are nearly comparable: 13%, 11%, 9%, 7% and 9%,
respectively. Together, they account for a total of over
8000 human genes, or nearly half the genes in the most
current database.

Conservation of G-rich first intron elements

To establish whether the presence of G-rich elements in
the first intron is conserved, we evaluated sequences from
the mouse, chicken, frog and zebrafish genomes. As in the
analysis of human first introns (Figure 3B), we examined

the 1 kb comprising the 50-most region, for all sequences
at least 1 kb in length. Significance of strand bias was
determined by paired t-tests as in Supplementary Figure 1.
We found nontemplate strand-biased G-richness at the
50-end of first introns in mouse, chicken and frog
(Figure 6A). The mouse and chicken profiles closely
resemble the human profile. The fraction of genes with
four or more G-runs per 100 nt at the 50-end of the first
intron is 41% in mouse and 42% in chicken (Figure 6A,
left; cf. 48% in human); and clear strand bias is evident,
as more than twice as many genes are G-rich on the
nontemplate as on the template strand (16% and 12%,
respectively; P< 10�16; Figure 6A, right). In the frog,
G-rich first introns characterize a smaller fraction of genes
(Figure 6A); but there is nonetheless clear strand bias, as
14% of genes are G-rich on the nontemplate strand
(Figure 6A, left), and only 4% on the template strand
(P< 10�16; Figure 6A, right). In zebrafish, first introns are
not G-rich.
To establish whether the first introns of these genomes

have high densities of G-runs, we evaluated the multi-
plicity of G-runs in the first 100 nt of the nontemplate
strand of first introns for all sequences greater than 100 bp
in length (Figure 6B). We found that, in mouse and
chicken, 28% and 33% of first introns contain five or
more G-runs in the first 100 nt, respectively, very
comparable to human (36%). Thus, the vast majority of
these regions (human, 75%; mouse, 68%; chicken, 79%)
have the potential not only for G-quadruplex formation
but for formation of polymorphic G-quadruplex struc-
tures. In frog, 7%, or half of the G-rich first introns, have
five or more G-runs in the first 100 nt. Less than 1% of the
zebrafish intron sequences are G-rich in the first 100 nt.
Therefore, G-rich intron 1 elements appear to have
evolved around the time of divergence of fish and frogs,
and have been widely adopted in human genes. Moreover,
potential for formation of not only G-quadruplexes, but
polymorphic quadruplex structures, is conserved.

Figure 5. The G-rich element at the 50 end of first introns has high potential to form polymorphic G-quadruplex structures. Numbers of G-runs were
enumerated in 100 nt intervals within the nontemplate strand for each specific element of a typical gene (Figure 3A), including cDNA (green), coding
(blue), first intron (red) and second intron (gold), for all sequences greater than 100 bp in length. The distribution of numbers of G-runs is shown for
two intervals, comparing the observed value of each genomic region (bars) to the value predicted based upon analysis of the same sequences
randomly shuffled (lines). Intervals analyzed were: (A) 100 nt interval from +1 to +100 relative to the 50 end. (B) 100 nt interval from +900
to +1000 relative to the 50 end.
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DISCUSSION

We determined the potential for formation of
G-quadruplex structures near the TSS of the 18 217
human RefSeq genes, distinguishing the contributions of
the template and nontemplate strands in the �1000 to
+1000 region surrounding the TSSs. We found that two
distinct components determine G-richness. Upstream of
the TSS, G-richness is accounted for by well-defined
motifs in duplex DNA including CpG dinucleotides for
methylation and G-rich motifs recognized by transcription
factors that recognize duplex DNA. Downstream of the
TSS, G-richness could not be accounted for by CpG
dinucleotides or known recognition motifs for factors
that bind duplex DNA or RNA. G-rich elements with
potential for formation of G-quadruplex structures were
found to characterize the nontemplate strand of the 50-end
of first introns of many human genes. We will refer to
these G-rich intron 1 elements as ‘GrIn1 elements’. Strand
bias, position, multiplicity of G-runs and conservation
from frogs through humans all suggest that GrIn1

elements may provide structural targets for regulation of
gene expression.

Distinct peaks of G-richness upstream and downstream
of the TSS

For intramolecular G4 DNA to form, four G-runs must
be in proximity, but the limits of this proximity have not
been established in vitro or in vivo. We therefore evaluated
sequences 100 bp in length, half the typical spacing
between nucleosomes, and scored G-richness as the
presence of four or more runs of three or more consecutive
guanines within 100 nt on each DNA strand. We
established that the results of this analysis are robust
with respect to details of the algorithm used for analysis
by comparing G-richness as determined by our software
and by Quadparser (15). Analyses of G-richness either
with our software or with Quadparser produced compar-
able profiles. In particular, graphic display of G-richness
calculated by both methods identified two overlapping
peaks, one upstream and one downstream of the TSS.
These two peaks of G-richness flanking the TSS appear to
represent the superposition of two Gaussian distributions.
This possibility was supported by the identification of
distinct features that contribute to G-richness upstream
and downstream of the TSS.

G-rich regions upstream of the TSS

Our results show that canonical regulatory motifs,
including CpG dinucleotides and G-rich duplex motifs
for common transcription factors, account for most
G-richness and potential for G-quadruplex formation
upstream of the transcription start site. The simplest
interpretation of our results is that transcriptional
regulation at sites upstream of the TSS is determined
by canonical regulatory mechanisms acting on duplex
DNA. However, we recognize that the masking test that
we have used may eliminate sites with potential for
G-quadruplex formation which resemble motifs for
duplex DNA-binding transcription factors, but do not
function as such. Thus, our analysis does not exclude
the possibility that G-quadruplexes could contribute to
regulation at specific promoters; or that a transforma-
tion of duplex to G-quadruplex conformation at a
specific site could prevent factor binding and thus alter
regulation, as has been proposed to occur at an SP1 site
at the VEGF promoter (38). Nonetheless, our analysis
does provide a message of caution about drawing
functional implications from the presence of G-rich
regions within promoters. For example, results of
mutagenesis of promoter sequences must be interpreted
cautiously, as mutations intended to interfere with
potential G-quadruplex formation (e.g. 35) could
impair factor binding. To take another example,
hypersensitivity to DNase1, which cleaves in the minor
groove of duplex DNA, is well known to reflect
relaxation of chromatin coincident with binding of
factors that activate transcription (34). A correlation
has been noted between DNase1 hypersensitivity and
sites with potential for G-quadruplex formation, and
interpreted as evidence of G4 DNA formation (17).

Figure 6. The G-rich element at the 50 end of first introns is conserved.
Comparison of G-richness of the first intron sequences of human (red),
mouse (gold), chicken (brown), frog (green) and zebrafish (blue).
(A) G-richness was calculated for first intron sequences of mouse
(11 816), chicken (3399), frog (4193), zebrafish (5787), and compared
with human (13 433). Regions analyzed were the 100 nt interval from
+1 to +100 relative to the 50 end, for all unique first introns greater
than 1 kb in length, for the nontemplate strand (left, solid lines),
and template strand (right, dashed lines). (B) Distribution of numbers
of G-runs in the first 100 nt of the nontemplate strand of the first
intron, for all unique intron sequences greater than 100 bp.
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Our analysis provides the alternative explanation that
G-rich regions are quite generally sites of transcription
factor binding.

G-richness and potential for G4 DNA formation at
specific human promoters has given rise to speculation
that G-quadruplex structures might serve as targets for
regulation (43–46). These speculations were supported by
analysis of structure formation in either synthetic oligo-
nucleotides or supercoiled plasmid DNAs bearing the sites
of interest. While G-quadruplexes do form readily in these
substrates, and exhibit considerable thermodynamic sta-
bility once formed, analyses have yet to be undertaken to
establish how normally duplex genomic DNA upstream of
the promoter would be denatured to allow conversion into
a quadruplex structure; to determine the role of nucleo-
somes in promoting or inhibiting G-quadruplex forma-
tion; or to learn whether these structures withstand attack
by G4 DNA helicases or other factors (6–10) which
maintain genomic structure in vivo. We note in particular
that masking CpG dinucleotides and G-rich motifs for
common transcription factors (SP1, KLF, EKLF, MAZ,
EGR-1 and AP-2) eliminated potential quadruplexes at
sites in three proto-oncogene promoters that have served
as paradigms for those approaches: MYC, KIT, and
VEGF (36,38,47).

More generally, our results challenge the rationale
behind attempts to develop small molecule therapeutics
directed at presumptive unique quadruplex structures
upstream of the TSS at single copy genes. We suggest
that the overall G-richness at promoters documented here
and by others (17,19) would create such great potential for
combinatorial diversity in structure formation that, even if
DNA upstream of the TSS were to become denatured and
form G-quadruplexes, it would be very difficult to predict
which G-runs participated in G-quadruplex formation;
and the identity of quadruplexes that did form could differ
from cell to cell. The same considerations would suggest
that repetitive G-rich sequences, such as those at the
telomeres (48), might be a viable therapeutic target since
structural polymorphism would be limited and sequence
reiteration would tend to produce many copies of identical
structures.

G-rich intron 1 elements (GrIn1) and G-richness downstream
of the TSS

The most notable features of G-richness downstream of
the TSS are the strand bias; the clustering of G-runs at the
50-end of intron 1; the multiplicity of G-runs; and the
conservation of all these features from frogs to humans.
G-richness downstream of the TSS could not be accounted
for by CpG dinucleotides or binding sites for factors thus
far identified which recognize duplex DNA or RNA. It is
of course possible that motifs not yet identified with
specific factors account for some or all of the G-richness
downstream of the TSS. We note that ‘G-triplet’ motifs
(GGG) have been identified at both the 50 and 30-ends of
introns and associated with regulation of splicing (49–52),
and such motifs could contribute to the G-richness we
have identified at the 50-ends of the intron sequences.
The mechanism by which G-triplets enhance splicing is

not well-understood. Nonetheless, it appears not to
involve G-quadruplex formation in the first intron, as
addition of fewer than four G-triplets to an internal intron
can affect splicing (51).
G-richness downstream of the TSS characterizes the

nontemplate but not the template strand. This strand
bias would enable formation of G-quadruplexes in
G-loops in the nontemplate DNA strand of a transcribed
G-rich region (27–29), or in pre-mRNA. Analysis of
nontemplate strand intron sequences alone mapped the
peak of G-rich regions within the 100 nt just downstream
of the 50 splice site. This position is consistent with our
mapping of the peak in G-richness on the nontemplate
strand of all RefSeq genes to the region spanning +200
to +300 (Figure 1B): the median length of first exons is
198 bp, so the observed peak at +200 to +300 is just
downstream of first exons, and at the 50-end of first
introns.
The first intron represents a potentially privileged

position within genomic sequence, as it is the region that
maps closest to the promoter but does not appear in the
mature mRNA. Proximity to the promoter would enable
the common G-rich elements to determine loading of
factors critical for regulation of gene expression by either
transcription or splicing. As the intron is eliminated upon
splicing, these elements would not be under the sequence
and structural constraints that would apply to elements
that are part of a mature transcript.
Even with motifs for hnRNP proteins and CpG

dinucleotides masked, almost 1500 human genes (8%)
contain GrIn1 elements with five or more G-runs. This
multiplicity of G-runs beyond the four necessary for
quadruplex formation would confer potential for combi-
natorial polymorphism in G-quadruplex structures.
Thus, if G-quadruplexes do provide targets for regulation
of gene expression, recognition may depend on structural
features rather than sequence motifs. Proteins can
recognize G-quadruplexes with nanomolar affinity
(8,10,11), comparable to (or better than) that of factors
that recognize specific sequence motifs in duplex
DNA. Therefore it is intriguing to hypothesize that
G-quadruplexes formed by GrIn1 elements provide
structural targets for regulation of gene expression. We
emphasize that a mechanism that takes advantage of these
elements has yet to be discovered, presenting the challenge
for future experiments.
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