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element integrals and their application to cathodic protection
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Abstract

We report in this paper a set of nine Green’s functions for the Laplace equation for an infinite 3-layer medium in which a layer of finite
width is sandwiched between two semi-infinite domains. Typical 3D plots of these Green’s functions are computed and presented. Taking an
offshore platform as a prime example of a structure in a 3-layer medium (atmosphere, ocean and soil), we work out the boundary element
integrals using macro elements such as the tubulars. Constant elements reduce several of these boundary integrals to analytical forms. As an
application, we discuss the cathodic protection modelling of offshore structures using the ‘boundary element method’.q 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Green’s functions are central to the Boundary Element
Method (BEM) [1–5]. For the isotropic medium, the
Green’s functions associated with the Laplace equation
are known to be�r=2�; �1=2p� ln�1=r� and�1=4pr� for one,
two and three dimensions, respectively. Green’s functions
for the Laplace equation and associated boundary element
integrals are reported in this paper for a 3-layer medium in
which a layer of finite width is sandwiched between two
semi-infinite domains. This problem is characterised by
the multi-layered nature and the infinite geometry of the
solution space. One way of dealing with the multi-layers
is that of zones wherein the problem is solved separately
in each zone and the solutions are matched at the zone
boundaries. However, the Green’s function approach has
the following benefits. The Green’s functions have the
matching conditions already built into them. Consequently,
these Green’s functions and the associated boundary
element integrals need to be computed only once and can
be re-used through iterations and for changed boundary
conditions. In addition, the present approach does not

require putting any fictitious enclosure to take care of the
conditions at infinity.

The paper is organised as follows. In Section 2, we
present a set of nine Green’s functions for the Laplace equa-
tion in a 3-layer medium and also provide their 3D plots.
Section 3 contains a panorama of boundary element inte-
grals for a tubular structure embedded in a 3-layer medium.
We discuss in Section 4 an application to cathodic protec-
tion modelling of offshore structures.

2. Green’s functions

The 3-layer medium consists of a layer of widthD sand-
wiched between two other semi-infinite layers. Our Green’s
functions satisfy the differential equation

7�K7G� � 2d�x 2 xs�d�y 2 ys�d�z2 zs� �1�

and obey the equations of continuity forG and K7G at
phase boundaries.K � K�y� is a piece-wise constant func-
tion exhibiting a simple discontinuity at the phase bound-
aries aty� y1 and y� y21. Fig. 1 represents a 3-layer
medium (for purposes of this paper,K will be interpreted
as the electrical conductivity).

Eq. (1) is non-homogeneous because of the singularity at
the source point�xs; ys; zs�. However, if the field point
�x; y; z� is away from this singularity it reduces to the
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Table 1
Green’s functions for the 3-layer medium

1. ys is in the middle layer:
(a)

2∞ , y # y21

G�
Z∞

0
��k0 1 k1� exp�2h�ys 2 y��1 �k0 2 k1� exp�2h�2y1 2 ys 2 y��� J0�hr�

2p detA
dh

where
detA� �k0 1 k1��k0 1 k21�1 �k0 2 k21��k1 2 k0� exp2 2hD

D � y1 2 y21

and

r �
�������������������������
�x 2 xs�2 1 �z2 zs�2

q
(b)

y21 , y # y1

G� 1
4pRk0

1
Z∞

0
��k0 2 k1��k0 2 k21� exp 2 h�2D 1 ys 2 y�1 �k0 2 k1��k0 1 k21� exp2 h�2y1 2 ys 2 y�� J0�hr�

4pk0 detA
dh

1
Z∞

0
��k0 2 k21��k0 1 k1� exp2 h�ys 2 2y21 1 y�1 �k0 2 k1��k0 2 k21� exp2 h�2D 1 y 2 ys�� J0�hr�

4pk0 detA
dh

where

R�
������������������
r2 1 �y 2 ys�2

q
(c)

y1 , y , ∞

G�
Z∞

0
��k0 2 k21� exp2 h�ys 1 y 2 2y21�1 �k0 1 k21� exp2 h�y 2 ys�� J0�hr�

2p detA
dh

II. ys is in the bottom layer:
(a)

2∞ , y # y21

G� 1
4pk21R

1
Z∞

0
��k0 1 k1��k21 2 k0� exp 2 h�2y21 2 ys 2 y�1 �k0 2 k1��k0 1 k21� exp 2 h�2y1 2 ys 2 y�� J0�hr�

4pk21 detA
dh

(b)

y21 , y # y1

G�
Z∞

0
��k0 2 k1� exp2 h�2y1 2 ys 2 y�1 �k0 1 k1� exp 2 h�y 2 ys�� J0�hr�

2p detA
dh

(c)

y1 , y , ∞

G�
Z∞

0
k0 exp 2 h�y 2 ys� J0�hr�

p detA
dh



homogeneous equation

72G� 0: �2�
Hence, the method of findingG consists in finding the
general solution to this homogeneous equation and a parti-
cular solution of the non-homogeneous part

Ks7
2G� 2d�x 2 xs�d�y 2 ys�d�z2 zs� �3�

whereKs is the conductivity of the layer where the source
point �xs; ys; zs� is located.

G is a function of the source point�xs; ys; zs� and the field
point �x; y; z�. There are three major cases corresponding to
the placement of the source point in one of the 3-layers, in
turn. To each one of these cases there corresponds three
further cases depending on the placement of the field
point in one of the 3-layers, in turn. Thus, there are totally
nine cases to be distinguished. In order to conserve space,
the detailed derivations of the Green’s functions are
omitted. We merely list in Table 1 the set of nine Green’s
functions. Their 3D plots are presented in Figs. 2 and 3 for
typical settings of the source point and selected ranges for
the field point.

Fig. 2a exhibits first order discontinuities at the phase
boundaries, while they disappear if the conductivities are
equalised as in Fig. 2b. The singularities are also to be
noted. In general a Green’s function may have two parts,
one singular and the other non-singular. The part which
involves the Bessel functionJ0 is not singular except
when the source point is at one of the phase boundaries.
Hence to avoid this singularity source point should be
placed a little distance away from the phase boundary.
However the�1=R� part of the Green’s function is singular

at the source point irrespective of whether the source point
is at the phase boundary or not. In this paper singularities are
taken care of either by analytical integration or by the proper
choice of the position of the source point.
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Table 1 (continued)

III . ys is in the top layer
(a)

2∞ , y , y21

G�
Z∞

0
k0 exp 2 h�ys 2 y� J0�hr�

p detA
dh

(b)

y21 , y # y1

G� �k0 2 k21�
2p

Z∞

0

exp 2 h�ys 2 2y21 1 y�
detA

J0�hr� dh 1
�k0 1 k21�

2p

Z∞

0

exp 2 h�ys 2 y�
detA

J0�hr� dh

(c).

y1 , y , ∞

G� 1
4pk1R

1
Z∞

0
��k0 1 k21��k1 2 k0� exp 2 h�ys 2 2y1 1 y�1 �k0 1 k1��k0 2 k21� exp 2 h�ys 2 2y21 1 y�� J0�hr�

4pk1 detA
dh:

Fig. 1. A symbolic representation of a 3-layer medium of three different
conductivitiesK1;K0;K21:



3. Boundary element integrals for a tubular structure in
a 3-layer medium

A general tubular structure consists of a set of tubes,
which may be of different diameters and a set of nodes
where the tubes meet. A natural choice of boundary
elements for the tubular structure would be to use tubular
elements for the tubes and spherical elements (with suitably
chosen effective radii) for the nodes3. Further, we employ
only constant elements for their analytical advantage. None-
theless, our Green’s functions can be used to compute
higher-order boundary element integrals also. To sum up,
in this work we discretise the structure into two types of
macro boundary elements: tubular and spherical elements.
While each tubular element will be characterised by its
terminal co-ordinates�x0; y0; z0� and �x1; y1; z1� and its

radius, each spherical element will be characterised by its
central co-ordinates�x0; y0; z0� and its radiusr.

If the structure is divided intoN boundary elements, the
discretised BEM equation is

Csf
i
s 1

XN
j�1

Hijf
j 2 f∞ �

XN
j�1

Gij q
j �4�

where

qj � K
2f

2n
�5�

Gij �
ZZ
sj

G�i; j� dsj �6�

Hij �
ZZ
sj

K�~n7G�i; j�� dsj �7�
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Fig. 2. (a)y1 � 0; y21 � 2100; xs � 0; ys � 250; zs � 0; K1 � 0:5; K0 �
5; K21 � 1:25 First order discontinuities aty� 0 andy� 2100 are to be
noted; (b) parameters same as that of (a), exceptK1 � K0 � K21 � 5:

3 Micromeshing, though it could provide a more realistic representation
of the nodes, is beyond the scope of this paper.

Fig. 3. (a)y1 � 0; y21 � 2100; xs � 0; ys � 2110; zs � 0; K1 � 0:5; K0 �
5; K21 � 1:25 A first order discontinuity aty� 2100 is to be noted. (b)
y1 � 0; y21 � 2100; xs � 0; ys � 2110; zs � 0; K1 � 0:5; K0 � 5;
K21 � 1:25 A first order discontinuity aty� 0 is to be noted.
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Table 2
A panorama of BEM integrals for the source point located in the (2a) bottom, (2b) middle and the (2c) top layers

2b Gij

1 Bottom Sphere i � j 1
4pk21

f3 1
�k0 1 k1��k21 2 k0�

4pk21
f4�2P4�1

�k0 2 k1��k21 1 k0�
4pk21

f4�P2�

2 Bottom Sphere i ± j 1
4pk21

f5 1
�k0 1 k1��k21 2 k0�

4pk21
f1�2P4�1

�k0 2 k1��k21 1 k0�
4pk21

f1�P2�

3 Bottom Cylinder i � j 1
4pk21

f6 1
�k0 1 k1��k21 2 k0�

4pk21
f2�2P4�1

�k0 2 k1��k21 1 k0�
4pk21

f2�P2�

4 Bottom Cylinder i ± j 1
4pk21

f7 1
�k0 1 k1��k21 2 k0�

4pk21
f2�2P4�1

�k0 2 k1��k21 1 k0�
4pk21

f2�P2�

5 Middle Sphere i ± j �k0 2 k1�
2p

f1�P2�1
�k0 1 k1�

2p
f1�2P1�

6 Middle Cylinder i ± j �k0 2 k1�
2p

f2�P2�1
�k0 1 k1�

2p
f2�2P1�

7 Top Sphere i ± j k0

p
f1�2P1�

8 Top Cylinder i ± j k0

p
f2�2P1�

2b
9 Bottom Sphere i ± j �k0 1 k1�

2p
f1�P1�1

�k0 2 k1�
2p

f1�P2�

10 Bottom Cylinder i ± j �k0 1 k1�
2p

f2�P1�1
�k0 2 k1�

2p
f2�P2�

11 Middle Sphere i � j �k0 2 k1��k0 2 k21�
4pk0

f4�P3�1
�k0 2 k1��k0 1 k21�

4pk0
f4�P2�1

�k0 2 k21��k0 1 k1�
4pk0

f4�P4�

1
�k0 2 k1��k0 2 k21�

4pk0
f4�P5�1

1
4pk0

f3

12 Middle Sphere i ± j �k0 2 k1��k0 2 k21�
4pk0

f1�P3�1
�k0 2 k1��k0 1 k21�

4pk0
f1�P2�1

�k0 2 k21��k0 1 k1�
4pk0

f1�P4�

1
�k0 2 k1��k0 2 k21�

4pk0
f1�P5�1

1
4pk0

f5

13 Middle Cylinder i � j �k0 2 k1��k0 2 k21�
4pk0

f2�P3�1
�k0 2 k1��k0 1 k21�

4pk0
f2�P2�1

�k0 2 k21��k0 1 k1�
4pk0

f2�P4�

1
�k0 2 k1��k0 2 k21�

4pk0
f2�P5�1

1
4pk0

f6

14 Middle Cylinder i ± j �k0 2 k1��k0 2 k21�
4pk0

f2�P3�1
�k0 2 k1��k0 1 k21�

4pk0
f2�P2�1

�k0 2 k21��k0 1 k1�
4pk0

f2�P4�

1
�k0 2 k1��k0 2 k21�

4pk0
f2�P5�1

1
4pk0

f7

15 Top Sphere i ± j �k0 2 k21�
2p

f1�P4�1
�k0 1 k21�

2p
f1�2P1�



wherei andj are labels of boundary elements and each vary
from 1 toN.

The extra variablef∞(the potential at infinity) is to be
found by extending theN × Nset of equations into an�N 1
1� × �N 1 1� set by including the total charge conservation
condition whose discrete version is

XN
j�1

Ajq
j � 0 �8�

where,Aj is the area ofjth Boundary Element,qj is current
density on thejth Boundary Element. This condition ensures
that no charge flux escapes to infinity.

In general the Green’s functionG can be split into two
terms, one corresponding to the isotropic Green’s function

G0 � 1
R

�9�

where

R�
����������������������������������������
�x 2 xs�2 1 �y 2 ys�2 1 �z2 zs�2

q
�10�

and another corresponding to a sum of integrals of the

following general form:

G1 �
X∞
n�0

Cn
3

C1

Z∞

0
exp�2h�a0 1 b0y 1 2nD��J0�h�r� dh �11�

where

�r �
�������������������������
�x 2 xs�2 1 �z2 zs�2

q
�12�

andJ0 is the Bessel function of the zeroth order.
Using an identity [6], this is further reduced to the follow-

ing form:

G1 �
X∞
n�0

Cn
3

C1

1
Rn

�13�

where

Rn �
���������������������������������������������������
�x 2 xs�2 1 �a0 1 b0y 1 2nD�2 1 �z2 zs�2

q
�14�

.
The boundary integralsHij s andGij s are now classified

depending on whetheri � j or i ± j and whether the field
point (integration pointj) ranges over a tubular or a sphe-
rical element. Also, the integration over theG0 part and the
G1 part of the Green’s function must be treated separately.
As there are nine types of Green’s functions (cf. Section 2),
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Table 2 (continued)

2b Gij

16 Top Cylinder i ± j �k0 2 k21�
2p

f2�P4�1 �k0 1 k21�
2p

f2�2P1�

2c
17 Bottom Sphere i ± j k0

p
f1�P1�

18 Bottom Cylinder i ± j k0

p
f2�P1�

19 Middle Sphere i ± j �k0 2 k21�
2p

f1�P4�1 �k0 1 k21�
2p

f1�P1�

20 Middle Cylinder i ± j �k0 2 k21�
2p

f2�P4�1 �k0 1 k21�
2p

f2�P1�

21 Top Sphere i � j 1
4pk1

f3 1
�k0 1 k21��k1 2 k0�

4pk1
f4�2P2�1

�k0 1 k1��k0 2 k21�
4pk1

f4�P4�

22 Top Sphere i ± j 1
4pk1

f5 1
�k0 1 k21��k1 2 k0�

4pk1
f1�2P2�1

�k0 1 k1��k0 2 k21�
4pk1

f1�P4�

23 Top Cylinder i � j 1
4pk1

f6 1
�k0 1 k21��k1 2 k0�

4pk1
f2�2P2�1

�k0 1 k1��k0 2 k21�
4pk1

f2�P4�

24 Top Cylinder i ± j 1
4pk1

f7 1
�k0 1 k21��k1 2 k0�

4pk1
f2�2P2�1

�k0 1 k1��k0 2 k21�
4pk1

f2�P4�
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Table 3
The list of the seven function routinesfis andf 0is and the five parameterspis

Function f1

f1 � 4pr2

C1

X∞
n�0

Cn
3

1
Rn

f 01 �
X∞
n�0

4pr2

LR3
n

Cn
3

C1
�2�xs 2 x0��xs 2 x�1 b0�ys 2 y0��a0 1 b0y 1 2nD�2 �zs 2 z0��zs 2 z��

where

x� �xs 2 x0�r
L

1 x0

y� �ys 2 y0�r
L

1 y0

z� �zs 2 z0�r
L

1 z0

L �
��������������������������������������������
�x0 2 xs�2 1 �y0 2 ys�2 1 �z0 2 zs�2

q
and

Rn �
���������������������������������������������������
�x 2 xs�2 1 �a0 1 b0y 1 2nD�2 1 �z2 zs�2

q
Function f2

f2 � r
C1

X∞
n�0

Cn
3

Z2p

0
ln

2
����������������
A 1 BL 1 L2
p

1 2L 1 B

2
��
A
p

1 B

 !
du

f 02 � 2r
C1

X∞
n�0

Cn
3

Z2p

0

�B ��
A
p

2 �2L 1 B�
����������������
A 1 BL 1 L2
p

2 2L�B 1 L���…� du
�2�A 1 BL 1 L2�1 �2L 1 B� �����������������A 1 BL 1 L2�p �2A 1 B

��
A
p �

where

�…� � a1�xs 2 x0�
r

1
a2�a0 1 b0y0 1 2nD�

r
1

a3�zs 2 z0�
r

1 r 2
�xs 2 x0�2

r
2
�a0 1 b0y0 1 2nD�2

r
2
�zs 2 z0�2

r

 !

A� a2
1 1 a2

2 1 a2
3

B� 2�a1b1 1 a2b2 1 a3b3�

a1 � �xs 2 x0�1 r�2cosu 1 c�1 2 cosf��ccosu 1 asinu�

b1 � 2c sinf

a2 � a0 1 b0y0 1 2nD 2 b0r sinf�c cosu 1 asinu�

b2 � b0 cosf

a3 � zs 2 z0 1 r�sinu 2 a�1 2 cosf��ccosu 1 asinu��

b3 � a sinf

a� 2�z1 2 z0������������������������������z1 2 z0�2 1 �x1 2 x0�2
p ; c� x1 2 x0�����������������������������z1 2 z0�2 1 �x1 2 x0�2

p
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Table 3 (continued)

cosf � y1 2 y0

L
andL �

���������������������������������������������
�x1 2 x0�2 1 �y1 2 y0�2 1 �z1 2 z0�2

q

Function f3
f3 � 4pr

f 03 � 24p

Function f4

f4 � 8pr2

C1

X∞
n�0

Cn
3

� ��������
A 1 B
p

1
��������
A 2 B
p �

f 04� 0
where

A� r2 1 �a0 1 b0y0 1 2nD�2

B� 2rb 0�a0 1 b0y0 1 2nD�

Function f5
f5 � 4pr2

=l

f 05 � 0

where

l �
��������������������������������������������
�x0 2 xs�2 1 �y0 2 ys�2 1 �z0 2 zs�2

q
Function f6

f6 � 2pr ln
L 2 l 1

�����������������L 2 l�2 1 r2
p

2 l 1
���������
l2 1 r2
p

 !

f 06 � 2pr2 1

L 2 l 1
�����������������L 2 l�2 1 r2

p 1�����������������L 2 l�2 1 r2
p 2

1

2 l 1
���������
l2 1 r2
p 1���������

l2 1 r2
p

 !

where

l �
��������������������������������������������
�x0 2 xs�2 1 �y0 2 ys�2 1 �z0 2 zs�2

q

L �
���������������������������������������������
�x1 2 x0�2 1 �y1 2 y0�2 1 �z1 2 z0�2

q
Function f7

f7 � r
Z2p

0
ln

2
����������������
A 1 BL 1 L2
p

1 2L 1 B

2
��
A
p

1 B

 !
du

f 07 � 2r
Z2p

0

�B ��
A
p

2 �2L 1 B� ����������������
A 1 BL 1 L2
p

2 2L�B 1 L��…�
�2�A 1 BL 1 L2�1 �2L 1 B�

����������������
A 1 BL 1 L2
p

��2A 1 B
��
A
p � du

where

�…� � a1�xs 2 x0�
r

1
a2�ys 2 y0�

r
1

a3�zs 2 z0�
r

1 r 2
�xs 2 x0�2

r
2
�ys 2 y0�2

r
2
�zs 2 z0�2

r

 !

A� a2
1 1 a2

2 1 a2
3

B� 2�a1b1 1 a2b2 1 a3b3�



there is a further classification according to the placement of
the source point (i index) and the field point (j index) among
the three layers denoted top, middle and bottom (Fig. 1). A
complete enumeration of all relevant combinations leads
eventually to 24 cases for theGij s and a corresponding 24
cases for theHij s. The mathematics required for a conveni-
ent evaluation of this plethora of boundary integrals is quite
tedious and involve transformations to local frames of refer-
ences and symmetry arguments, the details of which we
omit for the sake of brevity. A full panorama of theGij s is
provided in Tables 2. In each table, the first column repre-
sents the location of the field point, the second column
indicates the boundary element type over which the integra-
tion is performed and the third column tells ifi � j or i ± j.
Entries in the tables involve seven functions/routinesfi �i �
1–7� (There are eight cases in principle, but two are alike.)
Some of these functions have an argumentP (the argument
P is actually a pair of parametersa0; b0� which assumes one
of the five valuesPis �i � 1–5�: These seven functions and
the five argument values are listed separately in Table 3.
This completes the panorama ofGij s: From this, a corre-
sponding panorama ofHij s can be easily constructed as

follows. Take eachGij ; replace everyfi by f 0i and multiply
throughout by the conductivity of the layer in which the
boundary elementj is located. The derivative functionsf 0is
are also listed along with thefis in Table 3.

4. Application to cathodic protection modelling of
offshore structures

Cathodic protection is a well-known method of protecting
metallic structures against corrosion. A fairly extensive
literature is available on the application of the BEM to
cathodic protection problems [7–11]. Offshore structures
play an important role for the oil and gas industry. These
are huge metallic structures made of tubular members and
installed in deep oceans with parts exposed to the atmo-
sphere at the top and parts running into the ocean mud at
the bottom. Being in a marine environment, these structures
are prone to corrosion. The 3-layer medium consisting of
atmosphere, ocean and soil and an offshore structure placed
in these environments provide a typical example of
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Table 3 (continued)

a1 � �xs 2 x0�1 r�2cosu 1 c�1 2 cosf��ccosu 1 asinu��

b1 � 2c sinf

a2 � �ys 2 y0�1 rsinf�ccosu 1 asinu�

b2 � 2cosf

a3 � zs 2 z0 1 r�sinu 2 a�1 2 cosf��ccosu 1 asinu��

b3 � asinf

a� 2�z1 2 z0������������������������������z1 2 z0�2 1 �x1 2 x0�2
p ; c� x1 2 x0�����������������������������z1 2 z0�2 1 �x1 2 x0�2

p
cosf � y1 2 y0

L
and L�

���������������������������������������������
�x1 2 x0�2 1 �y1 2 y0�2 1 �z1 2 z0�2

q

Parameters
Pi a0 b0

P1 ys 21;

P2 2y1 2 ys 21

P3 2D 1 ys 21

P4 ys 2 2y21 11

P5 2D 2 ys 11



problems where the results of the present paper are applic-
able.

The basic problem in cathodic protection is to solve the
Laplace equation

72f � 0 �15�
for the potential distributionf and the current density distri-
bution i � K7f.

Using the boundary element mathematics developed in
this paper, we have successfully developed a comprehensive
software package for cathodic protection modelling of
offshore structures, in a collaborative project with the Oil
and Natural Gas Corporation of India. This software, named
CPSEA1 1; was developed using GNU’s C1 1 and
Turbo C1 1: The processor runs on native Linux environ-
ment while the pre-processor, the post-processor and the
other tools are based on the Disk Operating System. The
software has been tested on several model structures,
including a real offshore structure. For a typical structure
discretised into 1000 boundary elements�nodes1 tubes1
anodes�; the processor took about 3 h (on a Pentium 75 MHz
system with 16 MB of RAM) for the computation of theH
and G matrices and nearly half-an-hour for the multi-
dimensional Newton–Raphson iterative solution of the
BEM equation incorporating a non-linear boundary
condition for the structure and a Dirichlet’s for the sacrifi-
cial anodes.
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