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Approximate Solutions for Galvanostatic Discharge
of Spherical Particles
I. Constant Diffusion Coefficient

Venkat R. Subramanian,* James A. Ritter,** and Ralph E. White*** ,z

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

Approximate models are developed, based on second, fourth, and sixth order polynomials, that describe the concentration profile
of an electrochemically active species in a spherical electrode particle. Analytical expressions are obtained that describe the way
the concentration profiles, surface concentrations, and electrode utilization change during the galvanostatic discharge of an
electrode particle. Based on a comparison with an exact analytical model over a wide range of dimensionless current densities, all
three approximate models performed extremely well in predicting these quantities. Quantitative criterion for the validity of these
models is also developed and shows that the sixth order, four parameter approximate model is the best. These approximate models,
or similarly developed models, should find extensive use in simplifying the modeling of complex electrochemical systems without
sacrificing much accuracy as shown in Part II of this series for the concentration-dependent diffusion coefficient case.
© 2001 The Electrochemical Society.@DOI: 10.1149/1.1409397# All rights reserved.
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The mathematical modeling of electrochemical systems,e.g.,
batteries or electrochemical capacitors, involves the simultane
solution of coupled partial differential and algebraic equations t
describe, among other things, current, voltage, and electroch
cally active species distributions as functions of both time and
sition throughout the system.1 Solution methodologies are therefo
both complicated and time consuming. For this reason, approx
tions are continually sought that simplify the governing set of eq
tions without imparting a significant error in the resulting solutio
Moreover, many of these electrochemical systems require the m
eling of electrodes comprised of roughly spherical particles, into
out of which an electrochemically active species must diffuse du
charge and discharge.

This diffusion process is governed by a partial differential eq
tion that describes the way that the concentration of the elec
chemically active species in the particle changes in both time
position during charge and discharge. It is fortuitous that sim
diffusion phenomena, and hence equations, arise in many are
science and engineering, and in particular, describe the uptake
species in adsorbent or catalyst particles. In these two very rel
areas, a considerable amount of work has been done on tryin
simplify the governing equations by applying various approxim
tions thata priori describe how the concentration profiles change
the spherical particles.

The most widely utilized approximations have been based
parabolic and higher order polynomial functions that describe
concentration profile in the particle,2-18 which all began with the
work of Liaw et al.2 The coefficients of these polynomials are ge
erally time dependent. Nevertheless, they have been resolve
terms of known and constant system parameters by applying
governing initial and boundary conditions to them. In this way,
partial differential equation describing the concentration in b
time and position inside the particle has been reduced to an ordi
differential equation describing how the volume-averaged conc
tration in the particle changes with time. This ordinary different
equation essentially describes the flux into or out of the particle;
in many cases, it has the form of a linear driving force, where
flux is proportional to a concentration difference.

In some cases, this equation has been integrated either nu
cally or analytically to describe the diffusion into or out of a partic
for example, in batch adsorption or reaction systems. But, in m
cases, it is coupled with other differential and algebraic equatio
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resulting in a simpler approximate solution to a more complex p
cess. This later approach was also used in the modeling of an
trochemical system~batteries!, wherein a parabolic species distribu
tion was assumed to describe the distribution in a thin film coat
surrounding a particle;19 however, quantitative justification for suc
an approximation was not given. Moreover, in a related work20

a linear driving force flux relationship was assumed, again w
little justification and no mention of whether a parabolic profi
approximation leads to a linear driving force flux relation as it do
in adsorption and catalytic systems. It is also interesting that w
Doyle and Newman21 simplified the analysis of the discharge pr
cess of a lithium-ion battery under solid phase diffusion limitatio
by assuming a pseudo-steady-state approximation for longer t
or slower rates, the concentration profile inside the particle bec
dependent on the square of the radial coordinate,i.e., it became
inherently parabolic. But again this pseudo-steady-state approx
tion was not quantitatively justified. In contrast, the accuracy
polynomial profile approximations in adsorption and catalytic s
tems has been shown to depend on many factors, and in many
ations, very accurate results have been obtained. Thus, these s
but effective polynomial profile approximations have been wid
used in simplifying the modeling of adsorption and catalytic p
cesses that involve diffusion into a spherical particle.

In this work, the utility of different polynomial approximation
in describing the diffusion of an electrochemically active species
of a spherical electrode particle during galvanostatic discharg
demonstrated. Part I of this series deals with the constant diffu
coefficient case, whereas Part II extends this work and deals with
concentration~state-of-charge, SOC!-dependent diffusion coefficien
case. Second, fourth, and sixth order polynomials are exami
These result in two, three, and four parameter models, respecti
that describe the concentration profiles inside the particle. Stren
and weaknesses of these different polynomial profile approximat
are exposed, based on comparing the approximate predictions
those obtained from an exact analytical solution in terms of conc
tration profiles, surface concentrations, and electrode utilizat
Quantitative criteria for the validity of these various approxima
models are established and their use in other more complex ele
chemical systems and other boundary conditions~e.g., cyclic
voltammetry! are suggested, and discussed in Part III of this wo

Diffusion Model

Parabolic profile model.—Consider a spherical electrode partic
completely charged with a corresponding initial concentration,c0 .
The transient diffusion in the particle can be expressed as
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]c

]t
5 Ds

1

r 2

]

]r S r 2
]c

]r D @1#

wherec is the concentration of the diffusing species~e.g., hydro-
gen!, andDs is the corresponding diffusion coefficient. In this cas
the diffusion coefficient is constant and does not vary with conc
tration ~i.e., SOC!. With the electrochemical reaction taking plac
only at the surface of the particle, the initial and boundary con
tions are given by

c 5 c0 at t 5 0 and for 0< r < Rp ~ fully charged state!

@2#

]c

]r
5 0 at r 5 0 and for t > 0 @3#

and

Ds

]c

]r
5 2

i a

nF
at r 5 Rp and for t > 0 @4#

wherei a is the applied current density at the surface of the parti
Rp is the radius of the particle,n is the number of electrons takin
place in the electrochemical reaction, andF is Faraday’s constant
Introducing the following dimensionless variables

C 5
c

c0
; x 5

r

Rp
and t 5

Dst

Rp
2 @5#

simplifies the model to

]C

]t
5

1

x2

]

]x S x2
]C

]x D @6#

with the corresponding initial and boundary conditions

C 5 1 at t 5 0 and for 0< x < 1 @7#

]C

]x
5 0 at x 5 0 and or t > 0 @8#

and

]C

]x
5 2d at x 5 1 and for t > 0 @9#

whered is the applied dimensionless current density defined as

d 5
i aRp

nFDsc0
@10#

An exact analytical solution to this model can be obtained by
separation of variables22,23 and given by24

C~x,t! 5 1 2 dF3t 1
1

10
~5x2 2 3! 2 2

1

x (
n51

`
sin~lnx!

ln
2 sin~ln!

3 exp~2ln
2t!G @11#

with eigenvaluesln 5 tan(ln). The number of terms required fo
convergence of this series can be significant and depends stro
upon the dimensionless current density,d.

A simpler solution to the same problem can be obtained by
suming that the concentration of the diffusing species inside
particle is described by a parabolic profile

C 5 a~t! 1 b~t!x2 @12#
-

-

,

ly

-
e

wherea(t) andb(t) are functions oft. The boundary condition a
the center~Eq. 8! is automatically satisfied. Applying Eq. 12 to th
boundary condition at the surface~Eq. 9! gives

]C

]xU
x51

5 2b~t! 5 2d @13#

According to Eq. 12, the volume-averaged concentration is given

C̄ 5 E
x50

1

C03x2dx 5 a~t! 1
3

5
b~t! @14#

Both sides of Eq. 6 are now multiplied by the dimensionless diff
ential volume element2-18 3x2, and integrated from 0 to 1 using Eq
12 for C in Eq. 6. This results in

E
x50

1 ]C

]t
3x2dx 5 E

x50

1 1

x2

]

]x S x2
]C

]x D3x2dx

→ dC̄

dt
5 6b~t! 5 23d @15#

an ordinary time-dependent differential equation in terms of
volume-averaged concentration. However, it is interesting that
analysis does not result in a linear driving force-type expression
it typically does in adsorption and catalytic systems. The solution
Eq. 15 with the initial condition given in Eq. 7 is

C̄ 5 1 2 3dt @16#

A comparison of Eq. 14 and 16 leads to

a~t! 5 1 2 3dt 1
3

10
d @17#

Hence, the concentration profile in the particle, based on the p
bolic profile ~PP! approximation, is given by

CPP 5 1 2 3dt 1
3

10
d 2

d

2
x2

5 1 2 dF3t 1
1

10
~5x2 2 3!G @18#

A comparison with the exact solution~Eq. 13! shows that the PP
model does not yield the exponential terms, and hence, results
much simpler solution. Note that, for this case,a(t) is a function of
t, whereasb(t) is a constant. In general, this is not always the ca
and the results may vary according to the boundary conditions
the initial governing equation.

In an electrode particle, the electrochemical behavior is de
mined completely by the concentration at the surface. The sur
concentration from the exact solution is given by

CS,exact5 Cx51 5 C~x,t!

5 1 2 dF3t 1
2

10
2 2(

n51

`
1

ln
2 exp~2ln

2t!G @19#

and that from the PP solution is given by

CS,PP5 CPP,x51 5 1 2 dF3t 1
2

10G @20#

Utilization is also a very important property for any electrode p
ticle. It is defined as the amount of active material reacted, acc
ing to
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U 5
Initial concentration2 concentration left in the particle after discharge

Initial concentration
3 ~100!

5

1 2 E
x50

1

C~x,tdisch!3x2dx

1
~100! @21#
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where 3x2dx is the differential volume element of the spheric
particle, andtdisch is the dimensionless time taken for discharg
which is determined by setting the surface concentration to z
Substitution of Eq. 11~for the exact concentration! into Eq. 21 and
integrating yields

Uexact~%! 5 3dtdisch,ex~100! @22#

where tdisch,ex is the exact dimensionless time taken for compl
discharge. This value is obtained by setting the left-hand side of
19 to zero and solving fort. Note that the integral of the infinite
series is zero as explained in Ref. 21. Similarly, using the PP s
tion ~Eq. 18! leads to

UPP~%! 5 3dtdisch,PP~100! @23#

where tdisch,PP is the dimensionless time taken for complete d
charge which is obtained from Eq. 20 with the surface concentra
set to zero. Accordingly

UPP~%! 5 S 1 2
d

5D ~100! @24#

Higher order polynomial profile models.—Three- and four-
parameter polynomial profile approximations can also be utilized
obtain simpler but potentially more accurate solutions to the gov
ing equations~Eq. 1-4! for the concentration profile inside the ele
trode particle. For example, a fourth order, three parameter pol
mial such as

C 5 a~t! 1 b~t!x2 1 d~t!x4 @25#

wherea(t), b(t), andd(t) are functions oft, can be applied in the
same way as Eq. 12. As before, the boundary condition at the ce
~Eq. 8! is automatically satisfied. Applying Eq. 25 to the bounda
condition at the surface~Eq. 9! gives

]C

]xU
x51

5 2b~t! 1 4d~t! 5 2d @26#

According to Eq. 25, the volume-averaged concentration is given

C̄ 5 E
x50

1

C3x2dx 5 a~t! 1
3

5
b~t! 1

3

7
d~t! @27#

Both sides of Eq. 6 are now multiplied by 3x2 and integrated from
0 to 1 using Eq. 25 forC in Eq. 6. This results in

dC̄

dt
5 6b~t! 1 12d~t! 5 23d @28#

The solution to Eq. 28 with the initial condition given in Eq. 7 is

C̄ 5 a~t! 1
3

5
b~t! 1

3

7
d~t! 5 1 2 3dt @29#

Since, in this case, there are three constants@a(t), b(t), andd(t)#
to evaluate, three equations are needed. So, in addition to Eq. 26
29, the governing equation~Eq. 6! is evaluated atx 5 1, i.e.,
.

.
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-
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]C

]t
U

x51

5
1

x2

]

]x S x2
]C

]x D U
x51

@30#

Substituting Eq. 25 into Eq. 30 leads to

da~t!

dt
1

db~t!

dt
1

dd~t!

dt
5 6b~t! 1 20d~t! @31#

Solving Eq. 26, 29, and 31 gives the three constants as

a~t! 5 1 2 3dt 1
3

10
d 2

27

140
d exp~235t!

b~t! 5 2
1

2
d 1

1

2
d exp~235t! @32#

and

d~t! 5 2
1

4
d exp~235t!

These three parameters give the surface concentration as

CS,3P5 1 2 dF3t 1
2

10G 1
2

5
d exp~235t! @33#

Similarly, one more parameter can be added to Eq. 25 in the form
the following sixth order polynomial

C 5 a~t! 1 b~t!x2 1 d~t!x4 1 e~t!x6 @34#

To solve for this fourth parametere(t) another equation is neede
and obtained by applying the limit,x 5 0, to both sides of the
governing equation,i.e., Eq. 6. For this four parameter model, th
following differential equations result and are solved simultaneou
using the exponential matrix method25 ~which the authors refer to a
the semianalytical method!26-30

dC̄

dt
5 6b~t! 1 12d~t! 1 18e~t! 5 23d @35#

da~t!

dt
1

db~t!

dt
1

dd~t!

dt
1

de~t!

dt

5 6b~t! 1 20d~t! 1 42e~t! @36#

da~t!

dt
5 6b~t! @37#

This all leads to the following expression for the surface concen
tion

CS,4P5 1 2 dF3t 1
2

10G 1 0.1135d exp~2100.123t!

1 0.0864d exp~218.877t! @38#

Results and Discussion

It is clear from the above analysis that the concentration profi
surface concentrations, and electrode utilization predicted from
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approximate and exact models depend mainly on the magnitud
the dimensionless current density,d. Figures 1 and 2 compare th
concentration profiles in the particle obtained from the approxim
and exact models at different dimensionless times during disch
for two different values ofd. For both values ofd, the exact and
approximate models agree well with each other, except at shor
mensionless times approachingt 5 0. The deviations increase asd
increases, indicating that the polynomial profile approximations
gin to break down as the reaction rates increase, but only during
initial states of discharge. After an initial period of time, the agre
ment between the approximate and exact models is nearly pe
for all three polynomial functions. This is not the case for the s
face concentrations, however.

Figures 3-5 compare the dimensionless surface concentra
predicted from the exact and the three approximate models
function of the state of discharge, for values ofd equal to 0.1, 2, and
5, respectively. Only the four parameter model is capable of pred
ing the surface concentration over a broad range ofd with reason-
able accuracy. In contrast, the two and three parameter models
do well at low values ofd; at higher values, they behave similar

Figure 1. Approximate and exact dimensionless concentration profiles
side a spherical electrode particle ford 5 0.1. For values oft . 0.5, all
four curves overlap.

Figure 2. Approximate and exact dimensionless concentration profiles
side a spherical electrode particle ford 5 0.5. For values oft . 0.2, all
four curves overlap.
of

e
e

i-

-
e

ct

ns
a

t-

ly

and completely misrepresent the surface concentration at zero
of discharge where it should be unity. So, again at high reac
rates, the second and fourth order polynomial approximations b
down, but not the sixth order polynomial approximation; and at l
values ofd, again all three approximate models agree reasona
well with the exact model. Similar results are realized in predict
the electrode utilization.

Figure 6 compares the utilization predicted from the exact a
the three approximate models as a function ofd. The four parameter
model agrees extremely well with the exact solution over a br
range ofd up to a d of about 10. In contrast, the two and thre
parameter models begin to deviate from the exact model at ad of
around 2 and 4, respectively.

As stated earlier, the surface concentration is one of the m
important variables that govern the performance of electrochem
systems; and hence, it is worth quantifying the error in the pred
tion of the surface concentration from the three approximate mod
For this purpose, a time-averaged percent error in the surface
centration is defined as

-

-

Figure 3. Approximate and exact dimensionless surface concentration
the surface of a spherical electrode particle as a function of the stat
discharge ford 5 0.1 ~low value ofd!. All four curves overlap for this low
value ofd.

Figure 4. Approximate and exact dimensionless surface concentration
the surface of a spherical electrode particle as a function of the stat
discharge ford 5 2 ~high value ofd!.
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« 5

E
t50

t5tdisch,ex

CS,exactdt 2 E
t50

t5tdisch,app

CS,approximatedt

E
t50

t5tdisch,ex

CS,exactdt

~100!

@39#

These percent errors are plotted in Fig. 7 as a function ofd, for all
three approximate models. The error in predicting the surface
centration from the two and three parameter models is very sim
with errors of less than 5% resulting for values ofd less than 0.5 and
1.0, respectively. In contrast, the error in predicting the surface c
centration from the four parameter model is much smaller, w
values ofd up to around 4 still only resulting in an error of less th
5%. Overall, the three approximate models provide a relatively
curate prediction of the surface concentration within a specific ra
of d. This range varies accordingly for the three approximate m
els.

Clearly, the solutions to the unsteady-state diffusion equation
veloped here~i.e., Eq. 20, 33, and 38! are not only much simpler to

Figure 5. Approximate and exact dimensionless surface concentration
the surface of a spherical electrode particle as a function of the stat
discharge ford 5 5 ~extremely high value ofd!.

Figure 6. Approximate and exact predictions of the electrode utilization i
spherical electrode particle as a function of the dimensionless current de
d.
-
r,

-

-
e
-

-

use compared to the exact solution~Eq. 18!, they also shed some
light on the validity of other simplified analyses carried out on ele
trochemical systems in the literature.19-21 For example, they provide
a quantitative description of the error that may be incurred by
plying a parabolic profile approximation to describe the concen
tion profile of an electrochemically active species in a thin fi
surrounding a spherical particle, as done by Wanget al.19 In a simi-
lar manner, they provide a quantitative description of the param
range over which the pseudo-steady-state approximation may b
plied, as done by Doyle and Newman.21 In other words, the simple
solutions developed here can be used to give a quantitative esti
of what longer times or slower rates really means in an elec
chemical system, based on the magnitude of the dimensionless
rent density, for example. The solution methodologies develo
here may also be of great use in simplifying the analyses of pse
two dimensional problems.31 For example, instead of integrating th
exact solution~Eq. 19!, one of the approximate solutions~Eq. 20,
33, or 38! can be easily integrated by applying Duhamel’s super
sition theorem.

The practical range ofd depends upon the system, particle r
dius, diffusion coefficient, and initial concentration. Consider,
example, lithium intercalation in carbon.32 For a 1C discharge rate
~0.5 mA/cm2!, and Rp 5 12.5mm, Ds 5 3.9 3 10210 cm2/s,
c0 5 26.39 mol/dm3 in Eq. 10, ad 5 0.63 is obtained. So for rate
up to 0.8C (d 5 0.5), 1.6C (d 5 1), and 6.4C~d 5 4!, the two,
three, and four parameter models can be used with only about
error ~based on Fig. 7!. Moreover, for a given battery system, on
can calculate the value ofd from Eq. 10 and decide beforehan
which approximate model to use.

Conclusions

A common assumption used in simplifying the modeling
complex adsorption and catalytic systems is introduced here
simplifying the modeling of complex electrochemical systems.
particular, second, fourth, and sixth order polynomial profile a
proximations, that describe the concentration profile of an elec
chemically active species in a spherical electrode particle, are u
to simplify the unsteady-state diffusion equation with a const
diffusion coefficient and describe the galvanostatic discharge
electrode particles. The resulting analytical expressions compare
tremely well with the exact analytical solution in predicting the co
centration profiles, surface concentrations, and electrode utiliza
over a broad range of practical dimensionless current densi
Based on a quantitative criterion that is also developed, the s
order, four parameter polynomial approximation gives the best

t
of

ity

Figure 7. Error in predicting the dimensionless surface concentration at
surface of a spherical electrode particle from the approximate models
function of the dimensionless current densityd.
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sults, with errors of less than 5% over a broad range of pract
conditions. These relationships should thus be very useful in
design and analysis of electrochemical systems, and also in pa
eter estimation.

In this paper, only the simple constant diffusion coefficient ca
was solved and compared with a known analytical solution~Eq. 11!
to quantify the accuracy of the approximate models based on p
bolic profile approximations. However, the methodology develop
in this work is general and should also be very useful in simplify
the analysis of other more complicated electrochemical systems
example, in solving pseudo-two-dimensional problems. Moreo
this methodology is readily extended to the case where the diffu
coefficient is a function of concentration~i.e., SOC!, as shown in
Part II of this study. It is also amiable to voltammetry, as shown
Part III of this work. Therefore, it is anticipated that these polyn
mial profile approximations will find considerable use in simplifyin
the modeling of complex electrochemical systems without sacr
ing much accuracy.
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List of Symbols

a(t) time-dependent constant, dimensionless
b(t) time-dependent constant, dimensionless

C concentration, dimensionless
c concentration, mol/cm3

c0 initial concentration, mol/cm3

Cs surface concentration, dimensionless
cs surface concentration, mol/cm3

D diffusion coefficient, cm2/s
d(t) time-dependent constant, dimensionless

i applied current density, A/cm2

I applied current, A/g
Rp radius of the electrode particle, cm
U utilization, dimensionless
l
e
m-

a-

or
r,
n

-

t

Greek

d dimensionless current density at the surface
t dimensionless time
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