E444 Journal of The Electrochemical Socigty8 (11) E444-E4492001)
0013-4651/2001/1481)/E444/6/$7.00 © The Electrochemical Society, Inc.

Approximate Solutions for Galvanostatic Discharge
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Approximate models are developed, based on second, fourth, and sixth order polynomials, that describe the concentration profile
of an electrochemically active species in a spherical electrode particle. Analytical expressions are obtained that describe the way
the concentration profiles, surface concentrations, and electrode utilization change during the galvanostatic discharge of an
electrode particle. Based on a comparison with an exact analytical model over a wide range of dimensionless current densities, all
three approximate models performed extremely well in predicting these quantities. Quantitative criterion for the validity of these
models is also developed and shows that the sixth order, four parameter approximate model is the best. These approximate models,
or similarly developed models, should find extensive use in simplifying the modeling of complex electrochemical systems without
sacrificing much accuracy as shown in Part Il of this series for the concentration-dependent diffusion coefficient case.
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The mathematical modeling of electrochemical systemg, resulting in a simpler approximate solution to a more complex pro-
batteries or electrochemical capacitors, involves the simultaneousess. This later approach was also used in the modeling of an elec-
solution of coupled partial differential and algebraic equations thattrochemical systentbatterie$, wherein a parabolic species distribu-
describe, among other things, current, voltage, and electrochemition was assumed to describe the distribution in a thin film coating
cally active species distributions as functions of both time and po-surrounding a particlé® however, quantitative justification for such
sition throughout the systemSolution methodologies are therefore an approximation was not given. Moreover, in a related vf8rk,
both complicated and time consuming. For this reason, approximaa linear driving force flux relationship was assumed, again with
tions are continually sought that simplify the governing set of equa-little justification and no mention of whether a parabolic profile
tions without imparting a significant error in the resulting solution. approximation leads to a linear driving force flux relation as it does
Moreover, many of these electrochemical systems require the modin adsorption and catalytic systems. It is also interesting that when
eling of electrodes comprised of roughly spherical particles, into orpoyle and Newmaft simplified the analysis of the discharge pro-
out of which an electrochemically active species must diffuse duringcess of a lithium-ion battery under solid phase diffusion limitations
charge and discharge. by assuming a pseudo-steady-state approximation for longer times

This diffusion process is governed by a partial differential equa- or slower rates, the concentration profile inside the particle became
tion that describes the way that the concentration of the electrodependent on the square of the radial coordinaée, it became
chemically active species in the particle changes in both time andnherently parabolic. But again this pseudo-steady-state approxima-
position during charge and discharge. It is fortuitous that similartion was not quantitatively justified. In contrast, the accuracy of
diffusion phenomena, and hence equations, arise in many areas @lynomial profile approximations in adsorption and catalytic sys-
science and engineering, and in particular, describe the uptake of g&ms has been shown to depend on many factors, and in many situ-
species in adsorbent or catalyst particles. In these two very relatedions, very accurate results have been obtained. Thus, these simple
areas, a considerable amount of work has been done on trying gt effective polynomial profile approximations have been widely
simplify the governing equations by applying various approxima- yseq in simplifying the modeling of adsorption and catalytic pro-
tions thatg priori d_escribe how the concentration profiles change in ~o5ses that involve diffusion into a spherical particle.
the spherical particles. In this work, the utility of different polynomial approximations

TzellmostdvxﬂQer:y utilijzed a?proximflgcions.havehbeedn ba;t)ed ﬁ”in describing the diffusion of an electrochemically active species out
parabolic and higher order po y'.”of“ga unctions that describe theyg 5 spherical electrode particle during galvanostatic discharge is
concentration profile in the particfe!® which all began with the

. 2 e . demonstrated. Part | of this series deals with the constant diffusion
work Of. Liaw et al” The coefficients of these polynomials are gen- .coefficient case, whereas Part Il extends this work and deals with the
erally time dependent. Nevertheless, they have been reso_lved IEoncentratior(state-of-charge, SOe&lependent diffusion coefficient
terms of known and constant system parameters by applying th%ase Second, fourth, and sixth order polynomials are examined
governing |n|t|al_ and bou_ndary cor)d_mons to them. In th's way, the Thes.e result ir'1 two, tﬁree, and four parameter models, respectively',
partial differential equation describing the concentration in both that describe the concentration profiles inside the particle. Strengths

time and position inside the particle has been reduced to an ordinar . h A S
differential equation describing how the volume-averaged concen: nd weaknesses of these different polynomial profile approximations

tration in the particle changes with time. This ordinary differential ?gsixggtﬁr?ég%scﬁ? gr? gf;?:fgrr:g? ttiggl Z%?Jgémﬁtfefri%d(')cft'ggnsc‘évr']t_h
equation essentially describes the flux into or out of the particle; an : . yu S

in many cases, it has the form of a linear driving force, where the ration profiles, surface concentrations, and electrode utilization.
flux is proportic;nal to a concentration difference ' Quantitative criteria for the validity of these various approximate

In some cases, this equation has been integrated either numel,ri‘godels are established and their use in other more complex electro-

cally or analytically to describe the diffusion into or out of a particle, chemical systems and other bqundary qondltlc(esg, cyphc
for example, in batch adsorption or reaction systems. But, in mostvoltammetry are suggested, and discussed in Part Il of this work.

cases, it is coupled with other differential and algebraic equations,

Diffusion Model
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ac

T (1]

wherec is the concentration of the diffusing speci@sg, hydro-
gen, andDg is the corresponding diffusion coefficient. In this case,

the diffusion coefficient is constant and does not vary with concen-

tration (i.e, SOQ. With the electrochemical reaction taking place
only at the surface of the particle, the initial and boundary condi-
tions are given by

C=¢Cy att=0 and for O<r <R, (fully charged state
[2]
Jc
5:0 atr =0 and fort =0 [3]
and
oc _ _la =R, and fort = 0 4
Sor = ﬁatr— p and for t = [4]

wherei , is the applied current density at the surface of the particle,
R, is the radius of the particley is the number of electrons taking
place in the electrochemical reaction, afds Faraday’s constant.
Introducing the following dimensionless variables

D4

C=C—o, X:EpandT_Rﬁ [5]
simplifies the model to
aC 10 28C 5
T N ax [6]
with the corresponding initial and boundary conditions
C=1 at7t=0 and for 0Osx<1 [7]
i 0 at 0 d 0 8
—_— = = =
I at x and or T [8]
and
aC
— =-3atx=1 and forr =0 [9]

aX

where3d is the applied dimensionless current density defined as
iRp

® = FD<

[10]

An exact analytical solution to this model can be obtained by the
separation of variablé?®and given b§*

1

Sin(A,X)
3T + 1—0

1
2 _ — 2 E -
(5" =3) -2 A2sin(\,)

C(x,1) =1-23
(x,7) X &

X exp(—\2T) [11]

with eigenvalues\, = tan(\,). The number of terms required for

convergence of this series can be significant and depends strongly

upon the dimensionless current density,

A simpler solution to the same problem can be obtained by as-

E445

wherea(t) andb(t) are functions ofr. The boundary condition at
the centeEg. 8 is automatically satisfied. Applying Eqg. 12 to the
boundary condition at the surfa¢eq. 9 gives

aC

X [13]

x=1

According to Eq. 12, the volume-averaged concentration is given by

1

e .

Both sides of Eqg. 6 are now multiplied by the dimensionless differ-
ential volume elemeAt® 3x2, and integrated from O to 1 using Eq.
12 for Cin Eq. 6. This results in

Co3x2dx = a(t) + gb(T) [14]
0

1 9C 119 aC
—3x%dx = — — | x*——|3x2dx
w0 0T o X2 aX X
dc = 6b = —33 15
— . = 6b(1) = [15]

an ordinary time-dependent differential equation in terms of the
volume-averaged concentration. However, it is interesting that this
analysis does not result in a linear driving force-type expression, as
it typically does in adsorption and catalytic systems. The solution to
Eq. 15 with the initial condition given in Eq. 7 is

C=1- 387 [16]

A comparison of Eqg. 14 and 16 leads to
=1-33 3 d 17
a(t) =1 — 3871 + 10 [17]

Hence, the concentration profile in the particle, based on the para-
bolic profile (PP approximation, is given by

33_ 2

Cpp: 1-—- 387 + 10

EX

1
= — — 2 _
1 - 8|37 + 75(5¢° = 3) [18]

A comparison with the exact solutiofEq. 13 shows that the PP
model does not yield the exponential terms, and hence, results in a
much simpler solution. Note that, for this caaéy) is a function of
7, wheread(t) is a constant. In general, this is not always the case
and the results may vary according to the boundary conditions and
the initial governing equation.

In an electrode particle, the electrochemical behavior is deter-
mined completely by the concentration at the surface. The surface
concentration from the exact solution is given by

Cs,exact: Cy-1 = C(x,1)

2 o1 ,
=1-3[3r+ —— 2> Sexp—\)| [19]
10 n=1 }\n
and that from the PP solution is given by
2
Cspp= Cppx-1 = 1= 3|37 + 15 [20]

suming that the concentration of the diffusing species inside the

particle is described by a parabolic profile

C = a(1) + b(7)x? [12]

Utilization is also a very important property for any electrode par-
ticle. It is defined as the amount of active material reacted, accord-
ing to
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U Initial concentration— concentration left in the particle after discharge 100
= — - X
Initial concentration (109

1
1- f C(X,Tgiscr) 3X2dX

x=0
= 1 (100 [21]
where 32dx is the differential volume element of the spherical 9C 1 9 2ac;
particle, andr s, is the dimensionless time taken for discharge, 9 T ax | X ax [30]
x=1 x=1

which is determined by setting the surface concentration to zero.
Substitution of Eq. 1Xfor the exact concentratigpmnto Eq. 21 and
integrating yields

Uexad %) = 361'disch,e>( 100 [22]

Substituting Eq. 25 into Eq. 30 leads to

da(T) db(T) dd(7)
dr * dr * dr

= 6b(t) + 20d(r)  [31]

where Tgischex IS the exact dimensionless time taken for complete . .

discharge. This value is obtained by setting the left-hand side of EqS°ViNg Ed. 26, 29, and 31 gives the three constants as
19 to zero and solving for. Note that the integral of the infinite 2

series is zero as explained in Ref. 21. Similarly, using the PP solu- a(t) =1-— 387 + EB - ms exp(—35r)
tion (Eqg. 18 leads to

Upe(%) = 387 gisen,pk 100) [23] b(t) = —%5 + %a exp( —357) [32]

where 74isch ppiS the dimensionless time taken for complete dis-
charge which is obtained from Eq. 20 with the surface concentratior®"
set to zero. Accordingly 1
5 d(t) = —ZB exp(—35r)
Upd %) = (1 - g)(loo) [24]

These three parameters give the surface concentration as

Higher order polynomial profile modeis-Three- and four-

parameter polynomial profile approximations can also be utilized to Csap=1-13
obtain simpler but potentially more accurate solutions to the govern- ’
ing equationgEq. 1-4 for the concentration profile inside the elec-
trode particle. For example, a fourth order, three parameter polynoSimilarly, one more parameter can be added to Eqg. 25 in the form of
mial such as the following sixth order polynomial

2] 2
31+ 15 T 5 ex(—357) [33]

C = a(r) + b()x® + d(7)x* [25] C = a(r) + b(1)x* + d(1)x* + e(1)x° [34]

wherea(r), b(r), andd(r) are functions of, can be applied in the To solve _for this fourth paramet«_s(f_r) another equatiqn is needed
same way as Eq. 12. As before, the boundary condition at the centet"d obtained by applying the limi = 0, to both sides of the

(Eq. 8 is automatically satisfied. Applying Eq. 25 to the boundary governing equationi.e., Eq. 6. For this four parameter model, the
condition at the surfacéEq. 9 gives following differential equations result and are solved simultaneously

using the exponential matrix methddwhich the authors refer to as

aC the semianalytical methotf3°
—| = 2b(1) + 4d(t) = -8 [26] f ot
ax|
x=1 dC
e 6b(t) + 12d(7) + 18(T) = —33 [35]
According to Eq. 25, the volume-averaged concentration is given by T
1 da(T) db(T) dd(T) de(T)
— 5 3 3 + + +
C= C3x“dx = a(t) + gb(T) + 7d(¢) [27] dr dr dr dr
x=0
= 6b(7) + 20d(7) + 42e(1) [36]
Both sides of Eq. 6 are now multiplied by3and integrated from da(r)
0 to 1 using Eg. 25 foC in Eq. 6. This results in 5 = 6b(T) [37]
. T
g~ 6b(m) + 12d(7) = —33 [28] This all leads to the following expression for the surface concentra-
tion
The solution to Eqg. 28 with the initial condition given in Eq. 7 is 2
3 3 Csqp=1— 5|37 + 10 + 0.113% exp(—100.123)
C=a(1) + =b(r) + =d(1) = 1 — 33 29
(1) + gb(r) + 7d(v) ! [29] + 0.0864 exp( —18.87%) [38]
Since, in this case, there are three constpags), b(t), andd(r)] Results and Discussion

to evaluate, three equations are needed. So, in addition to Eq. 26 and It is clear from the above analysis that the concentration profiles,
29, the governing equatioftEq. 6 is evaluated ax = 1, i.e, surface concentrations, and electrode utilization predicted from the
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Figure 1. Approximate and exact dimensionless concentration profiles in- Figure 3. Approximate and exact dimensionless surface concentrations at
side a spherical electrode particle far= 0.1. For values ofr > 0.5, all the surface of a spherical electrode particle as a function of the state of

four curves overlap. dislchar?e fod = 0.1 (low value ofd). All four curves overlap for this low
value of8.

approximate and exact models depend mainly on the magnitude of
the dimensionless current densidy, Figures 1 and 2 compare the and completely misrepresent the surface concentration at zero state
concentration profiles in the particle obtained from the approximateof discharge where it should be unity. So, again at high reaction
and exact models at different dimensionless times during dischargeates, the second and fourth order polynomial approximations break
for two different values ob. For both values ob, the exact and  down, but not the sixth order polynomial approximation; and at low
approximate models agree well with each other, except at short divalues of$, again all three approximate models agree reasonably
mensionless times approachifng= 0. The deviations increase &s  well with the exact model. Similar results are realized in predicting
increases, indicating that the polynomial profile approximations be-the electrode utilization.
gin to break down as the reaction rates increase, but only during the Figure 6 compares the utilization predicted from the exact and
initial states of discharge. After an initial period of time, the agree- the three approximate models as a functiod.cfhe four parameter
ment between the approximate and exact models is nearly perfednodel agrees extremely well with the exact solution over a broad
for all three polynomial functions. This is not the case for the sur-range ofd up to ad of about 10. In contrast, the two and three
face concentrations, however. parameter models begin to deviate from the exact modeldabfa
Figures 3-5 compare the dimensionless surface concentrationground 2 and 4, respectively.
predicted from the exact and the three approximate models as a As stated earlier, the surface concentration is one of the more
function of the state of discharge, for valuesdafqual to 0.1, 2, and  important variables that govern the performance of electrochemical
5, respectively. Only the four parameter model is capable of predict-systems; and hence, it is worth quantifying the error in the predic-
ing the surface concentration over a broad rangd wfth reason- tion of the surface concentration from the three approximate models.
able accuracy. In contrast, the two and three parameter models onlior this purpose, a time-averaged percent error in the surface con-
do well at low values ob; at higher values, they behave similarly centration is defined as

1.300 1.2 T T T T T
J .
=l
L; g 105 L PP Model
S 0.975 = S . S 3 Parameter Model g
= 2 L rmwimoes 4 Parameter Model
b (]
= é 08 I —— Exact Solution
Q Y
=] o Teel 7
§ 0.650 g 06f..,
w0 = e, e
B - A B 2
=i ] e e 7
_g 8 04r ""-,,“'u..
§ 0.325 & v el
-g ------- 3 Parameter Model a o2b e B
---------- 4 Parameter Model 2 ’
Exact Sofution a T
0.000 ! I ) 1 | 1 0.0 ! ] I I I ! L Lo e
00 01 02 03 04 05 06 0.7 08 09 1.0 00 01 02 03 04 05 06 07 08 09 10
Dimensionless Distance from the Center, x State of Discharge

Figure 2. Approximate and exact dimensionless concentration profiles in- Figure 4. Approximate and exact dimensionless surface concentrations at
side a spherical electrode particle for= 0.5. For values ofr > 0.2, all the surface of a spherical electrode particle as a function of the state of
four curves overlap. discharge fos = 2 (high value of3).
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Figure 5. Approximate and exact dimensionless surface concentrations a{:igure 7. Error in p_redicting the dime_nsionless surface cqncentration at the
the surface of a spherical electrode particle as a function of the state opurface of a spherical electrode particle from the approximate models as a

discharge fob = 5 (extremely high value o8). unction of the dimensionless current density

use compared to the exact solutihg. 18, they also shed some

fTde'SC“’exc dr - fTde'SCh’ap'E: g light on the validity of other simplified analyses carried out on elec-
o Siexa o S.approxima trochemical systems in the literatut®2! For example, they provide
e = — (100 a quantitative description of the error that may be incurred by ap-
f "'“h'exc g plying a parabolic profile approximation to describe the concentra-
=0 Siexa tion profile of an electrochemically active species in a thin film
[39] surrounding a spherical particle, as done by Wangl!® In a simi-
lar manner, they provide a quantitative description of the parameter
These percent errors are plotted in Fig. 7 as a functiod, édr all range over which the pseudo-steady-state approximation may be ap-

three approximate models. The error in predicting the surface conPlied, as done by Doyle and Newméhin other words, the simple
centration from the two and three parameter models is very similarSolutions developed here can be used to give a quantitative estimate
with errors of less than 5% resulting for valuessdéss than 0.5 and ~ ©f what longer times or slower rates really means in an electro-
1.0, respectively. In contrast, the error in predicting the surface conchemical system, based on the magnitude of the dimensionless cur-
centration from the four parameter model is much smaller, with 'ént density, for example. The solution methodologies developed
values ofd up to around 4 still only resulting in an error of less than here may also be of great use in simplifying the analyses of pseudo
5%. Overall, the three approximate models provide a relatively ac-Wo dimensional problent¥. For example, instead of integrating the
curate prediction of the surface concentration within a specific rangeeXact solution(Eq. 19, one of the approximate solutiori&q. 20,
of . This range varies accordingly for the three approximate mod-33: O 38 can be easily integrated by applying Duhamel's superpo-
els. sition theorem.

Clearly, the solutions to the unsteady-state diffusion equation de- . 1he practical range ob depends upon the system, particle ra-

veloped herdi.e., Eq. 20, 33, and 38are not only much simpler to  dius, diffusion coefficient, and initial concentration. Consider, for
example, lithium intercalation in carbdA.For a 1C discharge rate

(05 mA/cnf), and R, = 12.5um, D= 3.9x 10 cn?/s,
100 T T . ; . Co = 26.39 mol/dm in Eq. 10, a3 = 0.63 is obtained. So for rates

i i up to 0.8C § = 0.5), 1.6C § = 1), and 6.4C(8 = 4), the two,
90 three, and four parameter models can be used with only about 5%
80 \N 0 e PP Model ] error (based on Fig. ) Moreover, for a given battery system, one
S T 3 Parameter Model - can calculate the value df from Eq. 10 and decide beforehand
g »==rer 4 Parameter Model which approximate model to use.
g 60 F Exact Solution
g oL . Conclusions
S "-,_’\ A common assumption used in simplifying the modeling of
i‘g’ 40 ¢ o - complex adsorption and catalytic systems is introduced here for
§ 30 | wL e, S simplifying the modeling of complex electrochemical systems. In
o i s, e particular, second, fourth, and sixth order polynomial profile ap-
20 § proximations, that describe the concentration profile of an electro-
10 | ’n,‘ chemically active species in a spherical electrode particle, are used
. , ) DN to simplify the unsteady-state diffusion equation with a constant

0_80001 2.50001 5.00000 7.50000 10.00000 diffusion coefficient and describe the galvanostatic discharge of

electrode particles. The resulting analytical expressions compare ex-
tremely well with the exact analytical solution in predicting the con-

centration profiles, surface concentrations, and electrode utilization
Figure 6. Approximate and exact predictions of the electrode utilization in a Over a broad range of practical dimensionless current densities.
spherical electrode particle as a function of the dimensionless current densitpased on a quantitative criterion that is also developed, the sixth
3. order, four parameter polynomial approximation gives the best re-

Dimensionless Current Density, 8



Journal of The Electrochemical Socigty8 (11) E444-E4492001)

E449

sults, with errors of less than 5% over a broad range of practicalGreek

conditions. These relationships should thus be very useful in the
design and analysis of electrochemical systems, and also in param-
eter estimation.

In this paper, only the simple constant diffusion coefficient case
was solved and compared with a known analytical solutiem 11
to quantify the accuracy of the approximate models based on para-
bolic profile approximations. However, the methodology developed 2.
in this work is general and should also be very useful in simplifying
the analysis of other more complicated electrochemical systems, for™
example, in solving pseudo-two-dimensional problems. Moreover, 4
this methodology is readily extended to the case where the diffusions.
coefficient is a function of concentratidine., SOQ, as shown in 6.
Part Il of this study. It is also amiable to voltammetry, as shown in 7
Part Ill of this work. Therefore, it is anticipated that these polyno-
mial profile approximations will find considerable use in simplifying 1.
the modeling of complex electrochemical systems without sacrific-11.
ing much accuracy.
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List of Symbols

a(t) time-dependent constant, dimensionless 23
b(t) time-dependent constant, dimensionless 24
C concentration, dimensionless

¢ concentration, mol/cfh

o initial concentration, mol/crh
Cs surface concentration, dimensionless 26
Cs surface concentration, mol/ém 27
D diffusion coefficient, crils 28
d(t) time-dependent constant, dimensionless 29
i applied current density, A/chn 30
| applied current, Alg 31
R, radius of the electrode particle, cm 32
U utilization, dimensionless

8 dimensionless current density at the surface
T

dimensionless time
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