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Analytical Solution for the Impedance of a Porous Electrode
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A macrohomogeneous model is presented for a porous electrode that includes coupled potential and concentration gradients with
linear kinetics. The equations are solved to obtain an analytical expression for the impedance of a porous electrode. Complex plane
plots are presented that illustrate two well-defined arcs: a kinetic arc and a diffusion arc with their time constants far apart. The
effects of parameters such as exchange current density, porosity, diffusion coefficient, thickness, and interfacial area on the
impedance spectra are presented. The usefulness of the analytical solution in investigating the effect of solution phase diffusion is
also presented.
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Electrochemical impedance spectroscdpyS) is a useful tool  across the cell. They estimated the solid-phase lithium-ion diffusion
for studying porous electrodes, which are extensively used in thecoefficient from the impedance spectra in the absence of solution-
field of batteries, fuel cells, and electrochemical capacitors. The dyphase diffusion limitation. Following this, Guet al1° investigated
namics of the porous electrodes are governed by electrode kineticthe validity of estimating the solid-phase diffusion coefficient of a
at the solid/liquid interface, mass transfer in the solution phase, andithium intercalation electrode from impedance measurements. Guo
conduction in both solution and matrix phases. The conductivities,et al. concluded that the validity is not assured if there are mass-
specified by the type of matrix material and the electrolyte used,transfer limitations in the solution phase. In this paper we analyze
influence the potential distribution and concentration distribution the significance of solution-phase diffusional impedance in the po-
across the electrode. The driving force for the electrode kinetics igous electrode. Using the macrohomogeneous model and lineariza-
the difference between the solution phase potential and the solidion of the current-overpotential relation, we have derived an ana-
phase potential. Depending on the operating conditions, electrodétical expression for the impedance response under the influence of
kinetics, mass transfer, or botmixed contro} can control the tran-  both concentration and potential gradients. o
sient behavior of the porous electrode. When the porous electrode is The macrohomogeneous model is more useful than the cylindri-
under mixed control both potential gradient and concentration gra-cal pore model because the macrohomogeneous model includes the
dients should be taken into account in modeling the impedance. Possibility for current to flow in both the solid and solution phases.

Mathematical models can be used to include both potential and>onsequently, the performance of a porous electrode can be pre-
concentration gradients. The work of de Léviearks the start of dicted W|t_h the macrohomogeneous model when the cond_uctlvmes
many papers on the theory of the impedance of porous electrode@ the solid phase and solution phase are comparable. This may be
derived from various mathematical models. Two of the models arel'€ case for some intercalation electrodes. For example, the solid-
the cylindrical pore model and the macrohomogeneous model. Th@hase conductivity of Li,,CoG, is on the order of the conductivity

" ; ; f the electrolyte in the cell studied by Shibugaall! in some
cylindrical pore model is based on the assumption that the porou® yte in th y gl
electrode is composed of cylindrical pores of definite length andC@Ses: Also, the cylindrical pore model has not been used to evaluate
thickness, flooded with electrolyte. Using this theory, LAsiavel- _the performance of a pO{gus electrode in the cell configuration stud-
oped equations for the impedance of a porous electrode under th€d here. Gomadaret al* used the macrohomogeneous model to
influence of a potential gradient. Also Keddahal® developed an obtain analytical solutions for porous electrodes under three differ-
analytical solution for electrodes with concentration gradients onIy,em Ce”. cor)ﬂgurano.ns. .The geometry of thg Ce||.C0nS|del’ed here is
neglecting the potential gradients. In the case of coupled gradient§howlr2] in Fig. 1, wh|c_h IS the same as configuration Il of C?O.“ﬁadam
of potential and concentration for the cylindrical pore model, the €t al. .Th's cell conﬂgurapon is useful when the conduct|y|t|es of
impedance response has been determined numefitatind the solid phase and solution phase are comparable. The impedance

analytically® Rangarajaf presented the analytical solution for the ©f (€ Setup shown in Fig. 1 could be measured by using a bipoten-

S . . . . tiostat.
cylindrical pore model using dilute solution theory and discussed . . )
some of the limiting cases of his solution. He indicated that under The model presented here can be used to gain physical under

certain conditions the regions controlled by activation and diffusion standing of the transient behavior of the porous electrode. Using the
become distinct 9 y expression for the impedance, the corresponding ohmic, charge-
: . transfer, and polarization resistances are quantified. The effects of

Several papers have been published based on the macrosco

p . . . . _
model’1° Paasctet al” presented a generalized model for imped- b%rameters such as exchange current density, porosity, diffusion co

. efficient, and particle size on the impedance are presented.
ance of a macroscopically homogeneous porous electrode under the

influence of a potential gradient and the theory was generalized to
include an arbitrary time delay of the charge-transfer process at the Model Development
pore surface. Ong and Newnfeanalyzed a simple representation of A schematic diagram of a symmetric porous electrode system is
the porous electrodes as a resistor-capacitor network. In their pap&hown in Fig. 1. The porous electrode is described by the macro-
the expression for the im.pedance of a porous elec"gd? was deriveﬂomogeneous modé&f,where the inert material, liquid electrolyte,
assuming the concentrations to be constant. Deylal.” simulated and the active material are considered to be superimposed homoge-
'Reous phases. Concentrated solution th€dsyused to describe the
Stransport in the binary electroly{e.g, a mixture of propylene car-
bonate, dimethyl carbonate, and ethyl methyl carbonate withd)iPF
The assumptions made in the model are as follofsOne-
. Electrochemical Society Student Member. dimensional transportii) Diffusion coefficient(D), activity coeffi-
Electrochemical Society Active Member. cient (f.), transference numbertY), double-layer capacitance

*** Electrochemical Society Fellow. > . - e
2 E-mail: white@engr.sc.edu (Cq), and porosity(e) are constantsliii) Solid-phase diffusion is

numerically including both concentration and potential gradient
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Current Porous Current Keff = e 15 [7]
collector electrode collector
: oo = (1= 8)"% [8]
: | Solid phase The Butler-Volmer equation and the solution phase potential are
Active material described by nonlinear equations. Taking advantage of the small
\ Inert  material perturbations used in EIS, Eq. 2 can be lineaffzeith respect to
‘ / the overpotential at open-circuit conditions
4 .| Solution phase .
Binary electrolyte . - ioF(aq + agn
IoF = [9]

: wherea, + a, = n. Equation 5 can also be linearized with respect

: ! : to both overpotential and concentration at open-circuit conditions

x-='-l,, x=!0 x=:lp
_ b,  2RTkey 5. 9C
= — + - —
I2 Keff ax Fc, (1-1t3) X (10]

Figure 1. Electrode geometry of a symmetric porous electrode system.

Small perturbations correspond to the amplitude of the perturbation
neglected(iv) Separability of the total current density into faradaic Smaller than the thermal voltage so that system response is Yhear.
and nonfaradaic current densitig®.) The interfacial reaction at The thermal voltageVy, is about 25 mV at 25°C when = 1

the solid/liquid interface is a simple charge transfer: ©me" according to the definition of the thermal voltage

< Red. (vi) The open-circuit potentiglV) is taken to be constant RT

and is set equal to zerd@vii) Linear kinetics.(viii) Impedance ex- Vi= — [11]
periments are conducted at open-circuit conditions being zero over- nF

potential and uniform concentratiort;] across the electrodéix) . o o ) ] )
When the system is perturbed, change in the value of the exchang@ifferentiating Eq. 4 and combining with Eq. 3 gives the governing

current density is invariant with respect to concentratibfihe ma-  €quation for the solid phase potential
terial balance in the solution phase taking into account the charge- FE by — by)
tbr?lnssfer reaction and charge conservation in the electrode is given etz = aFj, + acle [12]
ac b a%c 1 10)i aCy(1 — 1) a(dy — o) The governing equation for the solution phase potential is given by
e = €Dergz T all — jn + = ot combining Eq. 3 and the differential of Eq. 10
[1] 9%, . i(d1 — ¢2)
o . . Ker ooz = —aFj, — aCy————
wherej, is the pore wall flux of ions across the interface between X at
the electrolyte and the active material and is given by the faradaic 2R Tk 2
current density at the interface represented by the Butler-Volmer ef g — 3),—2 [13]
equatiort® Fei Ix
CE—ilex aqF ~ ex —ack [2] The surface overpotentidh) quantifies the degree to which the
InF = o RT 1 RT system is disturbed from the equilibrium
The total current density across the solution/pore wall interface is n=br—dp— U [14]

the sum of the faradaic current and the nonfaradaic current. Takin% h N OCP i | .
into account the non-faradaic current, which develops from the _ecauks)e the open-plrlc;g potent(b P is Sit equ|% t% Zerog '3 |
charging and discharging of the electrochemical double layer at th!Ven by the potential difference between the solid phase and solu-

interface, the conservation of charge leads to the following to" Phase
equatior” n = b1 — b, [15]

) diy by — by) . _ . .
aFjn = 53 —aCo———— [3] Based on this definition of the overpotential, the equationsdfor
and ¢, (Eq. 12 and 1B can be combined to write the governing

Ohm’s law gives the potential in the solid phise equation for the overpotential

a%n 1 1 am 2RT a%c

. . ddy _ = — 4+ — i+ | - (1 - t%—

i =1-ly= —0er = (4] ax? Keffi  Oef aFin + aCagy Fc; 1 -85
[16]

wherel is the total current density applied. The modified Ohm’s law

gives the potential in the solution phade Substituting forj,, from Eqg. 9 into Eq. 1 and 16, we can write the

governing equations for the concentration and overpotential as linear

) ddb,  2RTkeg 0. dInc second-order partial differential equations
= ~Kefrp -+ (1 - 1) (5] _
X dX ac 5 a%c . aig(og + o) 1O
SH =& el T RT ( M

Bruggeman’s relatiol?"'®is used to determine the effective param-
eters of the porous electrode from the bulk values aCy(l — t(i) am

Dey = &™D (6] F at [17]
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a%n _aigF (g + occ)( 1 1 ) Table I. Dimensionless variables.
T T RT \key oo
X Keft  Teff Dimensionless
1 1 ) am  2RT(1 —1%) 9% parameter Definition
+aCyl —+ —| /- ——
Nkey  oeq/ 0t Fc; ax? ) aigFn( 1 1),
v — + —
[18] RT \oerr Keff
with the initial conditions for the dependent variables being uniform Fsc; 1
concentration ¢ = c;) across the electrode and overpotential equal ! RT(1 — t9)) aCy
to zero ¢ = 0). The boundary conditions for the porous electrode
atx = —l, are zero concentration flux at B ( F2eq; b ( 1 . 1 )
ac 2 RT(1—t0)) " Mker ~ oer
x= -1, i 0 [19] e
and the current is carried by the solid phase only at 2
d |
x=—l, == [20]
X O off gc*
X=-1 X 0
The boundary conditions at the other current collector end |,
are the same as Eq. 19 and 20. The applied current deihsity a .
sinusoidal perturbation of amplitudg,, with a frequency &’ am - T [29]
. . aX
l(w,t) = Reigpexp(jot)] [21]
Analytical solution—Introducing the dimensionless dependent
variables
e 22 x-1 2 _g
© =T @ TRy [22] X T
and the dimensionless independent variables an* -
— _|*
« ¢ 9 | [30]
X = i and 7 = 1 1 [23]
P aCqy| — + —|I3 — ) ) . .
Keff  Oeff wherel* is the dimensionless current density in the Laplace domain

and the dimensionless current density is defined as
Equations 17 and 18 can be rewritten in the dimensionless form as
follows

IFI
x _ p
GZC* _ Bl E)C* V2 % 1 61]* o I B RTO'eﬁ [31]
axZ ~ B, ot B, B, ot [24]
9%n* B, ac* Equations 26 and 27 are solved subject to Eqg. 29 and 30 using the
— = —2(1 - 1% =2 matrix exponential method as explained in the Apperiiikhe ana-
axX By 97 lytical solutions for the dimensionless concentration and overpoten-
»2 an* tial as functions of the dimensionless distanGe.aplace variables,
— 9 —n* — 2% and the dimensionless groups are
+2(1 - t}) an -i-B2 o + vm* + o group
[25] S (X.s) = (Bahy — B1S)(Bohg — ByS)—
1 - 0 _
wherev?, B;, andB, are dimensionless groups defined in Table I. 2SBiL-Bo(A1 — M)
yiel'g';king the Laplace transform of the dimensionless equations sinh( VA ,X) sinh( VA, X) 32
cost(\hz) VA, cosiVhy)h;
9%c* B S_ o6
= %8,% T 126 -
poe ) — *
2= _ 0 (%) Ba(Ny — )\2)|
—Ta = —s2(1 - t° Sie sy SM_* + S
aX *'B, B, - (Boh, — B1S)sinh{ yA5X)
costiAz) VA,
where the overbar indicates the dependent variables in the Laplace .
domain and P P (Bohy — Bys)sinh( \mx)
- [33]
S = v2 + s [28] COSK\/)\—l)\/)\_l

The boundary conditions in dimensionless form then become at where the eigenvalues are given by
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1
Ny = 5g-[sBy + 25 + SB, + VBT + 4t2SsB, — 25B;SB, + 4(12)S” + 4t'S’B, + S'B)]
2

1

N2 = 5p-[sBr + 2st + SB, — s?Bf + 4t°SsB — 2sB;SB, + 4(t°)2? + 4t°S°B, + S?Bj] [34]

and BW* - F [38]
t°=1-1% [35] axX

The perturbed variables in the Laplace domain can be changed to
the frequency domain by substituting* for s'° wherew* is the The dimensionless concentration and overpotential as functions of

dimensionless frequency position and time solved using the boundary condition given in Eq.
1 1 37 and 38 are given by Eq. 32 and 33 divided by two.
— 2
w* = aCy K—eﬁ + U—eﬁ)|p‘” [36] Impedance—In case of impedance measurements, the applied

perturbation is a sinusoidal currefiq. 21). The applied current
Clearly© andm* are complex quantities with real and imaginary density introduces a correspondlr_lg variation in the potentla_ll drop
parts. Plots of the real and imaginary parts of the variaifes ~ @Cr0SS the porous electrode that is a function of concentration and
andm* at fixed values of low and high dimensionless frequenciesoverpo.tent'al' The |mpe_dance of the electrode can be determined by
(0* = 658X 10°° and 6.58x 10%) are shown in Fig. 2 and 3 the ratio of the potential drop across the porous electrode to the
@ T e — ’ 9 _ ' applied current density. The potential drop across the porous elec-
gor faothehnlean LS gSSUY_nE%gtEetheqUw t? Onde: As shown ':ﬁ':'g- trode is the difference between the solid phase potentials at either

and 3, the perturbed varia eir real and imaginary parts . . : =

do not vary from the steady-state valuegsrog at the center of the gir\llcénowhe electrode. Thus, the dimensionless impedadgeiy
electrode K = 0). Profiles of the variables for the entire range
of dimensionless frequency* = 6.58x 107° to 6.58% 10° or
o = 1uHz to 1 MHz, showed the same trend. Hence, for this par-

ticular geometry, one of the boundary conditions can be replaced by _’f|x:71 - $f|x=1

the steady-state conditioipen-circuit conditionsat the center of Z= T (39]
the electrode. That is, the boundary conditions can be taken as at
X=0 ¢c*=0
n* =0 [37] wherel* is the dimensionless applied current dengity. 31 in the

Laplace domain an${ is the dimensionless perturbed solid-phase

at potential 7 = ¢&,F/RT) in the Laplace domain. In case of the
gc* reformulated boundary conditiorigq. 37 and 38the impedance is
X = X 0 given by

(a) b)

. (a) ()]
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Figure 2. Plot of the perturbed variables along the spatial coordinate andFigure 3. Plot of the perturbed variables along the spatial coordinate and
o* = 6.58% 107° (@) cke, (b) Cf,, (C) MEe, and(d) mf, (other parameter  w* = 6.58x 10" (a) ¢k, (b) Cf,, (©) MEe, and(d) m}, (other parameter
values given in Table JI values given in Table I
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— 2(bflx=0 — bilx=1) Table Il. Parameter values.
z= 12 " [40]
| * Parameter Value Ref.

. . . . . i 0.00018 A/crd Ong and Newmah
Dimensionless solid-phase potential drop across the electrode is a 4.11% 10°* S/em Ong and Newmah
function of the dimensionless overpotential and concentration. Sub- " 0.003 S/em a
stituting Eq. 12 into 18 and introducing the dimensionless variables Iy 0.008 cm a
given in Eq. 22, 23, and7 , the governing equation for the solid- D 7.5% 107° cné/s @
phase potential in terms of the dimensionless overpotential and con- ¢ 0.53 @
centration is determined as Einert 0.073 Ong and Newmén

_ Rs 8.5um Ong and Newméh
a2y 1 0% 2t 9% a 1401.2 cnit Calculated using Eq. 57
X2 T BT D ax + B+ 1) X2 [41] Cu 10 pF/en? Ong and Newmah
a, + o n Newman
n 1 a
where c 0.001 mol/cr Ong and Newméh
O off t9 0.537 Ong and Newmé&n
B= v2 4.612 b
eff B, 3.06827x 10° E
Integration of Eqg. 41 with respect t¥ gives the dimensionless 22 (2277273 b
solid-phase potential in terms of the integration constant 3 '
J— a
* — 0 e Assumed value.
93 _ 1 dm 2= ac LA [42] b Calculated using the definition in Table I.

X (B+1)ax+(|3+1)ax
The dimensionless impedance in the frequency domain is a complex
The integration constant can be determined from the boundary conaumber with real partZro) and imaginary part4;,,). The expres-
ditions at sions for the real and imaginary part are too long to be presented
here. They can be obtained using the standard commands in

X =1 ﬁ _ ﬂ T [43] maple?® Maple programs used in this paper can be obtained upon
X X request\White).
Results and Discussion
and at ) ) . .
The impedance was simulated for thgMin,0O, electrodes using
_ ac* the base values given in Table Il and the derived analytical solution.
X=1 X 0 [44] The impedance spectrum for the,Mn,0O, electrodes was also
solved numerically using the method employed by Dalal® The
as results obtained from the analytical solution agree well with those
_ from the numerical solution. The impedance spectrum, illustrated in
—-BI* Fig. 4, shows two well-defined arcs with a very high-frequency in-
A= ®+1) [45] tercept.

The higher frequency arc represents the kinetic impedance and

Further, integrating Eq. 42 with respectXdrom 0 to 1 and substi-  the lower frequency arc represents the diffusional impedance. The
tuting for A gives the dimensionless solid-phase potential drop kinetic arc is a squashed semicircle due to the linear impedance
across the porous electrode behavior(slope equal to 45°, as shown by the inset in Figatdvery

high frequencies, while the diffusional impedance is a perfect semi-

~ Keff [7*] +2(1 — )T yy] circle. The 45° straight line, typical of porous electrodes, is due to

Keff T Ooft M ix=1 + X=1 the distributed interfacial impedance that is purely capacitive at very
high frequencie$:>#When the system is perturbed from the equi-

(gﬁxzo - g’ille) =

Oeff  —, [46] librium condition (open-circuit conditiop electrode kinetics is the
Keff T O

eff eff 0.16 —
where the dimensionless overpotential and concentratiof -at1 0.14 1
can be evaluated using the expressions given in Eq. 32 and 38 012t + oon
respectively. Hence, the final expression for the dimensionless im- :
pedance in the Laplace domaig)(evaluated using Eq. 40 can be NE AL N S
transformed to the dimensionless impedance in the frequency do' 0.08 | -
main (2) by replacings with jo*,*° written as 0.06 | .

2Keff 7\2()\182 - SBl)tanf‘( \ )\1) 0.04 [ R R,
Z = L Diffusion 1
(0 + Ke) (A1 — A2)SBy N 0.02 | \ Kinetic
arc
0.00 ! *
_ MOGB, - sBytantih,) | 2 (47 1.7 1.8 1.9 2.0
z
W, 1+ ﬂ) High o = 6.58x10° ke Low ©°=6.58x10*
O eff
“4— Direction of increasing frequency

where

. Figure 4. Impedance response for Mn,0, electrodes(parameter values
s = jo* [48] are given in Table )t (——) analytical and A) numerical solution.
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Figure 5. Effect of exchange current density on the impedance response ZRC'RQ

(other parameter values given in Tablg Il
Figure 6. Diffusion-limited impedance spectruniy(= 0.048 A/cnt, other
parameter values given in Table.ll

main cause for a change in the electrode potential. However, in the

presence of the double-layer capacitance at the interface, the charg-

ing and discharging of the double layer acts as a parallel phenomgheres = jw*. Equation 50 gives the dimensionless impedance
kinetic arc in the high-frequency regime. In the low-frequency re- grop governs the impedance. Equation 50 is the same as the imped-
gime, the electrode reaction is fast, but the rate of the diffusiongnce expression derived by Gomadatral2 for the porous elec-
process is not fast enough to supply the reacting species. This leadgydes with no concentration gradients. The low-frequency intercept
\anor resitance. The impedance Spoctta shown hote are Simiar gy, et arc n tis case is the charge transfeg)(“ ob-
the results obtained by Cachet and Wiand Lasi& They used a ined by taking the limit>* — 0 in Eq. 50, giving
cylindrical pore model and numerical methods to solve for the im-
pedance of a porous electrode under the influence of potential and Ry = 2
concentration gradients. (Kett + Ter)
At very high frequencies the double-layer capacitance short- ) o ) )
circuits the surface overpotentiaL |eaving the ohmic drop across the Let us consider the case when the kinetics at the interface is fast.
solid matrix and the solution phase as the residual resistance. Thelere, in spite of the higher rate of reaction the total impedance of
dimensionless ohmic resistande)3*2is the high-frequency inter-  the electrode is high. This is because the diffusion process is not fast
cept that can be evaluated from the impedance expre$gipna7 enough to supply enough reactant to maintain the interfacial reaction
after substitution of Eq. 48for * — = yielding at such high rates. The diffusional impedance dominates the porous
electrode, indicated by a larger diffusion arc when compared to the
kinetic arc. In Fig. 5 the impedance arc for higher values of the

K eff tani(v) 4o O eff
v (Keff + Tefr)

[51]

Z—-Rg=7—— = 1718132 [49] exchange current density indicates that the total impedance is not
(1 + completely governed by the diffusion process; there exists a small
Oeff kinetic resistance also. When the exchange current density is in-

) ) ) creased to further higher values the impedance in the porous elec-
using the values given in Table II. _ trode is completely dominated by the diffusion resistance, as shown
A plot of the impedance spectra for different values of the ex- iy Fig. 6. In this case the performance of the porous electrode is
change current density is shown in Fig. 5. Note that the dimensionyjiffusion limited. The impedance spectra of the diffusion-limited
less ohmic resistanceRr(,) of the electrode was deducted from the process also exhibits a linear behavior at high frequencies similar to
real part of the impedance spectra in Fig. 5 for better representatiothe kinetic arc due to the porous nature of the electrodes. The low-
of the impedance arcs. The same format iS fOllOWEd for F|g 6'10.frequency intercept of the diﬁusiona' arc)‘( — 0) gives the po_
Exchange current density, expressed as the product of rate constaplization resistanceR|) >*
and local concentrations in the solid and solution pﬁasmn be
seen as the electrochemical reaction rate. At moderate reaction rates,
both the diffusional impedance and the kinetic impedance contribute
to the total impedance across the porous electrode, as indicated by 2 K eff 2t°
two arcs. At low values of the exchange current density, though flux Rp = + 2 n >0 1 B
of the species is maintained high by the diffusion process the kinet- 14 e Ketf T Oert| ( 2)
ics at the interface is slow and offers maximum resistance, leading
to an impedance spectrum with a large kinetic arc and no diffusional
arc. The performance of the porous electrode in this case is limited 2
by the interfacial kinetics, and the impedance expression in Eq. 47 is tank( —(2t° + B,)
reduced to B B

+ OB = [52]
Keg  tanh(ys + v?) Ot (2t” + By) vz
Z=2 + 2 [50] —(2t7 + By)
(Kett T Tef) /s + 12 (Keff + Tep) B,
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ZRe'RQ Figure 8. Effect of porosity of the active material on the impedance re-

sponse(other parameter values given in Tablg 11

Figure 7. Effect of bulk diffusion coefficient on the impedance response

(other parameter values given in Tablg Il
the pores is determined by the concentration gradient only. When
B — o orv > 0, the concentration gradient is negligible.

The diffusion coefficient of the species involved is an important The flux ratio as given in Eq. 54 depends on the properties of the
property that determines the concentration gradient in the porouporous electrode and electrolyte. These properties include exchange
electrode. Figure 7 gives the impedance spectra for different valuegurrent density, diffusion coefficient, porosity, thickness of the elec-
of the solution-phase diffusion coefficient. The value of the diffusion trode, and the specific surface area. The specific surfacdaréa
coefficient does not affect the kinetic semicircle. A larger diffusional the model presented here is defined as the electroactive surface area
arc is obtained for low values of the bulk diffusion coefficient of of the pore walls per unit volume of the total electrode. For spherical
aboutD = 7.5 X 10°° cn?/s. This shows that significant concen- particles the specific surface area is related to the particle radius
tration gradients are established in the case of electrolytes in whicliRy), porosity of the electrodés), and the volume fraction of the
the diffusion coefficient of the species is low like the polymer elec- inert material Einer) ado
trolytes. The dimensionless gro®y determines the importance of

concentration gradients and the potential gradients in the porous 3
electrode, given by a= Es(l — & = Einer) [57]
2 j,an(1 —t% (12 _ ) . .
B; = Y_l g P [53] A change in the interfacial arga) can be affected by changing the
B F €C; De particle size, porosity of the electrode, or the volume fraction of the
inert material. Figures 8 and 9 present the influence of these param-
or eters on the impedance spectra. The interfacial area increases with
Kinetic fi decrease in porosity or particle size. Porosity also affects the ohmic
B. = —netic fux [54)  drop across the electrode. This is because the conductivity of the
3 7 diffusion flux electrolyte and the solid matrix are expressed in terms of effective
parameters that depend on the volume fraction of the respective
where phases. With a decrease in porosity the ohmic drop across the elec-
nig(1 — t%)
kinetic flux= ——— 55
F [55] 0.25 ' T T ' '
ame= R _=6.5 microns 4
and »==» R=8.5 mcrons
0.20 [ '='~ R=10.5 mcrons
I Dey, | e R=125m 1
diffusion flux = ec; (Tze) [56] _ s merons
° 0.15 |
Case 1: Kinetic limited impedance-When the flux ratio becomes £ ]
much smaller than on&; < 1, kinetics are more important and the N
impedance spectrum obtained is only the kinetic(aee Fig. 5 for 0.10 i
ip = 1.8x 10°% Alcnv?).
Case 2: Diffusion-limited impedanee The impedance of the elec- 0.05 | |
trode is diffusion limited when the kinetic flux ratio is far greater
than the diffusion fluB; > 1 (see Fig. 6.
Similar to the previous analysis, La3f analyzed the effect . L
of concentration gradients based on the value of the paramete ’ 0.00 0.05 0.10 0.15 0.20 0.25
B = (2kJ?/rD)p (1 + p) orv = nFDc} , whereks is the stan- ’ ' 7 —I'ZQ ' '
dard rate constanD is the diffusion coefficientcy is the concen- ke
tration of the oxidized forms outside the pore, apd= e"™R™. Figure 9. Effect of radius of the active material particles on the impedance

He stated that wheB — 0 orv < 0 the electrochemical process in responsdother parameter values given in Tablg II
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0.30 ' : T ' ' d’y; d’c
— lp:/lOnicmns - d2y dx? dx?
025 am 1p=60m'cmns D T | d?y,| T | a2 [A-3]
. ros i 1p=80nicnons dx? dx?
siivine 1p=100mm h
020 B _S
’ B, B,
A= A-4
£ | 2s(1 - t9)B; (201 - t9) (A-4]
Ny 0.15 T g
\ /
i The matrix equatioEq. A-1) can be transformed into Eq. A-5 using the matrix of
0 10 F eigenvectorgP)
T N, d?(M) M [A-5]
! SR NI N 1 o Y i
0_05 “ﬁ‘.‘::‘”" "%‘c“ "‘\’ Lo .-.,.‘.'1& X
", . :\' R4 “ o »,
", ' \{ "t M = Pty [A-6]
L L 'l Il pe)
0.00 B
000 005 010 015 020 025 030 v =PTAP [A-7]
ZRC-RQ where the matrix of eigenvectoPsexpressed in terms of the eigenvaluas @ndx,)
Figure 10. Effect of half the thickness of the porous electrode on the im- A2Bs — SBOI MBp — SBol
pedance respongether parameter values given in Tablg Il p=|[2sBi(1—1t}) 2sBy(1—t3) [A-8]
1 1
andv is a diagonal matrix with the eigenvalues as the elements
trode increases. The effectigfon the impedance spectrum is shown A O
in Fig. 10. As the electrode thickness is increased, Eq. 53 and 54 Yo [A-9]

show that the kinetic flux increases relative to the diffusional flux,
which is to be expected. A lower diffusion flux gives rise to higher The matrix equatiofEq. A-5 can be decoupled using the eigenvalues\ofector as
diffusional resistance. This manifests as a smaller kinetic arc and a

. . . . . dZM
larger diffusional arc in the impedance spectra of Fig. 10. dle =M, [A-10]
Conclusion and
An analytical solution for the impedance of a porous electrode d2M,
with concentration and potential gradients was deriigst Eq. 4Y. oz~ Mo [A-11]

The effect of parameters on the impedance response was studied.

Based on the value oB; (see Table )l the significance of the  WhereM; andM, are the elements of the vectdf.
solution-phase concentration gradients were analyzed. Concentra-

tion gradients become significant at very high exchange current den- M =
sities as in cells operating at high temperatures and very low diffu-

sion coefficients as in the case of a few polymer electrolytes, wherrhe second-order differential Eq. A-10 and A-11 can be solved for the vattan
the solid-phase diffusion does not limit the procéssall particle  terms of unknown constants «, 8, andg,

My

M, [A-12]

size. _
_asini( WN1X) L %2 cosh{yA1X) (A-13]
1~ — — -
Acknowledgments VAy VA
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National Reconnaissance Offi(BRO) under contract no. 000-03- My = + = [A-14]
C-0122 VA2 VA,

. . . . . . ... The perturbed variables® andm* can be determined by premultiplying matiix by
The Unlverslty of South Carolina assisted in meeting the publication the matrix of eigenvectorB (from Eq. A-5. The solution for the perturbed variables is
costs of this article. in terms of the unknown constants. The constants are determined using the boundary
conditions in the dimensionless form as given by the following equations at

Appendix
The coupled linear differential equations in Eq. 26 and 27 can be decoupled and _ ac* -0
solved analytically by using a similarity matrix transformation method as described X=-1 X
here. The second-order differential equatigig. 26 and Eq. 2/7can be rewritten in the
matrix form as follows g
_a“x = [A-15]
d2y
W = AY [A-l] at
Yol
where X =1 ct =0
axX
Y1 c* P
Y = =5 A-2 an -
=15 (A2l il [A-16]

and The constants are determined to be
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a;=PB2=0

—1*(\4B, — sB))
Ba(A1 — A2)coshyA)

T*(\,B, — sBy)
Ba(A1 — Ap)coshyX,)

[A-17]

[A-18]

[A-19]

A913

einert VOlume fraction of the inert material of the porous electrode

Using the expressions for the constants as determined here, the dimensionless concenygy,

tration and overpotentialct andm*) are determined as given in Eq. 32 and 33 of the

main section.

List of Symbols

a specific interfacial area, cni
B; dimensionless group, see Table |
B, dimensionless group, see Table |
B; dimensionless group, see Table |
¢ concentration of lithium ions in the solution phase, moficm

¢; concentration of lithium ions in the solution phase at open-circuit conditions

mol/cn?

c* dimensionless concentration,— c;/c;
c* dimensionless concentration in the Laplace dontsée Eq. 32
Cre real part of dimensionless concentration
Cim imaginary part of dimensionless concentration
Cq double-layer capacitance, Faradfcm

D bulk solution salt diffusion coefficient, cifs
Dy effective diffusivity, cnf/s (see Eq. B
e charge on the electron, 1.602 10°*° C
F Faraday’s constant, 96,487 C/equiv
. activity coefficient of the salt
| total current density applied to the system, Afofsee Eq. 21
*

I* dimensionless applied current density in the Laplace domain
io exchange current density, A/ém
i; matrix phase current density, A/ém
i, solution phase current density, A/&m
iapp amplitude of the applied sinusoidal current, Afcm
in pore wall flux across interface, mol/éfa
k Boltzman constant, 1.38 1023 J/K
p half the thickness of the porous electrode, cm

dimensionless applied current in Laplace domain denkitly, /R To 5

n number of electrons transferred in the electrochemical reaction (L here

R universal gas constant, 8.313 J/mol K
Ry dimensionless charge-transfer resistafsee Eq. 51
R, dimensionless poralization resistarlsee Eq. 52
R radius of the particle, cm
Ry dimensionless ohmic resistantsee Eq. 49
S dimensionless variablesee Eq. 28
s Laplace variable
T temperature, K
t time, s
1 transference number of lithium ions in the solution
U open-circuit potential, V
X dimensionless spatial coordinaté| ,
x distance from the center of the electrode, cm
Z dimensionless impedance in the Laplace domain
Z dimensionless impedance in the frequency dontsée Eq. 4Y
Zge real part of the dimensionless impedance
Zn imaginary part of the dimensionless impedance

Greek

a, anodic transfer coefficient, dimensionless
a. cathodic transfer coefficient, dimensionless
e porosity of the electrode, dimensionless

K

solid-phase potential, V

dimensionless solid-phase potentiéh,F/RT

dimensionless solid-phase potential in the Laplace domain
solution-phase potential, V

surface overpotential, V

dimensionless overpotentiakp¢-d,)F/RT

dimensionless overpotential in the Laplace domaee Eq. 38
real part of the dimensionless overpotential

imaginary part of the dimensionless overpotential
conductivity of bulk solution, S/cm

keff effective solution-phase conductivity, S/dsee Eq. ¥
v?  dimensionless exchange current densige Table)l
v square root of the dimensionless exchange current density
o conductivity of the solid phase in the electrode, S/cm
oo effective solid-phase conductivity, S/cteee Eq. 8
7 dimensionless time/aCy(1/keq + Loeg)ly
o frequency, st
o*  dimensionless frequencyaCgy(1/kei + 1/creff)lg)w
' Subscripts
a anodic
¢ cathodic
eff effective
1 solid phase
2 solution phase

Superscripts

overbar

12.

13.

14.

15.

16.
17.

18.
19.

20.
21.

* dimensionless quantities
Laplace domain

References

R. de Levie, Advances in Electrochemistry and Electrochemical Engineerihg
Delahay, Editor, Vol. 6, p. 329, Interscience Publishers, New Ya&#867).

. A. Lasia,J. Electroanal. Chem2397, 27 (1995.
. M. Keddam, C. Rakotomavo, and H. Takenouti,Appl. Electrochem.14, 437

(1984.

. C. Cachet and R. Wiarfl. Electroanal. Chem. Interfacial Electrochem95 21

(1985.

. A. Lasia,J. Electroanal. Chem428 155(1997.

S. K. Rangarajan]. Electroanal. Chem. Interfacial Electrocher2, 89 (1969.
G. Paasch, K. Micka, and P. Gersdd#fectrochim. Acta38, 2653(1993.
1. J. Ong and J. Newmad, Electrochem. Soc146, 4360(1999.

. M. Doyle, J. P. Meyers, and J. Newmah Electrochem. Soc147, 99 (2000.

Q. Guo, V. R. Subramanian, J. W. Weidner, and R. E. WAit&lectrochem. Soc.,
149 A307 (2002.

. M. Shibuya, T. Nishina, T. Matsue, and I. UchidaElectrochem. Soc143 3157

(1996.

P. M. Gomadam, J. W. Weidner, T. A. Zawodzinski, and A. P. SadBlectrochem.
Soc.,150, E371(2003.

J. S. Newmartlectrochemical System2&nd ed., Prentice Hall, Englewood Cliffs,
NJ (1991).

J. P. Meyers, M. Doyle, R. M. Darling, and J. NewmanElectrochem. Socl47,
2930(2000.

P. M. Gomadam, J. W. Weidner, R. A. Dougal, and R. E. WHit®ower Sources,
110, 267(2002.

P. De Vidts and R. E. Whitd, Electrochem. Soc144, 1343(1997.

J. R. Macdonaldmpedance Spectroscaopgmphasizing Solid Materials and Sys-
tems, John Wiley and Sons, Inc., New Ydi987).

V. R. Subramanian and R. E. Whitehem. Eng. Educ34, 328(2000.

A. Lasia,Modern Aspects of Electrochemistiyo. 32, B. E. Conway, J. O'M.
Bockris, and R. E. White, Editors, Plenum Publishers, New Yd899.

S. Devan, M.S. Thesis, University of South Carolina, Columbia(Z803.

A. Lasia,J. Electroanal. Chem500, 30 (200J).



