
Journal of The Electrochemical Society, 151 ~6! A905-A913 ~2004!
0013-4651/2004/151~6!/A905/9/$7.00 © The Electrochemical Society, Inc.

A905
Analytical Solution for the Impedance of a Porous Electrode
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A macrohomogeneous model is presented for a porous electrode that includes coupled potential and concentration gradients with
linear kinetics. The equations are solved to obtain an analytical expression for the impedance of a porous electrode. Complex plane
plots are presented that illustrate two well-defined arcs: a kinetic arc and a diffusion arc with their time constants far apart. The
effects of parameters such as exchange current density, porosity, diffusion coefficient, thickness, and interfacial area on the
impedance spectra are presented. The usefulness of the analytical solution in investigating the effect of solution phase diffusion is
also presented.
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Electrochemical impedance spectroscopy~EIS! is a useful too
for studying porous electrodes, which are extensively used i
field of batteries, fuel cells, and electrochemical capacitors. Th
namics of the porous electrodes are governed by electrode ki
at the solid/liquid interface, mass transfer in the solution phase
conduction in both solution and matrix phases. The conductiv
specified by the type of matrix material and the electrolyte u
influence the potential distribution and concentration distribu
across the electrode. The driving force for the electrode kinet
the difference between the solution phase potential and the
phase potential. Depending on the operating conditions, elec
kinetics, mass transfer, or both~mixed control! can control the tran
sient behavior of the porous electrode. When the porous electr
under mixed control both potential gradient and concentration
dients should be taken into account in modeling the impedanc

Mathematical models can be used to include both potentia
concentration gradients. The work of de Levie1 marks the start o
many papers on the theory of the impedance of porous elect
derived from various mathematical models. Two of the models
the cylindrical pore model and the macrohomogeneous mode
cylindrical pore model is based on the assumption that the p
electrode is composed of cylindrical pores of definite length
thickness, flooded with electrolyte. Using this theory, Lasia2 devel-
oped equations for the impedance of a porous electrode und
influence of a potential gradient. Also Keddamet al.3 developed a
analytical solution for electrodes with concentration gradients
neglecting the potential gradients. In the case of coupled grad
of potential and concentration for the cylindrical pore model,
impedance response has been determined numerically4,5 and
analytically.6 Rangarajan6 presented the analytical solution for
cylindrical pore model using dilute solution theory and discu
some of the limiting cases of his solution. He indicated that u
certain conditions the regions controlled by activation and diffu
become distinct.

Several papers have been published based on the macro
model.7-10 Paaschet al.7 presented a generalized model for imp
ance of a macroscopically homogeneous porous electrode und
influence of a potential gradient and the theory was generaliz
include an arbitrary time delay of the charge-transfer process
pore surface. Ong and Newman8 analyzed a simple representation
the porous electrodes as a resistor-capacitor network. In their
the expression for the impedance of a porous electrode was d
assuming the concentrations to be constant. Doyleet al.9 simulated
the impedance response of a lithium rechargeable battery s
numerically including both concentration and potential gradi
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across the cell. They estimated the solid-phase lithium-ion diffu
coefficient from the impedance spectra in the absence of sol
phase diffusion limitation. Following this, Guoet al.10 investigated
the validity of estimating the solid-phase diffusion coefficient
lithium intercalation electrode from impedance measurements
et al. concluded that the validity is not assured if there are m
transfer limitations in the solution phase. In this paper we ana
the significance of solution-phase diffusional impedance in the
rous electrode. Using the macrohomogeneous model and line
tion of the current-overpotential relation, we have derived an
lytical expression for the impedance response under the influen
both concentration and potential gradients.

The macrohomogeneous model is more useful than the cyl
cal pore model because the macrohomogeneous model includ
possibility for current to flow in both the solid and solution pha
Consequently, the performance of a porous electrode can b
dicted with the macrohomogeneous model when the conducti
of the solid phase and solution phase are comparable. This m
the case for some intercalation electrodes. For example, the
phase conductivity of Li11xCoO2 is on the order of the conductivi
of the electrolyte in the cell studied by Shibuyaet al.11 in some
cases. Also, the cylindrical pore model has not been used to ev
the performance of a porous electrode in the cell configuration
ied here. Gomadamet al.12 used the macrohomogeneous mode
obtain analytical solutions for porous electrodes under three d
ent cell configurations. The geometry of the cell considered he
shown in Fig. 1, which is the same as configuration II of Goma
et al.12 This cell configuration is useful when the conductivities
the solid phase and solution phase are comparable. The impe
of the setup shown in Fig. 1 could be measured by using a bip
tiostat.

The model presented here can be used to gain physical u
standing of the transient behavior of the porous electrode. Usin
expression for the impedance, the corresponding ohmic, ch
transfer, and polarization resistances are quantified. The effe
parameters such as exchange current density, porosity, diffusio
efficient, and particle size on the impedance are presented.

Model Development

A schematic diagram of a symmetric porous electrode syst
shown in Fig. 1. The porous electrode is described by the m
homogeneous model,13 where the inert material, liquid electroly
and the active material are considered to be superimposed ho
neous phases. Concentrated solution theory13 is used to describe th
transport in the binary electrolyte~e.g., a mixture of propylene ca
bonate, dimethyl carbonate, and ethyl methyl carbonate with LiP6).

The assumptions made in the model are as follows:~i! One-
dimensional transport.~ii ! Diffusion coefficient~D!, activity coeffi-
cient (f 6), transference number (t1

0 ), double-layer capacitan
(C ), and porosity~«! are constants.~iii ! Solid-phase diffusion
dl
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neglected.~iv! Separability of the total current density into farad
and nonfaradaic current densities.~v! The interfacial reaction a
the solid/liquid interface is a simple charge transfer: Ox1 ne2

� Red. ~vi! The open-circuit potential~U! is taken to be consta
and is set equal to zero.~vii! Linear kinetics.~viii ! Impedance ex
periments are conducted at open-circuit conditions being zero
potential and uniform concentration (ci) across the electrode.~ix!
When the system is perturbed, change in the value of the exc
current density is invariant with respect to concentration.14 The ma-
terial balance in the solution phase taking into account the ch
transfer reaction and charge conservation in the electrode is
by13

«
]c

]t
5 «Deff

]2c

]x2 1 a~1 2 t1
0 ! j n 1

aCdl~1 2 t1
0 !

F

]~f1 2 f2!

]t

@1#

where j n is the pore wall flux of ions across the interface betw
the electrolyte and the active material and is given by the fara
current density at the interface represented by the Butler-Vo
equation13

j nF 5 i 0FexpS aaF

RT
h D 2 expS 2acF

RT
h D G @2#

The total current density across the solution/pore wall interfa
the sum of the faradaic current and the nonfaradaic current. T
into account the non-faradaic current, which develops from
charging and discharging of the electrochemical double layer a
interface, the conservation of charge leads to the follow
equation13

aF jn 5
] i 2

]x
2 aCdl

]~f1 2 f2!

]t
@3#

Ohm’s law gives the potential in the solid phase13

i 1 5 I 2 i 2 5 2seff

]f1

]x
@4#

whereI is the total current density applied. The modified Ohm’s
gives the potential in the solution phase13

i 2 5 2keff

]f2

]x
1

2RTkeff

F
~1 2 t1

0 !
] ln c

]x
@5#

Bruggeman’s relation15,16 is used to determine the effective para
eters of the porous electrode from the bulk values

D 5 «0.5D @6#

Figure 1. Electrode geometry of a symmetric porous electrode system
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-

e

-

keff 5 «1.5k @7#

seff 5 ~1 2 «!1.5s @8#

The Butler-Volmer equation and the solution phase potentia
described by nonlinear equations. Taking advantage of the
perturbations used in EIS, Eq. 2 can be linearized8 with respect to
the overpotential at open-circuit conditions

j nF 5
i 0F~aa 1 ac!h

RT
@9#

whereaa 1 ab 5 n. Equation 5 can also be linearized with resp
to both overpotential and concentration at open-circuit conditio

i 2 5 2keff

]f2

]x
1

2RTkeff

Fci
~1 2 t1

0 !
]c

]x
@10#

Small perturbations correspond to the amplitude of the perturb
smaller than the thermal voltage so that system response is lin17

The thermal voltage,VT , is about 25 mV at 25°C whenn 5 1
according to the definition of the thermal voltage

VT [
RT

nF
@11#

Differentiating Eq. 4 and combining with Eq. 3 gives the govern
equation for the solid phase potential

seff

]2f1

]x2 5 aF jn 1 aCdl

]~f1 2 f2!

]t
@12#

The governing equation for the solution phase potential is give
combining Eq. 3 and the differential of Eq. 10

keff

]2f2

]x2 5 2aF jn 2 aCdl

]~f1 2 f2!

]t

1
2RTkeff

Fci
~1 2 t1

0 !
]2c

]x2 @13#

The surface overpotential~h! quantifies the degree to which t
system is disturbed from the equilibrium

h 5 f1 2 f2 2 U @14#

Because the open-circuit potential~OCP! is set equal to zero,h is
given by the potential difference between the solid phase and
tion phase

h 5 f1 2 f2 @15#

Based on this definition of the overpotential, the equations fof1

and f2 ~Eq. 12 and 13! can be combined to write the govern
equation for the overpotential

]2h

]x2 5 S 1

keff
1

1

seff
D FaF jn 1 aCdl

]h

]t G 2
2RT

Fci
~1 2 t1

0 !
]2c

]x2

@16#

Substituting forj n from Eq. 9 into Eq. 1 and 16, we can write
governing equations for the concentration and overpotential as
second-order partial differential equations

«
]c

]t
5 «Deff

]2c

]x2 1
ai0~aa 1 ac!

RT
~1 2 t1

0 !h

1
aCdl~1 2 t1

0 !

F

]h

]t
@17#
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]2h

]x2 5
ai0F~aa 1 ac!

RT S 1

keff
1

1

seff
Dh

1 aCdlS 1

keff
1

1

seff
D ]h

]t
2

2RT~1 2 t1
0 !

Fci

]2c

]x2

@18#

with the initial conditions for the dependent variables being unif
concentration (c 5 ci) across the electrode and overpotential e
to zero (h 5 0). The boundary conditions for the porous electr
at x 5 2l p are zero concentration flux at

x 5 21p

]c

]x
5 0 @19#

and the current is carried by the solid phase only at

x 5 2l p

]h

]x
5 2

I

seff
@20#

The boundary conditions at the other current collector endx 5 l p
are the same as Eq. 19 and 20. The applied current density~I! is a
sinusoidal perturbation of amplitudei app with a frequency ‘v’

I ~v,t ! 5 Re@ i appexp~ j vt !# @21#

Analytical solution.—Introducing the dimensionless depend
variables

c* 5
c 2 ci

ci
and h* 5

Fh

RT
@22#

and the dimensionless independent variables

X 5
x

l p
and t 5

t

aCdlS 1

keff
1

1

seff
D l p

2

@23#

Equations 17 and 18 can be rewritten in the dimensionless fo
follows

]2c*

]X2 5
B1

B2

]c*

]t
2

n2

B2
h* 2

1

B2

]h*

]t
@24#

]2h*

]X2 5 22~1 2 t1
0 !

B1

B2

]c*

]t

1 2~1 2 t1
0 !F n2

B2
h* 1

1

B2

]h*

]t G 1 n2h* 1
]h*

]t

@25#

wheren2, B1 , andB2 are dimensionless groups defined in Tab
Taking the Laplace transform of the dimensionless equa

yields

]2c̄*

]X2 5 s
B1

B2
c̄* 2

S

B2
h̄* @26#

]2h̄*

]X2 5 2s2~1 2 t1
0 !

B1

B2
c̄* 1 S

2~1 2 t1
0 !

B2
h̄* 1 Sh̄*

@27#

where the overbar indicates the dependent variables in the La
domain and

S 5 n2 1 s @28#

The boundary conditions in dimensionless form then become
e

X 5 21
] c̄*

]X
5 0

]h̄*

]X
5 2Ī * @29#

at

X 5 1
] c̄*

]X
5 0

]h̄*

]X
5 2Ī * @30#

whereĪ * is the dimensionless current density in the Laplace do
and the dimensionless current density is defined as

I * 5
IFl p

RTseff
@31#

Equations 26 and 27 are solved subject to Eq. 29 and 30 usin
matrix exponential method as explained in the Appendix.18 The ana
lytical solutions for the dimensionless concentration and overp
tial as functions of the dimensionless distanceX, Laplace variable
and the dimensionless groups are

c̄* ~X,s! 5
~B2l2 2 B1s!~B2l1 2 B1s!

2sB1t2
0 B2~l1 2 l2!

Ī *

3 F sinh~Al2X!

cosh~Al2!Al2

2
sinh~Al1X!

cosh~Al1!Al1
G @32#

h̄* ~X,s! 5
1

B2~l1 2 l2!
Ī *

3 F ~B2l2 2 B1s!sinh~Al2X!

cosh~Al2!Al2

2
~B2l1 2 B1s!sinh~Al1X!

cosh~Al1!Al1
G @33#

where the eigenvalues are given by

Table I. Dimensionless variables.

Dimensionless
parameter Definition

n2 ai0Fn

RT S 1

seff
1

1

keff
D1p

2

B1 S F2«ci

RT~1 2 t1
0 ! D 1

aCdl

B2 S F2«ci

RT~1 2 t1
0 ! DDeffS 1

keff
1

1

seff
D

B3

n2

B2
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and

t2
0 5 ~1 2 t1

0 ! @35#

The perturbed variables in the Laplace domain can be chang
the frequency domain by substitutingj v* for s19 wherev* is the
dimensionless frequency

v* 5 aCdlS 1

keff
1

1

seff
D l p

2v @36#

Clearly c̄* and h̄* are complex quantities with real and imagin
parts. Plots of the real and imaginary parts of the variablec̄*
and h̄* at fixed values of low and high dimensionless frequen
(v* 5 6.583 1026 and 6.583 101) are shown in Fig. 2 and

For convenienceĪ * is assumed to be equal to one. As shown in
2 and 3, the perturbed variables~both their real and imaginary par!
do not vary from the steady-state values~zero! at the center of th
electrode (X 5 0). Profiles of the variables for the entire ran
of dimensionless frequency,v* 5 6.583 1029 to 6.583 105 or
v 5 1 mHz to 1 MHz, showed the same trend. Hence, for this
ticular geometry, one of the boundary conditions can be replac
the steady-state condition~open-circuit conditions! at the center o
the electrode. That is, the boundary conditions can be taken a

X 5 0 c̄* 5 0

h̄* 5 0 @37#

at

X 5 1
] c̄*

]X
5 0

l1 5
1

2B2
@sB1 1 2St2

0 1 SB2 1 As2B1
2 1 4t2

0

l2 5
1

2B2
@sB1 1 2St2

0 1 SB2 2 As2B1
2 1 4t2

0

Figure 2. Plot of the perturbed variables along the spatial coordinate
v* 5 6.583 1026 ~a! cRe* , ~b! cIm* , ~c! hRe* , and~d! h Im* ~other paramete
values given in Table II!.
o

]h̄*

]X
5 2Ī * @38#

The dimensionless concentration and overpotential as functio
position and time solved using the boundary condition given in
37 and 38 are given by Eq. 32 and 33 divided by two.

Impedance.—In case of impedance measurements, the ap
perturbation is a sinusoidal current~Eq. 21!. The applied curren
density introduces a corresponding variation in the potential
across the porous electrode that is a function of concentratio
overpotential. The impedance of the electrode can be determin
the ratio of the potential drop across the porous electrode t
applied current density. The potential drop across the porous
trode is the difference between the solid phase potentials at

end of the electrode. Thus, the dimensionless impedance (Z̄) is
given by

Z̄ 5
f̄1* uX521 2 f̄1* uX51

Ī *
@39#

whereĪ * is the dimensionless applied current density~Eq. 31! in the

Laplace domain andf̄1* is the dimensionless perturbed solid-ph
potential (f1* 5 f1F/RT) in the Laplace domain. In case of t
reformulated boundary conditions~Eq. 37 and 38! the impedance
given by

2 2sB1SB2 1 4~ t2
0 !2S2 1 4t2

0 S2B2 1 S2B2
2#

2 2sB1SB2 1 4~ t2
0 !2S2 1 4t2

0 S2B2 1 S2B2
2# @34#

Figure 3. Plot of the perturbed variables along the spatial coordinate
v* 5 6.583 101 ~a! cRe* , ~b! cIm* , ~c! hRe* , and ~d! h Im* ~other paramete
values given in Table II!.
SsB1

SsB1
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Z̄ 5
2~f̄1* uX50 2 f̄1* uX51!

Ī *
@40#

Dimensionless solid-phase potential drop across the electrod
function of the dimensionless overpotential and concentration.
stituting Eq. 12 into 18 and introducing the dimensionless varia

given in Eq. 22, 23, andf̄1* , the governing equation for the sol
phase potential in terms of the dimensionless overpotential and
centration is determined as

]2f̄1*

]X2 5
1

~b 1 1!

]2h̄*

]X2 1
2t2

0

~b 1 1!

]2c̄*

]X2 @41#

where

b 5
seff

keff

Integration of Eq. 41 with respect toX gives the dimensionle
solid-phase potential in terms of the integration constant~A!

]f̄1*

]X
5

1

~b 1 1!

]h̄*

]X
1

2t2
0

~b 1 1!

] c̄*

]X
1 A @42#

The integration constant can be determined from the boundary
ditions at

X 5 1
] x̄*

]X
5

]f̄1*

]X
5 2Ī * @43#

and at

X 5 1
] c̄*

]X
5 0 @44#

as

A 5
2b Ī *

~b 1 1!
@45#

Further, integrating Eq. 42 with respect toX from 0 to 1 and subst
tuting for A gives the dimensionless solid-phase potential
across the porous electrode

~f̄1* uX50 2 f̄1* uX51! 5
2keff

keff 1 seff
@h̄* uX51 1 2~1 2 t1

0 !c̄* uX51#

1
seff

keff 1 seff
Ī * @46#

where the dimensionless overpotential and concentration atX 5 1
can be evaluated using the expressions given in Eq. 32 an
respectively. Hence, the final expression for the dimensionles

pedance in the Laplace domain (Z̄) evaluated using Eq. 40 can
transformed to the dimensionless impedance in the frequenc
main ~Z! by replacings with j v* ,19 written as

Z 5
2keff

~seff 1 keff!~l1 2 l2!sB1
Fl2~l1B2 2 sB1!tanh~Al1!

Al1

2
l1~l2B2 2 sB1!tanh~Al2!

Al2
G 1

2

S 1 1
keff

seff
D @47#

where

s 5 j v* @48#
a

-

-

,

-

The dimensionless impedance in the frequency domain is a co
number with real part (ZRe) and imaginary part (Zim). The expres
sions for the real and imaginary part are too long to be pres
here. They can be obtained using the standard comman
maple.20 Maple programs used in this paper can be obtained
request~White!.

Results and Discussion

The impedance was simulated for the LiyMn2O4 electrodes usin
the base values given in Table II and the derived analytical solu
The impedance spectrum for the LiyMn2O4 electrodes was als
solved numerically using the method employed by Doyleet al.9 The
results obtained from the analytical solution agree well with t
from the numerical solution. The impedance spectrum, illustrat
Fig. 4, shows two well-defined arcs with a very high-frequency
tercept.

The higher frequency arc represents the kinetic impedanc
the lower frequency arc represents the diffusional impedance
kinetic arc is a squashed semicircle due to the linear imped
behavior~slope equal to 45°, as shown by the inset in Fig. 4! at very
high frequencies, while the diffusional impedance is a perfect s
circle. The 45° straight line, typical of porous electrodes, is du
the distributed interfacial impedance that is purely capacitive at
high frequencies.1,5,14When the system is perturbed from the e
librium condition ~open-circuit condition! electrode kinetics is th

Figure 4. Impedance response for LiyMn2O4 electrodes~parameter value
are given in Table II!: ~ ! analytical and~m! numerical solution.

Table II. Parameter values.

Parameter Value Ref.

i 0 0.00018 A/cm2 Ong and Newman8

k 4.113 1024 S/cm Ong and Newman8

s 0.003 S/cm a

l p 0.008 cm a

D 7.5 3 1029 cm2/s a

« 0.53 a

« inert 0.073 Ong and Newman8

Rs 8.5 mm Ong and Newman8

a 1401.2 cm21 Calculated using Eq. 5
Cdl 10 mF/cm2 Ong and Newman8

aa 1 ac n Newman
n 1 a

ci 0.001 mol/cm3 Ong and Newman8

t1
0 0.537 Ong and Newman8

n2 4.612 b

B1 3.068273 105 b

B2 0.1723 b

B3 26.77 b

a Assumed value.
b Calculated using the definition in Table I.
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main cause for a change in the electrode potential. However,
presence of the double-layer capacitance at the interface, the
ing and discharging of the double layer acts as a parallel phe
enon in establishing the potential gradients. This translates int
kinetic arc in the high-frequency regime. In the low-frequency
gime, the electrode reaction is fast, but the rate of the diffu
process is not fast enough to supply the reacting species. This
to concentration gradients in the solution phase giving rise to m
transfer resistance. The impedance spectra shown here are sim
the results obtained by Cachet and Wiart4 and Lasia.5 They used
cylindrical pore model and numerical methods to solve for the
pedance of a porous electrode under the influence of potentia
concentration gradients.

At very high frequencies the double-layer capacitance s
circuits the surface overpotential, leaving the ohmic drop acros
solid matrix and the solution phase as the residual resistance
dimensionless ohmic resistance (RV)3,12 is the high-frequency inte
cept that can be evaluated from the impedance expression~Eq. 47
after substitution of Eq. 48! for v* → ` yielding

Z → RV 5
2

S 1 1
keff

seff
D 5 1.718132 @49#

using the values given in Table II.
A plot of the impedance spectra for different values of the

change current density is shown in Fig. 5. Note that the dimen
less ohmic resistance (RV) of the electrode was deducted from
real part of the impedance spectra in Fig. 5 for better represen
of the impedance arcs. The same format is followed for Fig. 6
Exchange current density, expressed as the product of rate co
and local concentrations in the solid and solution phase,15 can be
seen as the electrochemical reaction rate. At moderate reaction
both the diffusional impedance and the kinetic impedance contr
to the total impedance across the porous electrode, as indica
two arcs. At low values of the exchange current density, though
of the species is maintained high by the diffusion process the k
ics at the interface is slow and offers maximum resistance, lea
to an impedance spectrum with a large kinetic arc and no diffus
arc. The performance of the porous electrode in this case is li
by the interfacial kinetics, and the impedance expression in Eq.
reduced to

Z 5 2
keff

~keff 1 seff!

tanh~As 1 n2!

As 1 n2
1 2

seff

~keff 1 seff!
@50#

Figure 5. Effect of exchange current density on the impedance resp
~other parameter values given in Table II!.
-
-

s
-
to

d

e

nt

s,

y

where s 5 j v* . Equation 50 gives the dimensionless impeda
for the symmetric system of porous electrodes when the pot
drop governs the impedance. Equation 50 is the same as the i
ance expression derived by Gomadamet al.12 for the porous elec
trodes with no concentration gradients. The low-frequency inte
of the kinetic arc in this case is the charge transfer (Rct),

3,4,21 ob-
tained by taking the limitv* → 0 in Eq. 50, giving

Rct 5 2
keff

~keff 1 seff!

tanh~n!

n
1 2

seff

~keff 1 seff!
@51#

Let us consider the case when the kinetics at the interface is
Here, in spite of the higher rate of reaction the total impedan
the electrode is high. This is because the diffusion process is n
enough to supply enough reactant to maintain the interfacial rea
at such high rates. The diffusional impedance dominates the p
electrode, indicated by a larger diffusion arc when compared t
kinetic arc. In Fig. 5 the impedance arc for higher values of
exchange current density indicates that the total impedance
completely governed by the diffusion process; there exists a
kinetic resistance also. When the exchange current density
creased to further higher values the impedance in the porous
trode is completely dominated by the diffusion resistance, as s
in Fig. 6. In this case the performance of the porous electro
diffusion limited. The impedance spectra of the diffusion-lim
process also exhibits a linear behavior at high frequencies sim
the kinetic arc due to the porous nature of the electrodes. The
frequency intercept of the diffusional arc (v* → 0) gives the po
larization resistance (Rp)

3,4

Rp 5
2

1 1
keff

seff

1 2
keff

keff 1 seff F 2t0

~2t0 1 B2!

1
B2

~2t0 1 B2!

tanhSAn2

B2

~2t0 1 B2!D
An2

B2

~2t0 1 B2!
G @52#

Figure 6. Diffusion-limited impedance spectrum (i 0 5 0.048 A/cm2, other
parameter values given in Table II!.
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The diffusion coefficient of the species involved is an impor
property that determines the concentration gradient in the p
electrode. Figure 7 gives the impedance spectra for different v
of the solution-phase diffusion coefficient. The value of the diffu
coefficient does not affect the kinetic semicircle. A larger diffusio
arc is obtained for low values of the bulk diffusion coefficien
aboutD 5 7.5 3 1029 cm2/s. This shows that significant conce
tration gradients are established in the case of electrolytes in w
the diffusion coefficient of the species is low like the polymer e
trolytes. The dimensionless groupB3 determines the importance
concentration gradients and the potential gradients in the p
electrode, given by

B3 5
n2

B2
5

i 0

F

an~1 2 t1
0 !

«ci
S l p

2

De
D @53#

or

B3 5
kinetic flux

diffusion flux
@54#

where

kinetic flux 5
ni0~1 2 t1

0 !

F
@55#

and

diffusion flux 5 «ci S De

l p
2 D @56#

Case 1: Kinetic limited impedance.—When the flux ratio become
much smaller than one,B3 ! 1, kinetics are more important and t
impedance spectrum obtained is only the kinetic arc~see Fig. 5 fo
i 0 5 1.8 3 1026 A/cm2).

Case 2: Diffusion-limited impedance.—The impedance of the ele
trode is diffusion limited when the kinetic flux ratio is far grea
than the diffusion fluxB3 @ 1 ~see Fig. 6!.
Similar to the previous analysis, Lasia5,21 analyzed the effec
of concentration gradients based on the value of the para
B 5 (2ksl

2/rD )p2a(1 1 p) or n 5 nFDc0* , whereks is the stan
dard rate constant,D is the diffusion coefficient,c0* is the concen
tration of the oxidized forms outside the pore, andp 5 enF/RTh.
He stated that whenB → 0 or n ! 0 the electrochemical process

Figure 7. Effect of bulk diffusion coefficient on the impedance respo
~other parameter values given in Table II!.
s

r

the pores is determined by the concentration gradient only. W
B → ` or n @ 0, the concentration gradient is negligible.
The flux ratio as given in Eq. 54 depends on the properties o
porous electrode and electrolyte. These properties include exc
current density, diffusion coefficient, porosity, thickness of the e
trode, and the specific surface area. The specific surface area~a! for
the model presented here is defined as the electroactive surfac
of the pore walls per unit volume of the total electrode. For sphe
particles the specific surface area is related to the particle r
(Rs), porosity of the electrode~«!, and the volume fraction of th
inert material (« inert) as10

a 5
3

Rs
~1 2 « 2 « inert! @57#

A change in the interfacial area~a! can be affected by changing t
particle size, porosity of the electrode, or the volume fraction o
inert material. Figures 8 and 9 present the influence of these p
eters on the impedance spectra. The interfacial area increase
decrease in porosity or particle size. Porosity also affects the o
drop across the electrode. This is because the conductivity o
electrolyte and the solid matrix are expressed in terms of effe
parameters that depend on the volume fraction of the resp
phases. With a decrease in porosity the ohmic drop across the

Figure 8. Effect of porosity of the active material on the impedance
sponse~other parameter values given in Table II!.

Figure 9. Effect of radius of the active material particles on the imped
response~other parameter values given in Table II!.
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trode increases. The effect ofl p on the impedance spectrum is sho
in Fig. 10. As the electrode thickness is increased, Eq. 53 an
show that the kinetic flux increases relative to the diffusional
which is to be expected. A lower diffusion flux gives rise to hig
diffusional resistance. This manifests as a smaller kinetic arc a
larger diffusional arc in the impedance spectra of Fig. 10.

Conclusion

An analytical solution for the impedance of a porous elect
with concentration and potential gradients was derived~see Eq. 47!.
The effect of parameters on the impedance response was s
Based on the value ofB3 ~see Table I! the significance of th
solution-phase concentration gradients were analyzed. Conc
tion gradients become significant at very high exchange curren
sities as in cells operating at high temperatures and very low d
sion coefficients as in the case of a few polymer electrolytes, w
the solid-phase diffusion does not limit the process~small particle
size!.
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Appendix

The coupled linear differential equations in Eq. 26 and 27 can be decouple
solved analytically by using a similarity matrix transformation method as desc
here. The second-order differential equations~Eq. 26 and Eq. 27! can be rewritten in th
matrix form as follows

d2Y

dX2 5 AY @A-1#

where

Y 5 Fy1

y2
G 5 F c̄*

h̄* G @A-2#

and

Figure 10. Effect of half the thickness of the porous electrode on the
pedance response~other parameter values given in Table II!.
d.

-
-

d2Y

dX2 5 F d2y1

dX2

d2y2

dX2

G 5 F d2c̄*

dX2

d2h̄*

dX2

G @A-3#

A 5 F sB1

B2
2

S

B2

2
2s~1 2 t1

0 !B1

B2
SS 2~1 2 t1

0 !

B2
1 1D G @A-4#

The matrix equation~Eq. A-1! can be transformed into Eq. A-5 using the matrix
eigenvectors~P!

d2~M !

dx2 5 gM @A-5#

M 5 P21Y @A-6#

g 5 P21AP @A-7#

where the matrix of eigenvectorsP expressed in terms of the eigenvalues (l1 andl2)

P 5 F l2B2 2 sB1

2sB1~1 2 t1
0 !

l1B2 2 sB1

2sB1~1 2 t1
0 !

1 1
G @A-8#

andg is a diagonal matrix with the eigenvalues as the elements

g 5 Fl1 0

0 l2
G @A-9#

The matrix equation~Eq. A-5! can be decoupled using the eigenvalues ofA vector as

d2M1

dX2 5 l1M1 @A-10#

and

d2M2

dX2 5 l2M2 @A-11#

whereM1 andM2 are the elements of the vectorM .

M 5 FM1

M2
G @A-12#

The second-order differential Eq. A-10 and A-11 can be solved for the vectorM in
terms of unknown constantsa, a2 , b, andb2

M1 5
a sinh~Al1X!

Al1

1
a2 cosh~Al1X!

Al1

@A-13#

M2 5
b sinh~Al2X!

Al2

1
b2 cosh~Al2X!

Al2

@A-14#

The perturbed variablesc̄* and h̄* can be determined by premultiplying matrixM by
the matrix of eigenvectorsP ~from Eq. A-5!. The solution for the perturbed variables
in terms of the unknown constants. The constants are determined using the bo
conditions in the dimensionless form as given by the following equations at

X 5 21
] c̄*

]X
5 0

]h̄*

]X
5 2Ī * @A-15#

at

X 5 1
] c̄*

]X
5 0

]h̄*

]X
5 2Ī * @A-16#

The constants are determined to be



conce
the

ions,

g

.,

.

fs,

s,

ys-

.

Journal of The Electrochemical Society, 151 ~6! A905-A913 ~2004! A913
a2 5 b2 5 0 @A-17#

a 5
2Ī * ~l1B2 2 sB1!

B2~l1 2 l2!cosh~Al1!
@A-18#

b 5
Ī * ~l2B2 2 sB1!

B2~l1 2 l2!cosh~Al2!
@A-19#

Using the expressions for the constants as determined here, the dimensionless
tration and overpotential (c̄* andh̄* ) are determined as given in Eq. 32 and 33 of
main section.

List of Symbols

a specific interfacial area, cm21

B1 dimensionless group, see Table I
B2 dimensionless group, see Table I
B3 dimensionless group, see Table I

c concentration of lithium ions in the solution phase, mol/cm3

ci concentration of lithium ions in the solution phase at open-circuit condit
mol/cm3

c* dimensionless concentration,c 2 ci /ci
c̄* dimensionless concentration in the Laplace domain~see Eq. 32!
cRe* real part of dimensionless concentration
cIm* imaginary part of dimensionless concentration
Cdl double-layer capacitance, Farad/cm2

D bulk solution salt diffusion coefficient, cm2/s
Deff effective diffusivity, cm2/s ~see Eq. 6!

e charge on the electron, 1.6023 10219 C
F Faraday’s constant, 96,487 C/equiv

f 6 activity coefficient of the salt
I total current density applied to the system, A/cm2 ~see Eq. 21!

I * dimensionless applied current in Laplace domain density,IFl p /RTseff

Ī * dimensionless applied current density in the Laplace domain
i 0 exchange current density, A/cm2

i 1 matrix phase current density, A/cm2

i 2 solution phase current density, A/cm2

i app amplitude of the applied sinusoidal current, A/cm2

j n pore wall flux across interface, mol/cm2/s
k Boltzman constant, 1.383 10223 J/K
l p half the thickness of the porous electrode, cm
n number of electrons transferred in the electrochemical reaction (n 5 1 here!
R universal gas constant, 8.313 J/mol K

Rct dimensionless charge-transfer resistance~see Eq. 51!
Rp dimensionless poralization resistance~see Eq. 52!
Rs radius of the particle, cm

RV dimensionless ohmic resistance~see Eq. 49!
S dimensionless variable~see Eq. 28!
s Laplace variable
T temperature, K
t time, s

t1
0 transference number of lithium ions in the solution
U open-circuit potential, V
X dimensionless spatial coordinate,x/ l p
x distance from the center of the electrode, cm
Z̄ dimensionless impedance in the Laplace domain
Z dimensionless impedance in the frequency domain~see Eq. 47!

ZRe real part of the dimensionless impedance
ZIm imaginary part of the dimensionless impedance

Greek

aa anodic transfer coefficient, dimensionless
ac cathodic transfer coefficient, dimensionless

« porosity of the electrode, dimensionless
n-

« inert volume fraction of the inert material of the porous electrode
f1 solid-phase potential, V
f1* dimensionless solid-phase potential,f1F/RT

f̄1* dimensionless solid-phase potential in the Laplace domain
f2 solution-phase potential, V
h surface overpotential, V

h* dimensionless overpotential, (f1-f2)F/RT
h̄* dimensionless overpotential in the Laplace domain~see Eq. 33!
hRe* real part of the dimensionless overpotential
h Im* imaginary part of the dimensionless overpotential

k conductivity of bulk solution, S/cm
keff effective solution-phase conductivity, S/cm~see Eq. 7!
n2 dimensionless exchange current density~see Table I!
n square root of the dimensionless exchange current density
s conductivity of the solid phase in the electrode, S/cm

seff effective solid-phase conductivity, S/cm~see Eq. 8!
t dimensionless time,t/aCdl(1/keff 1 1/seff)lp

2

v frequency, s21

v* dimensionless frequency, (aCdl(1/keff 1 1/seff)lp
2)v

Subscripts

a anodic
c cathodic

eff effective
1 solid phase
2 solution phase

Superscripts

* dimensionless quantities
overbar Laplace domain
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