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An approximate solution for a pseudocapacitor
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Abstract

Transient analytical solutions are presented for the overpotential and the voltage for a porous electrode that includes both double-layer
charging and a faradaic reaction. In addition, a simplified dynamic model is developed for the same process based on a second order,
three-parameter polynomial approximate model. The effects of the parameters such as dimensionless exchange current density, conductivity
ratio and applied current density on the voltage and overpotential distribution are presented. Also, using the exact transient solution an
expression for the dimensionless interfacial current density is derived and the effects of the parameters mentioned above are presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Capacitors have received considerable attention recently
because of their high power densities[1]. Originally, capac-
itors served mainly as backup power sources for memories,
microcomputers and clocks. Later they were used as main
power sources in applications that required short pulses of
large current for several seconds duration. Currently, they
are employed in hybrid configurations with batteries and
fuel cells. Capacitors can be broadly classified[2] as electro-
chemical double-layer capacitors or pseudocapacitors (i.e.,
an electrochemical capacitor with a faradaic reaction).

The performance of a capacitor depends on many factors
such as the material properties, cell design and operating
conditions. To fabricate capacitors for a particular applica-
tion, it is necessary to analyze the performance and optimize
the system parameters. Mathematical modeling has proven
to be very useful for this purpose[3]. Both circuit analog
models and macroscopic models[2–5] have been used to
predict the behavior of capacitors. Circuit analog models
do not capture the physics. While macroscopic models cap-
ture the physics, they are often time consuming to solve.
Hence simplified models without compromising accuracy
are highly desirable. In this paper, an approximate model
for a pseudocapacitor is presented.
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A pseudocapacitor cell can consist of two porous elec-
trodes with a separator between them as illustrated inFig. 1.
The system is filled with electrolyte throughout. In this pa-
per, we present a model for a single porous electrode. The
objectives of this work are three-fold: (1) Develop an analyt-
ical solution for the transient behavior of a porous electrode
with both double-layer charging and a faradaic reaction with
linear kinetics. (2) Develop a simplified dynamic model
to replace the transient solution obtained in (1). (3) Study
the effect of the various parameters such as the exchange
current density, conductivity ratio and applied current den-
sity on the developed model. The interfacial current density
distribution across the electrode is a measure of the active
material utilization. Based on the interfacial current den-
sity distribution, the performance of the capacitors can be
optimized. Here, an expression for the interfacial current
density is derived using the transient analytical solution.
Using this expression the interfacial current distribution is
determined as a function of the system parameters.

2. Model description

The following assumptions are made: (1) Porous elec-
trode theory in one dimension is applicable.[6]. (2) No
concentration gradients exist inside the electrode. (3) Both
double-layer charging and a linear faradaic reaction occur.
(4) The material and kinetic properties (a, σ, κ, αa, αc
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Nomenclature

a specific interfacial area (cm−1)
a(τ) time-dependent parameter of the

simplified dynamic model (seeEq. (25))
b(τ) time-dependent parameter of the

dynamic model (seeEq. (20))
c(τ) time-dependent parameter of the dynamic

model (seeEq. (21))
Cdl double-layer capacitance (F/cm2)
F Faraday’s constant, 96487 C/eq.
i0 exchange current density (A/cm2)
i1 matrix phase current density (A/cm2)
i2 solution phase current density (A/cm2)
I total cell current density (A/cm2)
jn interfacial current density (A/cm2)
j∗n dimensionless interfacial current density

(seeEq. (43))
jn,f faradaic interfacial current density (A/cm2)
L thickness of the porous electrode (cm)
n number of electrons transferred in the reaction
R universal gas constant, 8.313 J/mol K
t time (s)
T temperature (K)
V∗ dimensionless voltage drop across the

porous electrode
x distance (cm)
X dimensionless distance,x/L

Greek symbols
αa, αc anodic and cathodic transfer coefficients

respectively (αa + αc = n)
β ratio of the solution phase and matrix

phase conductivities,κ/σ
δ dimensionless current density,I(FL/κRT)
η overpotential (φ1 − φ2) (V)
η∗ dimensionless overpotential,ηF/RT
η∗

avg average dimensionless overpotential
(seeEq. (24))

κ solution phase conductivity (S/cm)
ν2 dimensionless exchange current density

[ai0(αa + αc)FL2/RT](1/σ + 1/κ)
σ matrix phase conductivity (S/cm)
τ dimensionless timet/(aCdl(1/κ + 1/σ)L2)

φ1 solid phase potential (V)
φ2 solution phase potential (V)
φ∗

1 dimensionless solid phase potential,φ1F/RT

and i0) are assumed to be constants. (5) The double-layer
capacitance (Cdl) is taken to be a constant. (6) The open
circuit potential is set equal to zero. With no concentra-
tion gradients, the matrix phase current density,i1 and so-
lution phase current density,i2 are given by Ohm’s law
[6]:

i1 = −σ ∂φ1

∂x
(1)

i2 = −κ∂φ2

∂x
(2)

whereσ andκ are the matrix phase and solution phase con-
ductivities, respectively. The total current densityI is the
sum of the matrix and solution phase current densities:

i1 + i2 = I (3)

where I is the applied current density under galvanostatic
conditions (note thatI is defined to be positive when leaving
the current collector atx = L, seeFig. 1). The current
transferred from the matrix phase to the solution phase is
expressed in terms of the interfacial current density,jn [6]:

−∂i1
∂x

= ∂i2

∂x
= ajn (4)

wherea is the surface area per unit volume of the porous
electrode. The interfacial current density (jn) is the sum of
the double-layer charging current density and the faradaic
current density:

jn = Cdl
∂(φ1 − φ2)

∂t
+ jn,f (5)

whereCdl is the double-layer capacitance and the faradaic
current density (jn,f ) is given by the linear kinetic expression:

jn,f = i0F(αa + αc)

RT
(φ1 − φ2) (6)

whereαa + αc = n [6] and the open circuit potential has
been set equal to zero. SubstitutingEq. (6)in Eq. (5)yields

jn = Cdl
∂(φ1 − φ2)

∂t
+ i0(αa + αc)F

RT
(φ1 − φ2) (7)

Let the overpotential be given byη = φ1 − φ2. The initial
and boundary conditions for the overpotential are given by
[5]:

φ1 = 0 and φ2 = 0 ⇒ η = 0 at t = 0 for 0 ≤ x ≤ L

(8)
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ElectrodeSeparator

x = 0 x = L
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Solution Phase 
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I 

Fig. 1. Schematic of an electrochemical capacitor.
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i1 = 0 and i2 = I ⇒ ∂η

∂x
= I

κ
at x = 0 for t > 0 (9)

i1 = I and i2 = 0 ⇒ ∂η

∂x
= − I

σ
at x

= L and fort > 0 (10)

Eqs. (1), (2), (4) and (7)can be used to determine the fol-
lowing equation for the overpotential in dimensionless form:

∂η∗

∂τ
= ∂2η∗

∂X2
− ν2η∗ (11)

whereν2 (dimensionless exchange current density)[6] is

ν2 = ai0(αa + αc)FL2

RT

(
1

σ
+ 1

κ

)
(12)

and

X = x

L
, τ = t

aCdl(1/κ + 1/σ)L2
,

η∗ = ηF

RT
(13)

The corresponding dimensionless initial and boundary con-
ditions are

η∗ = 0 atτ = 0 and for 0≤ X ≤ 1 (14)

∂η∗

∂X
= δ atX = 0 and forτ > 0 (15)

∂η∗

∂X
= −δβ atX = 1 and forτ > 0 (16)

whereβ is the ratio of the solution phase to matrix phase
conductivity (β = κ/σ) andδ is the dimensionless current
density:

δ = I

(
FL

κRT

)
(17)

2.1. Exact transient solution

An exact transient solution for this model can be derived
using the separation of variables method[7] and is given by

η∗ = δ(1 + β)e−ν2τ

ν2
− δ[cosh(ν[1 −X])+ β cosh(νX)]

ν sinh(ν)

+2δ
∞∑
n=1

An cos(nπX)e−(n2π2+ν2)τ (18)

whereAn = (β cos(nπ)+ 1)/(ν2 + n2π2)

The number of terms required for convergence of this se-
ries can be significant and depends strongly on the dimen-
sionless current densityδ.

2.2. Simplified dynamic model

An approximate solution for the same model (Eq. (11)
subject toEqs. (14)–(16)can be found by assuming that the
dimensionless overpotential is a polynomial inX [8]:

η∗(X, τ) = a(τ)+ b(τ)X+ c(τ)X2 (19)

wherea(τ), b(τ) and c(τ) may be functions of the dimen-
sionless time. Two of these time-dependent parameters (b(τ)
andc(τ)) can be determined using the boundary conditions.
By applyingEq. (19) to the boundary condition atX = 0
we get

b(τ) = δ (20)

Similarly, c(τ) can be obtained by using the boundary con-
dition atX = 1 as follows:

c(τ) = −1
2δ(1 + β) (21)

An averageη∗ can be determined by usingEq. (19):

η∗
avg =

∫ 1

0
η∗ dX = a(τ)+ b(τ)

2
+ c(τ)

3
(22)

Eq. (11) together withEqs. (19) and (21)can be used to
derive an equation for the time dependence of the dimen-
sionless average overpotential,η∗

avg. First, useEqs. (19) and
(21) to obtain an expression for the second derivative ofη∗
with respect toX. Next, put this expression intoEq. (11)and
integrate both sides of the resulting equation with respect to
X from X = 0 to 1. The result is

dη∗
avg

dτ
= −δ(1 + β)− ν2η∗

avg (23)

Eq. (23)can be solved by using the initial conditionη∗ = 0
at τ = 0 for all X to obtain

η∗
avg = e−ν2τ δ(1 + β)

ν2
− δ(1 + β)

ν2
(24)

Next, the time-dependent parametera(τ) can be determined
by substitutingEqs. (20), (21) and (24)into Eq. (22). The
result is

a(τ) = e−ν2τ δ(1 + β)

ν2
− δ(1 + β)

ν2
+ δβ

6
− δ

3
(25)

The dimensionless overpotential based on the polynomial
approximation (simplified dynamic model) is obtained by
substitutinga(τ), b(τ) andc(τ) into Eq. (19). The result is

η∗ = − δ

3
+ δβ

6
+ e−ν2τ δ(1 + β)

ν2
− δ(1 + β)

ν2

+ δX− δ(1 + δ)

2
X2 (26)

ComparingEq. (18) to Eq. (27) shows that the simpli-
fied dynamic model does not contain an infinite series and
is, consequently, much simpler. Note that the simplified dy-
namic model involves all the physical and kinetic parameters
of the model.
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2.3. Potential drop across the electrode

CombiningEqs. (1), (4) and (7)gives the equation for
solid phase potential as

σ
∂2φ1

∂x2
= aCdl

∂η

∂t
+ ai0(αa + αc)F

RT
η (27)

Substitution of the dimensionless variables as defined in
Eq. (13)into Eq. (27)and letting

φ∗
1 = φ1F

RT
(28)

yields an equation for the dimensionless solid phase potential

∂2φ∗
1

∂X2
= β

1 + β

[
∂η∗

∂τ
+ ν2η∗

]
(29)

UsingEq. (11), Eq. (29)can be rewritten as

∂2φ∗
1

∂X2
= β

1 + β

∂2η∗

∂X2
(30)

The boundary conditions forφ∗
1 andη∗ in Eq. (30)are

∂φ∗
1

∂X
= 0 and

∂η∗

∂X
= δ atX = 0 (31)

∂φ∗
1

∂X
= −δβ and

∂η∗

∂X
= −δβ atX = 1 (32)

Eq. (30)can be integrated once with respect toX to yield

∂φ∗
1

∂X
= β

1 + β

∂η∗

∂X
+ C (33)

whereC is an integration constant that can be determined
using one of the boundary conditions (Eq. (31) or (32)):

C = − δβ

1 + β
(34)

IntegratingEq. (34)between the limitsX = 0 to 1 gives the
change in the dimensionless solid phase potential across the
electrode

φ∗
1|X=1 − φ∗

1|X=0 = β

1 + β
(η∗|X=1 − η∗|X=0)− δβ

1 + β

(35)

The potential drop across the porous electrode can be
defined as

V ∗ = (φ∗
1|X=1 − φ∗

2|X=0) (36)

or

V ∗ = (φ∗
1|X=1 − φ∗

1|X=0)+ η∗|X=0 (37)

By substitutingEq. (35) into Eq. (37), we get the dimen-
sionless voltage drop across the electrode as

V ∗ =
[
η∗|X=0 + βη∗|X=1 − δβ

1 + β

]
(38)

This dimensionless voltage across the porous electrode (V∗)
fromX = 1 toX = 0 can be determined by using the exact

transient solution (Eq. (18)) as

V ∗ =δ(1 + β)e−ν2τ

ν2
− δβ

1 + β
− δ

[
(1 + β2) cosh(ν)+ 2β

]
ν sinh(ν)(1 + β)

+2δ
∞∑
n=1

Bn e−(n2π2+ν2)τ (39)

where

Bn = (β cos(nπ)+ 1)2

ν2 + n2π2

The dimensionless voltage drop across the porous elec-
trode fromX = 1 to X = 0 as determined by using the
simplified dynamic model (Eq. (27)) consists of only two
terms:

V ∗ = δ(1 + β)[e−ν2τ − 1]

ν2
− δ(1 + β)

3
(40)

2.4. Interfacial current density

Substituting fori1 in Eq. (4), from Eq. (1) gives the in-
terfacial current density as

jn = 1

aσ

∂2φ1

∂x2
(41)

Introducing the dimensionless variableφ∗
1 (Eq. (28)andX

Eq. (13)) into Eq. (41)gives the dimensionless interfacial
current density (j∗n). j∗n can be written in terms of the di-
mensionless overpotential usingEq. (30):

j∗n = 1

β + 1

∂2η∗

∂X2
(42)

Evaluating the second derivative of the dimensionless over-
potential with respect to the distance fromEq. (18)gives the
expression forj∗n as

j∗n =−2δ
∞∑
n=1

β cos(nπ)+1

(ν2+n2π2)(β+1)
n2π2 cos(nπX)e−(n2π2+ν2)τ

−δν [cosh(ν[1 −X])+ β cosh(νX)]

(β + 1) sinh(ν)
(43)

3. Results and discussion

From the equations presented above, it is clear that both
overpotential and voltage drop across the porous electrode
are functions of the dimensionless current densityδ, di-
mensionless exchange current densityν2 and the ratio of
conductivitiesβ. The distribution of the overpotential across
the porous electrode obtained from the transient solution
is compared to the solution obtained using the simplified
dynamic model inFig. 2 for the parameter valuesδ = −1,
ν2 = β = 1. This figure also shows the overpotential dis-
tribution at different dimensionless times. The change in
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Fig. 2. Distribution of over potential across the porous electrode
(ν2 = β = 1, δ = −1). The exact solution (continuous line) and the
simplified dynamic model solution (symbols) agree well.

voltage drop across the porous electrode with time is plotted
using both the exact solution and the simplified dynamic
solution in Fig. 3. The voltage increases linearly at short
times and levels off. The voltage profiles are similar to
the transient potential response of insertion electrodes with
linear kinetics and double-layer charging as shown by Ong
and Newman (Fig. 5 of ref.[5]).

It is worth noting that Eq. (18) can be simplified
as Eq. (44), when the pseudocapacitor involves only

Fig. 3. Change in voltage across the porous electrode with dimensionless
time (ν2 = β = 1). The exact solution (continuous line) and the simplified
dynamic model solution (symbols) agree well.

double-layer charging (i.e.,ν2 → 0):

η∗ = −δ(1 + β)τ − δ

6
(3X2 − 6X+ 2)− δβ

6
(3X2 − 1)

+2δ
∞∑
n=1

cos(nπX)(β cos(nπ)+ 1)e−n2π2τ

n2π2
(44)

It can be shown thatEq. (44) is equivalent toEq. (16)
given by Srinivasan and Weidner[2] provided the bound-
ary conditions and the dimensionless variables given here
are redefined according to those given in ref.[2]. Similarly
when ν2 → 0, Eq. (39) reduces to the voltage expression
given inEq. (45):

V ∗ = −δτ(β + 1)− δ

3
(β + 1)

+
∞∑
n=1

2δ(β cos(nπ)+ 1)2

n2π2(β + 1)
e−n2π2τ (45)

Eq. (45)is equivalent to Eq. (15) of ref.[2] when the initial
voltage on discharge is assumed to be equal to zero. Hence
the transient model developed for the pseudocapacitor re-
duces to that of the double-layer capacitor when the kinetics
of the faradaic reaction is negligible (ν2 → 0). The voltage
profiles for a pseudocapacitor are compared to that of a
double-layer capacitor for different values of the discharge
current density inFig. 4. Newman pointed out that for large
values of the dimensionless exchange current density (ν2)
and the dimensionless applied current density (δ), the ohmic
effects dominate and the reaction distribution is non-uniform

Fig. 4. The effect of dimensionless exchange current (ν2) density on the
voltage profile across the porous electrode forβ = 0. The dimensionless
applied current density (δ) are as indicated in the figure. Dotted lines
are the voltage profile forν2 = 0.01 simulated using the exact solution.
Solid lines are the voltage profile forν2 = 1 simulated using the exact
solution. The exact solution (line) and the simplified dynamic model
solution (symbols) agree well.
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Fig. 5. Distribution of dimensionless interfacial current density (j∗n) for
ν2 = β = 1, δ = −1 and at different dimensionless times.j∗n (Eq. (43))
is derived using the exact solution for the overpotential.

[6]. The dimensionless interfacial current (j∗n) distribution
for ν2 = 1 is illustrated inFig. 5at differentτ. The distribu-
tion of j∗n reaches a steady state whenτ > 0.15. Compared
to the steady statej∗n distribution forν2 = 0.01 (small value
of the dimensionless exchange current density) as shown in
Fig. 6, it is clear that the steady state reaction distribution is
non-uniform forν2 = 1. The steady state distribution ofj∗n
for ν2 = 0.01 (Fig. 6) is more uniform and corresponds to
reaction distribution of the double-layer capacitors[2]. The
effect ofδ on the reaction distribution is given inFig. 7. For

Fig. 6. Distribution of dimensionless interfacial current density (j∗n) for
ν2 = 0.01, β = 1, δ = −1 and at different dimensionless times.j∗n
(Eq. (43)) is derived using the exact solution for the overpotential.

Fig. 7. The effect of dimensionless applied current density on the distri-
bution of dimensionless interfacial current density (j∗n) for ν2 = β = 1,
δ = −1. j∗n (Eq. (43)) is derived using the exact solution for the overpo-
tential.

higher values of the discharge current density the reaction
distribution becomes non-uniform. The effect of the conduc-
tivity ratio (β) on the reaction current density is to shift the
reaction from one face to another[6]. This is evident from the
plot of the reaction distribution for low value ofβ as given
in Fig. 8. Forβ = 0, solid phase conductivity is higher than
the solution phase conductivity, the reaction rate is higher
at the solution/porous electrode interface. The reaction dis-
tribution for β = 10, where the solution phase conductivity
is higher than the solid phase conductivity the profiles are

Fig. 8. Distribution of dimensionless interfacial current density (j∗n) for
ν2 = 1, β = 0, δ = −1 and at different dimensionless times.j∗n (Eq. (43))
is derived using the exact solution for the overpotential.
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a mirror image of the plots forβ = 0. Hence the reac-
tion rate is higher at the porous electrode/current collector
interface.

4. Conclusion

An analytical solution for a macroscopic model of a
porous electrode with linear kinetics was compared to a
simplified dynamic model. Comparing the results, it was
shown that the simplified dynamic or approximate model
agrees well with the exact transient model for the cho-
sen parameters (ν2 = β = 1). The model includes both
double-layer charging and a faradaic process approximated
by linear kinetics. The exact transient analytical solution for
the overpotential was used to determine the dimensionless
interfacial current density (Eq. (43)). The dimensionless
interfacial current density distribution is analyzed as a
function of the parameters (ν2, β and δ). A rigorous error
analysis based on the parametersδ, β andν could be done
as in ref.[7]. This analysis would determine the range of
the parameters for whichEq. (27)could be used safely. In

addition, polynomial approximations of higher order[8]
could be used to increase the accuracy.
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