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An analytical expression is presented for the voltage response including the transient voltage for & simpteconcentration

gradient$ porous electrode model subject to a sinusoidal input current density. The transient voltage response as a function of the
frequency, exchange current density, and double layer capacitance is studied independent of the(stedogistatevoltage

response. The change in the voltage response in the transient region is compared to that of the periodic voltage response with
respect to the parameters. The physical properties of the porous electrode can be estimated using the voltage response in the
transient region is presented. The methodology for doing this is described.
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The transient techniques employed to measure the physical propesponse and the uniform and sustained peri¢glitusoidal steady
erties of a porous electrode and in fact any electrochemical systerstate voltage response. Note that the steady state response in peri-
are based on the concept of perturbing the system about its initiabdic input perturbation such as a sinusoidal signal is also a periodic
condition using potential, current, or charge and measuring the reresponse with the same frequency but with a different amplitude and
sponse of the system. Because the rates of each processes suchpgise angle with respect to the input perturbations. The input sinu-
interfacial charge transfer, mass transport etc., are time dependenoidal perturbations could have been replaced by other kind of per-
the analysis of the time dependence gives information to obtainyrpations such as step inpq,‘amp input? etc. However, the advan-
these properties. When any system is perturbed, the current or voligges  of analyzing the system response using sinusoidal
age response changes from one steady éititeal state to another  herqyrbations aré) perturbations as sine waves are easy to generate
steady state. The transition from an initial state to steady state OCCUrSompared to the other wave for?ﬂs(ii) using sinusoidal signals
within a region and the response in this region is called the transienf e ified as a function of time and frequency facilitates the use of
respgnse. Hence, the complete response of a system consists of ty quency as another variable apart from time that can be varied at
parts: the transient response and the steady state res]ponse. ease, andiii) the sinusoidal signal can be expressed using standard

The perturb.atlon. can be of many dlﬁgrent kinds such as StePathematical functions that makes modeling the system and the
ramp, pulse, sinusoidal, etcTo maintain a linear response the am- . . .
subsequent theoretical analysis easier.

plitude of the perturbations are often very small. Some of the tran- . . .
In this paper, we analyze the voltage response in the transient

sient techniques take into consideration only the steady state re- . functi £ h t densit d
sponse of the sgstem for example electrochemical impedancéeg'on as a function of frequency, exchange current density, an

spectroscopyEIS).* Most of the other techniques include the mea- double layer capacitance and compare it with the change in the
surement of both transient and the steady state responses for eReriodic voltage responsiinusoidal steady state responsé the
ample potential step or swedp.We will only consider the tech- POrous electrode with respect to the same set of parameters. By
niques that take into consideration the transient response of th&valuating the limiting expressions of the derived analytical solution
system. In this case, the analysis of the system response is oftelr the voltage response we establish the possibility of estimating
carried out using a combination of the transient and steady statéh® physical parameters of the system using only the voltage re-
response. However, the transient response is a strong function of th@onse in the transient region. The proposed methodology can be
properties of the system. Moreover, the transient response occurs #g€d to estimate parameters accurately within very short time
very short times. Consequently, we expect that there is a wealth operiods.
information that can be obtained in very short time periods using
just the response in the transient region. In the past, instrumental
limitations posed a serious problem to measuring the response at Model Development
very short time period& few milliseconds? With the advancement
of the electrochemical instrumentation this problem has been solved Consider the geometry of the porous electrode illustrated in Fig.
and the measurements at short time periods have been used by sorheThe following assumptions are made:
researchers to estimate certain parameters in case of porous
electrode¥’ and thin films>® However the potential of the transient (1) Porous electrode theory in one dimension is applicable.
response has not been fully utilized. (2) No concentration gradients exist inside the electrode.

In this paper, we stress the importance of the transient response (3) Both double layer charging and a linear faradi
of a porous electrode using a simple porous electrode model. The reaction occur.
model equations presented below describe the porous electrode un- (4) The material propertie$a,o,k,a,a;) are assumed to be
der very low rates of discharge when the concentration gradients irconstants.
the solution phase are not important and when the size of the par- (5) The double layer capacitan¢€y) is a constant.
ticles in the electrode are very small so that there is no solid-phase () The open circuit potential is set equal to zero.
diffusion limitation as well. An analytical solution is developed for
the voltage response of a porous electrode subjected to sinusoidal with no concentration gradients, the matrix phase current den-
perturbation in current. The response includes the transient voltaggity, i, and solution phase current density,are given by Ohm’s

law'!
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Electrolyte Porous Current i =Cy A1~ ¢2) | oltat ac)F(d) L= dy) [9]
solution electrode collector at RT
The overpotential is given by = &4 — ¢, when the open circuit

. potential is set equal to zero. For a constant value for the open-
ACth? circuit potential(U # 0) the quantity(d4 — &) in Eq. 8 and con-
material sequently in Eq. 9 should be replaced with, — &, — U). Now the
overpotential is given by = &; — ¢, — U. The equations derived
from this point and on are in terms of the overpotential that is the
same for both cases; when U is a constant value and for U set equal
to zero. The initial and boundary conditions for the overpotential are
given by

b;=0anddp,=00 n=0att=0forO=sx <L [10]

I

Inert
material

Electrolyte
solution g 1Y)

TSN R e S—m

ip;=0andp=1I(t) O 5 —atx =0 and fort> 0 [11]
Keff
=I(t

ip=Itand ,b, =00 m = Latx =L andfort> 0 [12]
X O off

i
)
—p : Equations 1, 2, 6, and 9 can be used to derive the following
i equation for the overpotential in dimensionless fbfm
1 * *
m o,
x =0 X = e (3]

) wherev? (dimensionless exchange current densisy
Figure 1. Geometry of the porous electrode.

aig(ag + ag)FL2( 1 1
2= o(aaR:c) (_ + _) [14]
Oeff  Keff
" and
. db,
i = —Keg—— [2] X t . E
2 o ox X=riT= n ;n=:—.|_ [15]
whereo o andkg are the effective matrix phase and solution phase aQﬂ(_ + _)L2
conductivities, which are related to the respective bulk conductivi- Keff  Oeff
ties through the Bruggeman'’s correlation The corresponding dimensionless initial and boundary conditions
are
oeg=(l—&- 8iner1)150' [3] .
m =0atr=0andfor0s X <1 [16]
Keff = e™% [4] “
The total current densityt) is the sum of the matrix and solution m o dat X =0 and forr >0 [17]
phase current densities 28
iy + i, = It 5 '
) . e ()_ _ .[] ﬂ:—B[Batleandfor¢>0 [18]
where [t) is the applied current density as a function of time. The X
current transferred from the matrix phase to the solution phase igyherep is the ratio of the effective solution phase to matrix phase
expressed in terms of the interfacial current densjf, j conductivity(B = keg/ o) andd is the dimensionless current den-
dip  dip . sity
Tax T ax % (6] FL
d(1) = I(T)( ) [19]
where a is the surface area per unit volume of the porous electrode KefRT
(estimated here as a collection of uniform sphere of radiysée The solution to Eq. 13 using the initial and boundary conditions
list of symbold?). The interfacial current densittj,,) is the sum of given in Eq. 16-18 in the Laplace domain is
the double layer charging current density and the faradic current > >
density (9 = -5(9 BcosHX\v? + s) + cosH(1 - X)\1? + s)
Aoy = ) 2 + ssin\v? + 9)
. 1 2 .
In= Cle +ing [7] [20]

where G, is the double layer capacitance and the faradic current\gr?;re the over bar represents the variables in the Laplace domain

density (jo¢ is given by the linearized Bulter-Volmer kinetic

13 - - (R
expression 5(9) = I(s)( RT) [21]
ioF (0t + 1) _ et .
Infg= T(dn - b) (8] The potential drop across the porous electrode can be defined as
wherea, + a, = n and the open circuit potential has been set equal V" = (ilxe1 = balx=o) [22]

to zero. Substituting Eq. 8 in Eq. 7 yields or
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V" = (dfxer = dalx=o) + M'lx=o (23] L'l[ 3(s)B ] _ 3B [35]
Having solved for the overpotential of the electrode in the (B+1) B+1
Laplace domain it is convenient to derive the voltage drop across the  p i the amplitude and»* is dimensionless frequency of the
porous electrode in terms of the dimensionless overpotenEiaI. Hencfhput perturbation defined as
we determine the potential drop in the solid pha&s|x=1
- d)]xzo) in terms of the overpotential in the subsequent equations . 1 1),
that can be later substituted in Eq. 23 to obtain voltage drop as a o =aCy| —+ L% [36]
function of overpotential in the dimensionless form. eff  Teff

Combining Eq. 1, 6, and 9 gives the equation for solid phase ~Now the Laplace inverse of Eq. 34 is given by

potential as
)

Por_ . m  Aolagt adF LAV @] = L7860 +9] + (530 (3]
Oefi 5 =aCu— + — — [24] B
X ot RT
_— . . . ' . where
Substitution of the dimensionless variables as defined in Eq. 14
and 15 into Eqg. 24 and letting 2 (24 < [25 «
Gl(s +1?) = B cosi(w +‘s) +2B + cosf(w + s) 38]
d)*i - ﬁ [25] (B + 1)\v? + s sin\v? + 9)
RT The Laplace inverse of the function &+ v?) can be determined
yields an equation for the dimensionless solid phase potential by applying the shifting theorem and the Heaviside expansion
24 8 [om theorent**® as
21: |:_ 2 *:| [26] 2 2
XS 1+BLor gir) = e LY G(s)] = -(B + 1)e™
Using Eq. 13, Eqg. 26 can be rewritten as %
T 3 28D R+ 2p) g
. 5 -
Ty B P (271 o= (-1B +1)
X2 1+BaX? e ) .
B . . Substituting for the inverse Laplace of the functionésG v?)
The boundary conditions fap, andv in Eq. 27 are andd(s) and applying convolution theoréffwe obtain the Laplace
b, ' inverse of the first term in Eq. 37
—1 =0and =5atX=0 [28]
oX aJ X B .
. . U{N966+v§]=J.NQMT—®% [40]
J
M1 - 5gand™ = spatx =1 [29] o ° _ _ _
X X In general the dimensionless voltage response in the time domain
Equation 27 can be integrated once with respect to X to yield for a porous electrode with a time dependent input current can be
derived using the expression
P .
Ty [30] T 5
P vm=fs®w~a®+@+naﬂ [41]
where C is an integration constant that can be determined using one 0
of the boundary condition€Eq. 28 or 29
VF
_ OB V*= — [42]
C=—T, 5 [31] RT
Integrating Eq. 30 between the limits X =0 to 1 gives the Or in dimensional form Eqg. 41 is given by
change in the dimensionless solid phase potential across the elec- .
trode L B
V() = — J 1(©)g(t - &) dg + = —1(0) [43]
* o4 _ P . . 5B 35 Keft] Jo ®+1
Palx=t = dalx-0 = 777 B(n x=17 M=o/ T g [32] For the case of a sinusoidal input perturbation applied as a cur-
By substituting Eq. 32 into Eq. 23, we get the dimensionless rent densi_ty(l(t) = Acog(wb) to the system, the dimensionless cur-
voltage drop across the electrode as rent density becomes
. lxzo + BN |xeg — & . L
vi= |2 x=0* B x=1 ~ 3B [33] 3(1) = Acogw T)( ) [44]
1+B KeRT

This dimensional voltage response of the porous electrode in the The voltage response of the porous electrode to the applied sinu-
Laplace domain is obtained using the expression for dimensionles§oidal perturbation in the time domain is determined by evaluating

overpotential(Eq. 20 and Eq. 3Bin the Laplace domain as the integral in Eq. 40 and substituting the result into Eq. 37
V(9 = g(s){ |32cosr(\srv2 + s) + 23.+ c?sf(\fVZ + s) B ] Vit = (B + 1)])26_],2% e i N ( (2 + kzwz)e'<”2+k2"2)% )
(B + 1)\v? + s sinf(y1? + 9) (B+1) ’ (v* + (ot0)?) L T (02 + K22 + (wto)?)
[34]

+ Vs [45]
Laplace inverse of Eq. 34 is determined using the standard theo-

rems as explained below. The Laplace inverse of the second term afhere the uniform and sustained periodic voltage response which is

Eq. 34 can be determined directly commonly called the steady state voltage response is given by
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K.E‘ o ' \ ' ' ' Table |. Parameter values.
50
< B
2“ voon | AA P* 4“; F’arameter Value
g5 £ A A 4 A N i 0.00018 A/cr
3 i S 1 A\ ‘I 4 1 Keff 2.055x 10* S/cm
B 0.001 / A / A i a Oeft 0.16185 S/cm
73: IA ,‘ 4 \ ,A \ L 0.016 cm
< Wv € 0.63
& 0000 1 | : s : \ Eiert 0.073(Ref. 5
U S S B B S ] R, 85um
~ 0001 £ 4 i i X " A Ca 10 pF/cn?
z ' \ A y ] ' n 1
S 4 4 ) 4 g A
20002 | at P i g+ o 1
: = A 0.0001A/crA
& a 31-¢- Sinen)/Rs =1408.1 cm?*
§ -0.003 : ' : T 298.15 K

0.000 0.006 0.012 0.018 0.024 0.030 to 0.01307 s

Time, t (s) V2 9.1599
to/v? 1.427 ms
Applied current
------ Voltage response (Linear Model)
A Voltage response (Nonlinear Model)

sity is high (io = 1.8 X 107* A/cm? or greatey. We confirmed our
results for the linear kinetics case presented here by replacing Eq. 8

Figure 2. Input current density and voltage response plotted at a frequencyith the Butler-Volmer equation and solving the resulting equation
of f =100 Hz. All the other values are given in Table I.

Vss =

c,(B + 1)(v2cogwt) + wtesin(wt))
(v* + (0to)?)

_ - COS((x)t)(v2 + sznz) + wtosin(u)t)>
Zolgl Ak( (V2 + K222 + (ty)?)

numerically. In plotting the voltage response using the analytical
solution one has to be careful with the number of terms used in the
series. The number of terms required in the series solution is a
function of the frequency. The number of terid required is pro-
portional to the frequency hence when the expression is used to
simulate the voltage response at high frequencies a larger number of
terms is needefor example, forf = 100 Hzk = 1600.

The short time voltage response and the periodic part of the total
voltage are represented in Fig. 3. The periodic part is a uniform and

c,codwt)B sustained periodic state that can otherwise be called as the sinusoidal
T T e+l [46] steady state. Henceforth, when we refer as the periodic response it
B should be understood as the sinusoidal steady state response. The
with short time voltage response is given by the first two terms of Eq. 45
((_ DYE2 + 1) + 28) (V - V9 that goes to zero at longer times. Note: Short time voltage
Ay = - [47] response occurs only at times less than a few time constems
=D"B+1 stant multiplied by ¢/v?), while transient voltage response is the
AL total voltage response in the transient region. Transient region refers
C1=" (48]
Keff
and
N N 0.061
to = aQﬂL2<— + —) [49] —~ ;
Keff  Oeff > h
. S~ 004 yShort time
The angular frequency that appears in all of the above equa- > < " voltage (V)
tions is given in rad/s, which is related to the frequency ‘f' givenin ¢ [y
Hz asw = 2xf. § 0021%
=3 Y
Results and Discussion g \\
(] w
The voltage response to an input sinusoidal current signal is also §“ 01 TEtmanmnns
a sinusoidal wave with the same frequency as the input but with a =&
different phase angle and amplitude. Figure 2 shows these differ- =
ences between the input current density and the voltage response for 002 ol
a fixed frequency f = 100 H2. The voltage response is function of vgfggc -
the frequency of the input perturbation, time and the dimensionless 0.0
parameters that includ€, g and t, (see Eq. 45 The dimensionless ' j —
parameters are in turn functions of the properties of the porous elec- — Vf,ff: ;C(V )
trode: exchange current density, electric double layer at the interface o06) 7 il
and the effective conductivities in the solid and solution pHase e

Eq. 14 and 1b The values of the parameters used to simulate the
voltage response in Fig. 2 are given in Table I. In deriving the
analytical expression for the voltage response we have assumed lin-
ear electrochemical kinetics. Hence, the model presented in this pa-

per is limited to cases where the perturbation to the system is veryigure 3. Transient voltage and the steady state voltage that make up the
small (A = 0.1mA/cnt or les$ and when the exchange current den- total voltage response of the porous electrétie 100 H2.

0 0.002 0004 0.006 0008 0.01 0012 0.014 0.016 0.018 0.02

[ ] 7
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Figure 4. Short time voltage response as a function of time for various Figure 5. Transient voltage response region for various frequency values.
frequency values. Note that the initial slope at all frequencies is equaj.= 0.01307 s and
(v =9.1599.

to time less than the time constang/if (=1.427 ms; see Table |
and steady-state regidfonger times refers to t> to/v2.

dv c -
Transient voltage responsedn this section, we focus on the be- (E) = —t—l{(ﬁ +1)+ E Ak} [52]
havior of the transient voltage response. The change in the transient =0 0 k=1

voltage as a function of the frequency is shown in Fig. 4. A fre-  Equation 51 can otherwise be obtained by substituting the initial
quency range of 100 kHz to_l_O ml—_|z over which the same _SVSte”bondition for the overpotential at X = 0 and X = (I'|y=o and
would yield a squashed semicircle in the frequency domain is USEdn*\x:l both of which are zefointo Eq. 33. Also dV/dt at = 0 can

to analyze the response in time dom3Me observe that the short  he obtained by differentiating both sides of Eq. 33 with respett to
time voltage changes for higher frequency values but for frequencies,.o\ijed an expression faf as a function of time valid for short
less than or equal to 10 Hz the short time voltage becomes consta ime periods is knowr{such an expression can be obtained by de-
The frequency of 10 Hz is termed the limiting frequendy) be-  (oymining the Laplace inverse of Eq. 2®oth Eq. 51 and 52 are
cause the short time voltage at frequencies lower thacan be  ingependent of frequency. Note that the voltage at tire0 is
determined by evaluatlng the limit of thc_e tpta_l voltage response algetermined by the ohmic properties of the matefgallution phase

@ = 0. The short time voltage response is indicated\ag, can be  conductivity and solid phase conductivityThe initial slope of the
written as voltage responsésee Eq. 52is independent of the electrode kinet-
ics.
At low frequencies the input perturbation tends to become a step
input (limw — O[Acodwt)] = A). Hence the voltage response at

v ®
+1)e, t
Vlf, =c, (ﬁv% + 2 Ake—(\'2+k2‘ﬂ2)%
kel low frequencies for sinusoidal perturbation should agree with the

i, voltage response for a step input that consists of a transient and a
" steady state respongeot periodig. This is evident from a plot of
B+1 E A B the voltage response @F for sinusqidal perturbation_ﬁEq._ 50 and
“al Tt k+ B+ the voltage response with a step input as shown in Fig. 6. An ana-
k=1

lytical solution for the voltage response of a porous electrode in the
case of applied potential step was published eatfief. Unfortu-
nately, typos exist in all of them; in Ref. 5 the negative sign before
[50] the term within the exponential that is before sit in Eq. B-9 should
Figure 5 gives the total voltage response fet t,/v2 at different ~ be omitted, in Ref. 6Cl = 2(=1)™ / (m?w? + v [A' sinh(v)
frequency values. Because the short time response dominates theB' cosi{v) — B'(-=1)™] in the voltage expressiofEq. 10 instead
total voltage response over the transient region, it shows a constanif the expression given in Eq. 11 and in Ref. 17 coefficient of the
voltage response for « f; as observed in Fig. 4 for just the short series term in the voltage expressiBqg. 39 should be z/(l
time voltage response. Also, the total voltage response in Fig. 5 ist ).
and a constant value for voltage at t = 0 at all frequen_cies. Thethe constant voltage response in the steady state regien-as0
values of these constants can be determined by evaluating the folngjcates that the periodic voltage response is characterized by con-
lowing limiting cases of Eq. 45 stant amplitude. This is because of the nature of the two input per-

Vsslf,

AL turbations. In linear systems the steady state response of the system
V= = — [51] takes the same form as the input perturbatiwhen the input is a
(Keff + Tefr) periodic perturbation the corresponding output will also be peri-

and odic). The constant amplitude of the periodic signal for low frequen-
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Figure 6. Comparing the voltage response at the limiting frequency for a E 4
sinusoidal input(Eq. 50 given by continuous line with that of the voltage N
response for a potential step as the infsee Ref. 5 and 6, or 18epresented oS
by symbols. 2 "
'g Direction of increasing frequency
cies is evident from Fig. 7 that gives a plot of the amplitude of the _ L peE TR S Sy
periodic(Vss, am) response as a function of the frequency in a semi g 0
log scale. In obtaining the ¥ ,mgat very high frequency one has to 8, K/’
pay utmost attention to the sample spacing. Sample spacing is de 2
fined as the time period between two consecutive data samples. Fc g 5
higher frequency values very small sample spacing has be used t &
obtain an accurate value of the amplitude. The amplitude of the g
periodic voltage response is inversely proportional to the frequency.
0% 5 10 15 il %

At lower frequency value$ < 10 Hz a constant value of ¥ ;mgis
obtained as determined using the voltage response at the limiting
frequency,f;. The amplitude forf < f, is given by ngfl (Eq. 52.
The value of the limiting frequency for the periodic voltage is same

Real part of impedance, Zg. (Qcm?)

Figure 8. (a) The Bode plot of the impedanes.frequency(b) Nyquist plot

as that of the transient voltage. The amplitude of the periodic Volt-of the impedance of a porous electrode Continuous line represents the plot
age response is also constant at high frequencies and is given by Egbtained using the impedance expressions in the literature. Symbols denote

51, the value of the voltage at tinte= O in the transient region. At

0.080

0.070
0.060

0.050

0.040
0.030
0.020
0.010

-0.000

Amplitude ofthe periodic voltage Visssamp V)

DD . . , . K . . . . .
102 10" 10 10" 10> 10° 10* 10° 10° 107 10%
Frequency, f(Hz)

Figure 7. Amplitude of the steady state voltag¥, Eq. 46 plotted as a

the plot determined from the expression for steady state voltage response
(Eq. 46.

this point it is worth mentioning that a plot of the ratio of the am-
plitude of the periodic signal to the amplitude of the input current,
Vss, ampVS log frequency yields the well-known Bode magnitude
plot of impedance as shown in Fig. 8a along with the Bode plot
obtained using the impedance expreséiSWe would also mention
that the impedance plots can be obtained from the expression of the
voltage response and the input current presented in this paper by
applying simple concepts: we know that the real part of the imped-
ance is given by the part of the voltage response that is in phase and
the imaginary part is given by the part of the response that is out of
phase with respect to the input perturbatiope Znd Z,,, are equal to
the coefficient of coBot) divided by A and sifwt) divided by A of
Eq. 46, resgectively. The Nyquist plot obtained using the impedance
expressior® is compared to that obtained using Eq. 46 as described
above are given in Fig. 8b.

In porous electrodes designed for the electrochemical capacitors,
the performance of the porous electrode is limited only by the elec-

function of the frequency. The straight lines at high and low frequency aretrical double layer charging. In this case, the voltage response is

plotted using Eq. 5 and 52, respectively.

given by (limit of Eq. 45 asv® — 1)
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1
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S e .
s 1 e
> 0 0.d02 0.004 0.008 0.do8 0.01
0 0.002 0.004 0.006 0.008 0.01 0.012 Time, t (s)

Time, t (s)
Figure 10. Voltage response at the limiting frequen¢kg. 50 plotted for
Figure 9. Voltage response at the limiting frequency for different cases asvarious values of the exchange current densitin iA/cm? is as indicated in
indicated in the figure. All the parameter values are indicated in Table I.  the figure. All the other parameter values are given in Table I.

. nse in the latter part of the transient region chan vident
cu(B + Dsinwt) sponse e latter part of the sient region changes as evide

Vl]20=— from Eq. 52. It is also important to remember that in both the figures
oty the voltage at time = O is constant given by Eq. 51 and is indepen-
© 2 2 . 5 2 22l dent of h and Gy. In Fig. 10 and 11, the time taken for the transient
-2 A (k m°codwt) + olsin(wt) — k'n’e to) response to attain sinusoidal steady state response varies with the
LTk ((K?72)% + (wtg)?) parameters. The time taken for the transient response to attain sinu-

soidal steady state response is nothing but the time range in which

_ ¢codwt)B [53] the transient response occurs which is the time consgaritwhere
B+1 to andv? are functions of the parameters. The changes in the param-

and atf < f, we have(limit of Eq. 53 asw — 0) eter values also introduce a shift of the limiting frequefsse Table

o —(kzﬁz)i o
[2) t B+21 Ay
f — 0
V| 2' =C E Ay K22 —C + E
ve—0 k=1 o

2.2
to k=1 k m 04

B
®+1

Unless mentioned we will only deal with a porous electrode gov-
erned by both linear kinetics and double layer charging. Figure 9 5
shows a comparison of the voltage profiles of a porous electrode ag
the limiting frequency for the two cases); With both linear kinetics
and double layer chargingqg. 50 and 2with double layer changing
only (Eq. 54. The voltage response in the transient region for the -
latter case can be approximated by a straight line while in the Iater'f)
case the transient response is a curve. In the porous electrode limite .5
by double layer charging only the figure shows a linear increase ing  -005{
the voltage response with time well beyond the borderline betweer o L Coelx10°
the transient region and the steady state region thattis: ag/v2.

Because we determined that the transient voltage response b¢ &
comes a constant at the limiting current density the effect of the &
exchange current density and double layer capacitance is studie §

+

[54]

ency, Vlg (V)

iting

Cd|:1X 1 0’4

pons

Cy=1x10"°

of
using the voltage response at the limiting frequettey. 50. A plot S )
of the voltage response for various valuesgdnd G, are presented § . St : : . :
in Fig. 10 and 11, respectively. For now, we will discuss the effect of 0 oo nod 00060 00 001 0012
the voltage response only in transient region. The effect of the pa-
rameters on the periodic voltage response will be dealt in detail later Time, t (s)

In the transient region the voltage response changes with the value
of ig. However one should remember that the slope=aD remains  Figure 11. Voltage response at the limiting frequen€sg. 50 plotted for

a constant since the value of;@ not variedsee Eq. 52 In Fig. 10 various values of the double layer capacitancg,i€F/cn? as indicated in
the initial slope of the voltage response curve and the voltage reihe figure. All the other parameter values are given in Table I.
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Table Il. Limiting frequency values as a function of the (a) ex-
change current density and (b) double layer capacitance.
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determined from their ratioB). Alternatively when the solid phase
conductivity in a porous electrode is very high it can be neglected.

Then Eq. 51 would yield a value fadg.
@ The equation for the initial slope of the transient voltégg. 52
Exchange current Limiting frequency,f, can be used to determine the value of the double layer capacitance.

density, j (Alem?) (H2)* The exchange current density is obtained from the value of the
1.8% 102 1 Hz voltage at a fixed frequency and at any point of time well within the
1.8% 1073 10 Hz transient region. It is convenient to use the moderate frequency
1.8x 104 0.1 Hz range (100 Hz to 0.01 Hg because the transient voltage response

exists for a considerable tin{an ms see Fig. #at these frequencies.
(b) In cases where both conductivities are unknown, the following
Double layer capacitance ¢QwF/cn?)  Limiting frequency.f; (Hz)” four equations can be solved simultaneously to estimate the param-
eter values: Eq. 51, Eqg. 52, and the voltage response in the transient

100 1 Hz _ _ . )
10 10 Hz region at two different values of time at a fixed frequency or the
1 0.1 Hz voltage response in the transient region at two different values of the

frequency at a fixed time. One has to be cautious in selecting the
time and frequency values for parameter estimation. The moderate
frequency value of about 100 to 0.01 Hz has to be used and also the
value of time should be longer than the constant initial slope region

but should also be within the transient region. These values can be
determined by looking at the nature of the voltage response curves
at versy short times. A better method to estimate parameters would be
to fit! simultaneously the voltage esponse in the transient region for
two or three different frequency values using nonlinear regression.

#The limiting current density is determined with the parameter values
given in Table | except forgi(whose values are specified abpve

®The limiting current density is determined with the parameter values
given in Table | except for & (whose values are specified abhve

II). From the tabulated values we see thas directly proportional
to ig / Cy. Because we know that frequency is the inverse of time,
we can conclude thaf = 1/ty/v2. Conclusions

The effect of parameters on the periodic response at the limiting A analytical solution for the voltage response in the time do-
frequency can be explained based on Fig. 10 and 11. With the demain for a porous electrode perturbed by a sinusoidal current density
crease ing the amplitude of the periodic voltage response decreasegyas derived. The voltage response of the porous electrode included
while the change in & does not influence the value ofs¥amp  the initial transients along with the periodic response. The effect of
However change in bothy and G values introduce a change in the frequency, exchange current density and double layer charging on
time constantt, = v?) for the transient region. As the time constant the transient voltage response was analyzed. The corresponding
increases the periodiinusoidal steady stateoltage response is  variation in the periodic voltage was presented and compared to that
pushed to longer and longer times and hence the limiting frequencyf the transient voltage response. Based on the results we conclude
becomes a smaller value. The changé iwith the exchange current  that the transient voltage response has a wealth of information that
density is clear from Fig. 12. can be used independently to estimate all the parameters associated

Parameter estimatior—So far we have analyzed the effect of with a porous electrode model presented here.

frequency and the parameter values on the behavior of the transient

voltage response. In this section, we will investigate the possibility

of estimating parameters of the porous electrode using the transient The authors acknowledge with great appreciation financial sup-

voltage response only. port from the National Reconnaissance Offib#RO) under contract
The value of the voltage at t = 0 yields the ratio of the solution no. 000-03-C-0122.

phase conductivity to solid phase conductivigg. 51. When one

of the conductivity values is knowfxgs Or oef) the other can be
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List of Symbols

S . . .
e 0.085 I i0=1‘8x104 Alci? B AA :(r:aplllzt:d‘ewof the applied current density, A&m
g NI 2 K .
%0075 | ?0:1'8"10»3 A/cﬁ a specific interfacial area, (3 — & = &jner) / Rscmi
i,=1.8x10™ Afc Cq double-layer capacitance, F/ém

0.065 c; see Eqg. 48

f frequency, Hz(1/9

fi limiting frequency, Hz

Faraday’s constant, 96487 Clequiv

| applied current density, Actst), A/cm?

ip exchange current density, A/ém

b i, matrix phase current density, A/ém

i, solution phase current density, A/ém

jn interfacial current density, A/ctn

int faradaic interfacial current density, A/ém

L thickness of the porous electrode, cm
n number of electrons transferred in the reactionl)
R universal gas constant, 8.313 J/mol. K

Rs radius of a particle, cm
T
t
%)

0.055
0.045
0.035
0.025
0.015

&
0.005

Amplitude of the periodic voltage, V

-0.005
2 -1 0 1 2 3 4 5 6 7 8
10 10° 10" 10" 10- 10° 10" 10° 10> 10" 10 temperature, K
time, s
time constant for double layer charging(see Eq. 49
. . V" dimensionless voltage across the porous electrode
Figure 12. Amplitude of the steady state voltage response plotted as a func- V  voltage (total voltage response across the porous electrodesae Eq.

tion of frequency for three different values of the exchange current density as 45)
indicated in the figure. V. steady state voltage response across the porous electradeg\Eq. 45

Frequency, f(Hz)
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Vss, amp @amplitude of the steady state voltage response across the porous electrode,

V (see Eq. 46
V. short time voltage response across the porous electrodisVtwo ex-
pressions of Eq. 45
X dimensionless distance,/x
x distance, cm
Greek
o, o anodic and cathodic transfer coefficients respectively+ a. = n)
porosity of the electrode, dimensionless
volume fraction of the inert material
dimensionless

)

Einert of the porous electrode,

el

Keﬁ/"eﬂ
5 dimensionless current densityfl FL/ k«RT) (see Eq. 19
¢, solid phase potential, V
<b*1 dimensionless solid phase potentiékF/RT
&, solution phase potential, V
m overpotentia by, — d,), V
n* dimensionless overpotentiahF/RT (see Eq. 15
k solution phase conductivity, S/cm
kerr  effective solution phase conductivity, see Eq. 4, S/cm
v- dimensionless exchange current densityy(dj + aC)FLZ/ RT(1/ 0
+ 1/ker) (see Eq. 1%
o matrix phase conductivity, S/cm
oo effective matrix phase conductivity, see Eq. 3, S/cm
7 dimensionless time,/taCy(1/ ke + 1/ 0e)L? (see Eq. 15
o frequency of the applied current, radfs2=f)
»* dimensionless frequency of the applied currésee Eq. 3
dummy variable of integration
Subscripts
t variable in the transient region
ss variable in steady state region

ratio of the effective solution phase and matrix phase conductivities,
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