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Abstract

This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of
converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution
method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this
process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing
equations. The method is illustrated for both linear and nonlinear problems. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

We present here a series solution technique for solving
systems of linear and nonlinear BVPs. We start by con-
verting the given BVP to an IVP and subsequently inte-
grate the resulting system of equations by finding the
matrizant (Amundson, 1966, pp. 199-203) of the coeffic-
ient matrix. For matrices with a constant coefficient
matrix the matrizant simplifies to the exponential of the
matrix. Solving IVPs by finding the matrix exponential is
well known (Varma and Morbidelli, 1997, pp. 56-57). In
some cases, even though the IVP is linear the matrix
is a function of the independent variable. For such
problems, where the coefficient matrix varies with
the independent variable the successive substitution
method (SSM) is used for determining the matrizant
(Taylor and Krishna, 1993, pp. 524-529). Finally, we
extend this technique to nonlinear BVPs by quasi-lin-
earizing the nonlinear terms and iterating for the un-
known initial condition (Haran and White, 1996) to
develop a series solution.

The first objective of this paper is to describe the
method of successive substitution for linear, two point
boundary value problems. The technique is illustrated for
a simple linear problem from chemical engineering namely,

*Corresponding author.

determining the effectiveness of a rectangular cooling fin
(Davis, 1984, pp. 72-75). Next, the methodology for
problems with a variable coefficient matrix is illustrated
by solving the classical problem of diffusion and reaction
in a cylindrical catalyst pellet (Villadsen and Michelsen,
1978, pp. 68-73). Finally, we demonstrate the methodo-
logy for nonlinear BVPs by solving the coupled equa-
tions for the steady state analysis of a gas-fed porous
electrode in a fuel cell (White et al., 1984). The technique
has been implemented using Maple® (a copy of the
Maple code (on a diskette) is available from the authors
[Ralph E. White] upon request).

2. Method of successive substitution

We demonstrate the technique for linear problems first
by solving a simple example from chemical engineering.
Consider the conduction of heat in a rectangular cooling
fin. The governing differential equation (Davis, 1984,
pp. 72-75) in dimensionless form is,
d2o0

@ = Hz(), (1)

subject to the following boundary conditions:

do

00 =1,

(1) =0, (2)
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where 6 is the dimensionless temperature, x is the dimen-
sionless distance and H is the dimensionless heat transfer
coefficient.

The rectangular cooling fin is chosen because it is

linear, and has an analytical solution:
cosh H(1 — x)

0 = 3

cosh H G)

Eq. (1) can be written in the form of a vector differential
equation (Krishna and Taylor, 1993, p. 524),

dy

—=A 4
o A 4
where

dy, do
dy dx dx
dx dy, d20
dx]  Ldx?

The solution to Eq. (4) can be written as follows,

y = [£(A)]yo, 9)
where Q(A) is defined as the matrizant of matrix A and is
given by,

X

Q(A) = [1] +f [AGe) dx,]

0

x f T[AGe) f " A G dx]dy
0

0

t j [A(xn f ) |:A(X2)
xrz [A(xs)] dx3:|dx2:| dx; + . (10)

For this heat transfer example, the coefficient matrix
A (Eq. (7)) is constant since H is constant and the mat-
rizant Q(A) simplifies to the matrix exponential (Varma
and Morbidelli, 1997, pp. 56-57):

Q(A) = [I]x + [A] + 2 [A]*x* + 5 [AT]’x + - =exp[A]x

<(€XP(HX) +exp(—H X))> <(GXP(HX) —exp(— HX))yzo>

2H

Hence, by substituting the expression for the matrizant (Eq. (11)) and y, from Eq. (8) into Eq. (9) we get,

dx

i1 [ (
_| Y| _
y= [yz] N @} N <H(exp(Hx) — exp(— Hx))

The constant y,, is obtained by using the known boundary at x = 1 namely, df/dx = 0 or y,(1) = 0:

= (H(exp(Hx) _ exp(— Hx))) ((exp(Hx) + exp(— Hx))m) an
2
(exp(Hx) + exp( — Hx))  (exp(Hx) — exp(—Hx))y20>

2 + 2H

(exp(Hx) + exp(— Ho)yso\ | 2
2 + 2
(exp(H) + exp(— H))  (exp(H) — exp(— H)yo

2 2H (13)

1):[%(1)}:[6(1)]: <
w0 (H(exp(H)—exp(—H» s

y 0
y=[ 1]{(19] (6)
V2 —

0 1
AZ[HZ 0} @

SR
V20 V20

(exp(H) + exp(— H))y20\ |
2 2

From the second row of the matrix Eq. (13) y, is
obtained as,

_ H(exp(H) — exp( — H))
(exp(H) + exp( — H))

Y20 = (14)

This value for the unknown initial condition is then sub-
stituted back into Eq. (12) to get the complete solution to
the BVP, which is the same as Eq. 3. Similar BVPs arise in
the diffusion and reaction in rectangular and spherical
coordinates. In these cases, the matrizant reduces to the ex-
ponential of the matrix which is directly calculated and used.
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However, for diffusion and reaction problems in cylin-
drical coordinates the matrizant does not reduce to the
matrix exponential. Fortunately, an analytical solution
can still be obtained by writing the second-order govern-
ing equation as a system of first order equations and
using the method of successive substitution, as before. In
this case Eq. (10) is used for evaluating the matrizant.
This can be illustrated by considering diffusion and reac-
tion in a cylindrical catalyst pellet. The reaction is as-
sumed to be isothermal, irreversible and of first order.
The dimensionless concentration, ¢, obeys the governing
equation (Villadsen and Michelsen, 1978, pp. 68-73),

d?c 1de
@—F;a—quczo, (15)

where @ is the Thiele parameter and x is the dimension-

less radial distance. The boundary conditions are,
d -
E0=0, cl)=1. (16)
dx

We convert this into an IVP of the form of Eq. (4) of the
previous example, where,

dy o [de
dy dx dx
d -l dys | dre) "
dx dx?
V1 ¢
y= |:y :| =|dc (18)
5 e
dx
and
0 1
A(x) =| ¢p2 ;1 . (19)
X

As before, only one of the initial conditions is known i.e.,
dc/dx(0) = 0. Thus,

_ | Yo | _ | Y10
Yoo [J’zo} - [ 0 } 20

(11— 3% — & D% — 45 @° — -
—GP*+ 16 P* + 352 P+ )t
+ (& P* + & D* exp(2t) + ) exp(21)

GO+ 16 P + 35z O+ )
+ (& D2 + & D*exp(2t) + - )exp(2t)

The initial condition for the concentration in Eq. (20) is
obtained using the boundary at the other end namely,
c¢(l)=1 or y;(1)=1. The final solution is given by
Eq. (9). For this case, since the coefficient matrix
A (Eq. (9)) is not constant the matrizant Q(A) is calculated
using Eq. (10). However, a singularity is encountered at the
origin (x = 0) since the matrix A involves the 1/x term.
This singularity is avoided by making use of the indepen-
dent variable transformation (Rice and Do, 1995, p. 59):

t = In(x). (21)
When this transformation is applied the given BVP is

converted to,

2,

d_; — exp(2) D¢ (22)

with the boundary conditions

de
X (—o0)=0, ¢(0)=1. (23)

Converting this into an IVP of the form of Eq. (4) we
have,

dyi] o [de
dy dt dr
ax | dra| 7| @ =
dt dr?
C
SARF
’ dt
and
0 1
A(t)_[exp(%)d)2 0:|' 29

The initial conditions are changed to

m=[hﬂ=[l}- 1)
Va0 Y20

The initial condition for the derivative of the concentra-
tion i.e., y,o is obtained by using dc/dt(— oo) = 0. The
solution is given by Eq. (9). In this case, the matrizant
Q(A) is obtained from Egs. (10) and (26) as

192 + S50* + - .
(1+5P%+ a5 D%+ )t

— (G P + 35 D* exp(2t) + ---)exp(2t)
+t(G D% + ¢4 P exp(2t) + ---)exp(2t) | (28)
1+ 202 + 4 0% + 555 P°

— (4 D% + & P exp(2t) + ---) exp(2t)
+t(3 @ + 4 D* exp(2t) + ---) exp(2t)
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Now, by substituting the expression for the matrizant (Eq. (28)) and y, from Eq. (27) into Eq. (25) we get,

r 1 =3 @ — G0 — 5 0 — - T
— (GO 4 P 5 @0+ )t
+ @& P? + 52 P*exp(20) + ) exp(21)

1O+ 3 0 +
(1420 + 2P+ )t

+
. V20l (192 4 3 02 exp(2t) + - )exp(20)
y = [yl] =ldc|= + (G D> + & D2 exp(2t) + - )texp(21) .29
Y2 —
dt
SO0 4 B 4 sk 0% 4 )
+ (3 D* + 16 D* exp(2t) + ---)exp(21)

1+ 5@+ &4 P + 3355 P°
+ V20| — G P* + S5 D exp(2t) + ---) exp(2t)
+ (& P* + {5 P*exp(2t) + ---) texp(2t)

The constant y,, in Eq. (29) is obtained by using the known, transformed boundary condition, as t - — oo, d¢/dt or
Ya(—o0) =0

107 = &0t 0
(—(5¢2+1164>4+3é44>6+---)t>
R
y(—oo)z[yl(_ OO):|:|:C(—OO):|: +yzo< FA+i0? + Lot )t) _ (30)
Ya(— 0) 0 — PP+ d* 5L 0° + )
(+y20(1+i<1>2+6h<1>4+23104<156+---)>

In the first row of Eq. (30) the limit of t > — oo is not applied because ‘¢’ will be cancelled in a subsequent step, as seen
below. From the second row of the matrix Eq. (30), y,, is obtained as

321 +5P% 4 153 P* + 5316 P° + 737250 P° + )

= (31)
(141D + 62 P* + 2302 P° + 127256 P® + 12725600 90 + )

Y20

When this value of y,, is substituted into the first row of Eq. (30), we see that the coefficient of the ’ t * term vanishes,
removing the singularity. Next y,, from Eq. (31) is substituted into Eq. (29) to get the complete solution to the BVP in
terms of the transformed independent variable ¢ as

( 1 + 4 @2 exp(2t) + & D* exp(4t) + 330z P° exp(61) )
+ 137456 P° exp(81) + 13735600 P'° exp(101) + -

y= |:J’1:| _ dc N0+ Z P + 65 P + 3365 PO + 1a7456 P° + 1a7as 600 PO+ ) (32)
- =ldcl=
Va2 — 1 2 1 p4
1+59@ 2t (] 4t
dr %@2 eXp(Zt)( . +68 eXp( )+1192 . exp( ) >
+ 9216 P° exp(61) + 737 280 P exp(81) + -

(144 P + 55 D* + 3302 P° + 137456 P° + 12745600 90 + )
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Substitution of Eq. (21) into Eq. (32) transforms the solution back to the original independent variable x:
(144 > x> + g5 P*x* + 3302 P°x° + 157356 P°x® + 12745600 '°x'0 + )
(1439 +65P* + 3302 ° + 137456 P° + 13725600 2'° + ) (33)

SANHA

1

& <é @ZX(I +%¢2x2 + 193 P*X* + 93716

POx°® + 737750 POx° + )>

(1 + 3P + 6z D* + 3302 P° + 137956 P° + 12725600 D' " + )

From the first row of the matrix Eq. (33), the concentration profile is obtained as

Lp2v2 4 L pryd 1 56,6 1 8,8 1 10,10
(1 +29°x" 4 62 DX + 3302 P°X° + 137456 P°X° + 13725600 P X" + -*)

(34)

(1420 + 02 P* + 7302 P° + 127956 P® + 15745600 P'° + )

The series expansions in Eq. (34) are the modified
Bessel functions of zeroth order (Villadsen and Michel-
sen, 1978, p. 69). Thus, Eq. (34) can be rewritten as,

 I(Px)
T To@)

(35)

which is the same as the analytical solution given by
Villadsen and Michelsen.

3. Nonlinear BVPS

Nonlinear BVPs can also be solved with the method
presented above. This is done by quasi-linearizing the
nonlinear term in the ODE by Newton’s method (Haran
and White, 1996). For a nonlinear ODE with only one
dependent variable we have,

y'(x) =f(x,y) + b(x)

Quasi-linearization of the nonlinear function f(x,y)
gives,

(36)

d
e =t () wer e

dy

where k represents the iteration number. Rewriting Eq.
(36) by using Eq. (37) we have,

d
e+ () e be
Y Jy=yt

dy*
dx
(38)
The initial condition remains the same as for the linear
case. Eq. (38) is linear in y* and we can integrate this by
using the successive substitution method as described
earlier. Repeating the same procedure, we can solve
Eq. (38) by iterating until the required convergence is
obtained. The same approach can also be used for solv-
ing systems of coupled non-linear differential equations.

4. Example

In this example, we solve two coupled non-linear dif-
ferential equations using quasi-linearization and success-
ive substitution. This example involves the steady state
analysis of a gas-fed porous electrode in a fuel cell (White
et al., 1984). The ODEs describing the Molar fractions of
the gas and liquid reactants within a gas-fed porous
electrode of a fuel cell are,

d2C1

dx2 = k1C%, (39)
d?c
KZZ = kch, (40)
with boundary conditions,
d
(00 =021, 2 (0) = 0 (41)
dx
and
d
¢, (1) =0.127, g (1)=0, 42)
dx

where ¢; and ¢, are the dimensionless concentration of
species 1 and 2, respectively, x is the dimensionless dis-
tance, and k, and k, are the rate constants for the
reactions. The non-linearity in the ODEs arises because
of the ¢{ terms. Quasi-linearization of this term by New-
ton’s method (Bala and White, 1996) yields,
(D= (et 42571 (ch — &Y, (43)
where k is the iteration counter. Substituting Eq. (43) into
Eqgs. (39) and (40) gives,

d3ck ) k=1, 0k -1

g = Rl T 2 G = ) (44)
d3c

dx? ka[(et) ™1 +2¢1 e — 1)), (45)
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Eqgs. (44) and (45) are linear and give rise to the vector
differential equation,

dy\* k-1 k k-1
= =AMy +(b(x), (46)
dx
where,
dx dx
dyz dzcl
dy | dx dx?
— = = 47
dxdys| | des | “
dx dx
dya| | &
L dx| [ dx?]
e T
Y1 dCl
Va2 FM
y=|""=| %] (48)
V3 Cy
ol | de
L dx |
0 1 0 0
2k, k"L 0 00
Ax) 1 = 49
(AG) S0 o 9)
| 2k,ck"1 0 0 O
and
0
—k 2\k—1
(b(x)) ! = 1(0‘1) (50)
— ky(c}) !
14021k x% + -
2 3 Y
() = | 04260x + 00294k +

For this case a forcing function (Eq. (50)) arises out of the
quasi-linearization process. Only two of the initial condi-
tions are known i.e., ¢;(0) = 0.21; dc¢,/dx(0) = 0. Thus,

Y10 0.21
V20 V20
Yo = = , (51)
V3o V3o
Yao 0

The initial conditions for the derivative of the first spe-
cies, dcy/dx(0) or y,, and concentration of the second

0.21k,x?* + 0.00735k,kyx* + -
0.42k2X + 0.0294k2k1x3 +

species ¢, (0) or y;, are obtained simultaneously by using
the constraints at the other boundary, c,(1) [i.e., y3(1)] =
0.127 and dcq/dx(1) [i.e., y,(1)] = 0, as described in more
details below. Since the governing equations are coupled,
we need to solve for the two initial conditions simulta-
neously for each iteration. This is done by iterating for
the initial conditions using the two boundaries given
above as constraints.

For the first iteration the value of variable ¢}~ ! (x) with
k = 1is assumed to be equal to the boundary value for all
x (ie., &1 (x) = ¢;(0) = 0.21). Thus,

0 1 00
2k k70
0 0

0

0
0
_2k2Cli_1 0

o = O

© 0
0.42k,

S O O O
S = O O

and

- kz(c%)ki1 k=1 - k2(0~21)2

The solution for Eq. (46) can be written as (Taylor and
Krishna, 1993, p. 528),

y = [2(A] (yo v [Q(A)]l(b(xo)dxl). (54
0

In this case, the matrizant 2(A) obtained from Eq. (10)

with A from Eq. (52) simplifies to,

X + 0.07kyx3 + -
14021k, x? + -
0.07k,x3 + 0.00147k, kx> + -
0.21k,x? 4+ 0.00735k,k x* + -

(35)

S = O O
— = O O

Now by substituting the expression for the matrizant
(Eq. (55)), b(x) from Eq. (53) and y, from Eq. (51) into
Eq. (54) we get,

e
1 de,
y= e dx )
V3 Cy
Va, de,
| dx |
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+ Yao(x + 0.07k;x® + 0.00147k2x5 + --)

(0.0441k,x + 0.00311k2x® + 0.0000663k3x°)
+ ao(l + 0.21k;x2 + 0.00735k2x* + ---)

(0.0221k,x> + 0.000781kkyx* + ---)
+ 120(0.07k,x3 + 0.00147k,k ;X% 4+ ---) + y30

(0.0441k,x + 0.00311k kx> + 0.0000667k,k2x°)
+ 120(0.21k,x2 + 0.00735k,kyx* + )

i ((0.21 + 0.0221k;x* + 0.0000663k3x> + >

(56)

The constants y,, and y3, in Eq. (56) are obtained by first
applying the constraints at the other boundary (x = 1),
¢,»(1) =0.127 or (y3(1) =0.127) and dc¢,/dx(1) =0 (or
y,(1) = 0), which yields,

[ '1(1) i
n] |
y2(1) 0
1 = = 9
v v3(1) 0.127
va] | de,
L ax V)

[ ((0.21 + 0.0221k; + 0.0000663k3 + -+ ]
+ y20(l + 0.07k; + 0.00147k + ---)

(0.0441k; + 0.00311k7 + 0.0000663k3)
+ y20(l + 0.21k; + 0.00735k} + ---)

(0.0221k; + 0.000781kky + --)
+ 120(0.07k, + 0.00147k,ky + ) + y30

(0.0441k; + 0.00311kk; + 0.0000667kk?)
+ ¥20(0.21k; + 0.00735k,ky + ---)

(57)

From the second and third rows of the matrix Eq. (57),
the constants y,, and y3, are solved simultaneously as
series expansions in k; and k, as,

V20 = — 0.0442k; + 0.00618k; — 0.0104k3
+ 0.000173kt — - (58)
and
V30 = 0.127 — 0.0221k, + 0.00231k,k; — 0.000347k, kT
+ 0.0000671k k3 — - . (59)

These values of the unknown initial conditions (Egs. (58)
and (59)) are then substituted back into Eq. (56) to get the

concentration of both the species as follows,
y1 =cy =021 + (— 0.0442k, + 0.00618k7 — 0.0104k;
+ 0.000173kT — --- )x + 0.0221k, x>
+ 0.07( — 0.0442k, + 0.00618k}
—0.0104k3 + -+ )kyx® + 0.000781kix*
4+ o (60)
and
V3 = ¢y = 0.127 — 0.0221k, + 0.00231k,k,
—0.000347k,k3 + -+ + 0.0221k,x?
+ 0.07( — 0.0442k, + 0.00618k}
—0.0104k3 + -+ )kox?
+ 0.000781kk x* + --- . (61)

Hence we have obtained a series solution for the concen-
tration of each species after the first iteration.

For the second iteration (k = 2), the expression for
c; given by Eq. (60) is used in both A and b in Egs. (49)
and (50). Thus,

— 0.0104k7 + 0.000173kT — ---)x

+ 0.0221kyx? + 0.07( — 0.0442k,

+ 0.00618k7 — 0.0104k3 + --- )k x3

+ 0.000781k3x* 4 --- . (62)
The same procedure that was used for finding the un-
known initial conditions y,, and y;, in the first iteration
is repeated until three digit convergence is obtained for
the unknown initial conditions. For this case only two
iterations were required to achieve three digit accuracy
for the range of values used here for k; and k,, as
described later.

The final solutions for the concentration profiles for
both species are:

1 (x) = 0210 — (0.0441k, — 0.00615k2 + --- )x
+0.0221k,x2 — (0.0031k% — 0.000430k3 + ---)x3
+ (0.00073k2 + 0.000162k3 + -+ )x*

— (0.000163k} — 0.000022kt + -+ )x> + ---
(63)
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Fig. 1. Predicted concentration profiles in a fuel cell electrode.

and

¢y(x) =0.127 — 0.0222k, + 0.00234k,k,
—0.000458k,k: + -+ + 0.0221k,x?
—(0.0031k,k; — 0.000430k,k7 + -+ x>
+ (0.0007k,k; + 0.000162k,kt + - )x*
—(0.000163k3 —0.000022kT + ---)x> + ---. (64)

The concentration profiles given by Egs. (63) and (64) are
plotted for various values of the reaction constants in
Fig. 1. We did not check for the convergence of the series
solutions given by Egs. (63) and (64). Instead, we set the
values of k; and k, and then added constant terms to the
coefficients of the x? and higher-order x terms until
the predicted values for ¢;(x) and ¢,(x) did not change in
the third digit. This process required three terms for
ki =k, =1 and eight terms for k; =1, k, = 5, and 22
terms for k; = 10, and k, = 1.

A generalized methodology is given in the Appendix.
These series solutions (Egs. (63) and (64)) may be more
convenient than numerical solutions. For example, it
may be efficient to use these series solutions with nonlin-
ear parameter estimation techniques to obtain values for
ki and k,, for a given set of data for ¢; and c,. This may
be possible because the values of ¢ (x) and ¢, (x) would be
obtained from series evaluation as opposed to numerical
integration of the governing equations.

5. Conclusions

A technique for solving BVPs is presented for both
linear and nonlinear problems. The methodology de-
veloped herein is simple and general and should be

applicable for any class of BVPs. By including more
terms in the successive substitution step greater accuracy
can be obtained. Further, for problems where one is only
interested in the results at a particular x, this method
offers a quick solution, compared to numerical tech-
niques where one needs to integrate from the origin to
that particular x. In general, numerical IVP solvers for
BVP problems (e.g., shoot and correct, Davis, pp. 54-55)
require an initial guess for the unknown condition. How-
ever, we have proposed here an alternate scheme, which
does not require an initial guess for the unknown initial
condition and results in a series solution. Three sample
problems from classical chemical engineering are solved
and discussed. For linear BVPs the technique yields a fast
and accurate analytical solution. For nonlinear BVPs, an
iterative algorithm coupled with Newton’s quasi-lineariz-
ation yields series solutions. For both linear and nonlin-
ear BVPs parameter estimation may be possible with the
series solutions obtained here because the parameters (k,
and k,) appear explicitly.
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Appendix A. Generalized methodology for linear BVPs
The successive substitution method, which was dis-

cussed in this paper is generalized here. Consider the
two-point BVP of a single dependent variable y of nth
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order in the domain [a, b] as,

n n—1
gt =0, (A
where yq, 71, ... ,Yn—1 are the coefficients of the depen-
dent variable and it’s derivatives and f'(x) is the forcing
function. This is a nth order inhomogeneous equation in
the independent variable x subject to the following
boundary conditions at the ends of the interval, i.e. at
x=aand x =b:

gly(a), y' (@), ...,y" (), y" "(a)] = =, (A2)
fLyb), y'(b), ...,y" 2(b), y" 1(b)] = B. (A.3)

Eq. (A.1) can be reduced to n linear first-order coupled
differential equations (Rice and Do, 1995, p. 61) by defin-
ing,

d d?y

= ——y = — =
Jﬁ—ya)/z—dx,% dxzayn

dnfly
dxn*l'

(A4)

Eq. (A.4) can be written in vector form as (Taylor and
Krishna, 1993, p. 524),

dy _

A(x)y + b(x). (A.5)
dx

For a second-order differential equation the vectors are,

dy [dyl dY2:|T

dx | dx’dx
y =D, »1"% b=[0f(x)]" (A.6)
and the coeflicient matrix is,
0 1
A= [ ] (A7)
—% — N

The new problem requires the solution of a system of
IVPs with appropriate initial conditions. Eqs. (A.2) and
(A.3) become,

glyi(a), y2(@] =, y,(a)= A (A.8)

The second condition arises due to the fact that the initial
condition at x = ais not known for y,. The alternate that
y1 1s unknown and y, is known at x = a is also possible.
Here A is the unknown initial condition for y,. The value
of 1 is subject to the constraint of the boundary at the
other end,

gLy1(b), y2(b)] = B. (A.9)

The solution for Eq. (A.5) can be written as (Taylor and
Krishna, 1993, p. 528)

y =[Q(A)] <yO + r [2(A)] ' (b(xy) dxl> (A.10)

0

INPUT coefficient matrix, b and parameters

v

IF NON-LINEAR
QUASILINEARIZE

A 4
BEGIN ITERATION
4 (for non-linear BVPs)

h 4
CALCULATE MATRIZANT
(equation 10)

INTEGRATE IVPs
(equation 54 )

SOLVE FOR UNKNOWN
INITIAL CONDITIONS

l

CHECK FOR CONVERGENCE
(for non-linear BVPs)

A

A
PLOT
RESULTS

Fig. 2. General solution scheme for two-point boundary value
problem.

However, conversion of linear BVPs in some cases gives
rise to sets of equations where the matrix A varies with
the independent variable, x. Eq. (A.10) along with Eq. (10)
for the matrizant represents a general solution to a sys-
tem of IVPs irrespective of whether the coefficient matrix
A is constant or varying. For further details on the
derivation of the matrizant the reader is advised to refer
to the pertinent literature (Taylor and Krishna, 1993, pp.
524-529; Amundson, 1966, pp. 199-203). The vector y, in
Eq. (A.10) consists of the initial conditions at x = a in-
cluding the unknown A.

Yo = [g[y1(a), y2(a)] = a, y,(a) = }JT- (A.11)

A general algorithm for solving two-point boundary
value problems is given in Fig. 2. The given linear BVP is
first converted into a set of IVPs. These IVPs are then
integrated by the successive substitution method. The
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unknown initial condition is then obtained by using the
known boundary condition. The same procedure is used
for nonlinear BVPs after quasi-linearizing the nonlinear
terms and iterating for the required convergence. The
technique as shown for one dependent variable can be
used for solving any number of coupled differential equa-
tions.

The input given to the maple code consists of the
coefficient matrix (obtained by quasi-linearization for
nonlinear BVPS) and the parameter values (only for
determining 3 digits accuracy as described in Section 4).
Then the Maple code finds the matrizant by the success-
ive substitution method and gives the final series solution
required. We used Maple® for implementing the solution
scheme outlined in Fig. 2. Though we implemented the
technique in Maple®, it may be possible to use other
symbolic solvers to implement our procedure.
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