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Abstract 

Electrochemical models for the lithium-ion battery are useful in predicting and 
controlling its performance. The values of the parameters in these models are vital to 
their accuracy. However, not all parameters can be measured precisely, especially 
when destructive methods are prohibited. In this paper, we proposed a parameter 
estimation approach to estimate the open circuit potential of the positive electrode 
(Up) using piecewise linear approximation together with all the other parameters of a 
single particle model. Using the genetic algorithm (GA), Up and 10 more parameters 
were estimated from a single discharge curve without knowledge of the electrode 
chemistry. Different case studies were presented for estimating Up with different 
types of parameters of the battery model. The estimated parameters were then 
validated by comparing simulations at different C rates with experimental data.  
  

Introduction 

Due to their high power and energy densities, lithium-ion batteries are emerging as 
one of the most popular energy storage technologies, both for consumer electronics 
like mobile phones, and for now ubiquitous electric vehicles and grid scale energy 
storage. All lithium-ion battery installations are accompanied with a control system 
called the Battery Management System (BMS). The role of a BMS is to ensure safe 
and reliable operation of the battery and to perform functions like current, voltage and 
temperature monitoring. Based on these monitored inputs together with a battery 
model, a BMS generates operating decisions for the battery, including depth of 
discharge, charging profile and so on. Compared with conventional empirical models 
used in the BMS, sophisticated physics-based models can describe the battery 
dynamics more accurately, thus are able to suggest optimal charging profiles that 
reduce degradation while allowing greater depth of discharge. However, the lack of 
accurate parameters needed for these models, typically the Single Particle Model 
(SPM) or the Pseudo 2-Dimensional (P2D) Model, prevents their industry-wide 
adoption and general usage.  

The parameters are generally not known, as battery manufacturers treat them as trade 
secrets. Some parameters like the electrode thickness and particle size are not difficult 
to measure after opening up the cell, while some parameters are almost impossible to 
measure experimentally even with time-consuming destructive methods. For example, 
Bruggeman coefficient and tortuosity cannot be measured directly, therefore usually 
require fitting the simulation results from the experimental data. The kinetic data on 
the insertion reactions are not available, because of the fast charge transfer and slow 
mass transfer in the system, thus is usually estimated. Furthermore, some parameters 
are function of battery configuration and usage, hence may vary from cell to cell and 
change during the battery’s lifetime. The fact that battery parameters change with use, 



makes direct measuring almost impossible, when updating the ‘instantaneous’ battery 
parameters over time is required for more accurate battery monitoring and control. 
The ability to get real-time parameters without opening up the cell is also important as 
greater proliferation of Lithium-ion batteries creates huge secondary usage market, 
which can only aim to use the batteries effectively and safely if the ‘instantaneous’ 
battery parameters are known.  

Many efforts have been made for parameter estimation in the past. Commonly used 
methods include Electrochemical Impedance Spectroscopy (EIS), equivalent circuit 
model-based prediction with various Kalman filter methods, least squares method, 
machine learning etc. A detailed review of aforementioned methods can be found in 
Fleischer et al.1.   

Realizing the importance of parameter estimation in electrochemical models, many 
researchers have been actively working on this topic. Santhanagopalan and 
coworkers2 applied the Levenberg-Marquardt method, a nonlinear least squares 
regression technique to both SPM and P2D models, and estimated diffusivity in 
positive electrode, reaction rate constants and initial SOCs in both electrodes from 
both charge and discharge curve. Ramadesigan et al.3 included capacity fade 
mechanism in their reformulated P2D model, and estimated the values of diffusivities 
in positive electrode and electrolyte and reaction rate constants in both electrodes over 
cycles using least squares estimation with Markov Chain Monte Carlo method for 
uncertainty quantification. Joel C. Forman and coworkers4 used genetic algorithm 
(GA) for P2D model together with Fisher identification and successfully optimized 88 
parameters at the same time for the lithium iron phosphate cell. Using a modified GA 
method NSGAII with TOPSIS, Zhang et al.5 performed multi-objective parameter 
identification on both lithium-cobalt-oxide and lithium-iron-phosphate cells with 
thermal effects. More recently, Jun Li and coworkers used a heuristic algorithm to 
reduce the computational time during GA to estimate all parameters of a P2D model6.   

However, in literature no one has reported successful estimation of thermodynamics 
parameters, the OCP of a single electrode (Up). In this work, we proposed the 
estimation of Up, as well as other parameters for a single particle model. Up was 
approximated as a piecewise linear model without any knowledge of the electrode 
chemistry. The values of the piecewise linear Up points were treated as additional 
parameters of the single particle model and were estimated to match a constant rate 
(1C) discharge curve obtained experimentally. Different case studies are presented to 
estimate Up along with different types of parameters of the battery model.  

 

Relevance 

In this work, we proposed a methodology and initial results for estimating battery 
parameters, including the thermodynamic parameters of a single electrode based on 
just discharge curves. With further attempts to reduce the computational time, the 
proposed methodology can be deployed on-site in field systems to estimate the battery 
parameters on the fly. This opens up the door for system intigrators to pick any cell on 
the market and use it in the most efficient way, with just the information provided in 
the battery datasheet. Since this method has the potential of real-time parameter 
estimation during operation, the parameters can be updated every few cycles to reflect 
the change in the cell. It can also facilitate the usage of second-hand batteries, even 
when operating history was unavailable. 



 
Single Particle Model 

Electrochemical models for batteries usually fall into two categories, single particle 
model or P2D model. P2D model, also known as the Doyle-Fuller-Newman (DFN) 
model or porous electrode model, was developed by the Newman group in the 1990s7, 
which takes into account the porous electrode theory, concentrated electrolyte theory, 
Ohm’s law, charge and material balance, and reaction kinetics. SP model was 
introduced into lithium-ion battery modeling later by the White group8 in the 2000s. 
The SP model is simpler compared to the P2D model but still captures the main 
physical processes in battery cells, including diffusion in the solid phase, reaction 
kinetics at the solid-electrolyte interphase, and material and charge balance. A more 
thorough comparison of battery models can be found in Ramadesigan et al9. 

We used the SP model in this work, because it is less computationally expensive 
while still gives good results compared to experimental data in lower rates. SP model 
uses two particles with the averaged properties to represent the positive and negative 
electrode. The equations are listed in Table 1. For the negative electrode, we assumed 
it is graphite, and used a regression model to represent the Un-SOC relationship. 

For cell voltage, we included a lumped parameter cR , mainly for contact resistance at 
the current collector/electrode interface and the initial solid-electrolyte interface (SEI) 
layer resistance. The value for cR  is left as an adjustable parameter to be estimated at 
the beginning, and kept the same for other cases for simplicity, since it does not 
change much in a couple cycles. For the battery life simulation, the resistance may be 
a good representation of degradation over time. 

Besides Up, Un, there are 10 other parameters in the SP model, namely diffusivity of 
positive and negative electrodes ( s

pD , s
nD ), reaction rate constants ( pk , nk ), electrode 

thicknesses ( pl , nl ), electrode porosities ( pε , nε ), and particle sizes ( pR , nR ). We 

then grouped the parameters into three groups, transport parameters ( s
pD , s

nD ), kinetic 

parameters ( pk , nk ), and design parameters ( pl , nl , pε , nε , pR , nR ). The design 
parameters can be measure more easily compared to the transport and kinetic 
parameters when destructive experiments are allowed. Therefore, we prioritize the 
estimation of the 10 parameters. We explored the estimation of Up with transport 
parameters first, then included kinetic parameters, and eventually added design 
parameters.  

To solve the SP model efficiently, finite difference method was applied for spatial 
discretization. For finite difference method, the more node points used, the more 
accurate the solution is, but the more computational cost required. We did simulations 
with 5, 10, 15, and 20 node points, shown in Figure 2. From the figure, the curve with 
5 node points is slightly different from the rest near 3400s, suggesting that at least 10 
points are needed for accurate simulation. We used 15 node points for rest of the work 
to ensure precise numerical solution for the model.   

 

Estimation of Up and Other Parameters 



Similar to the work done by Ramadesigan et al.5, we used the least squares estimation 
approach to minimize the sum of squared differences between the experimental data 
and the model predictions. The objective function we used was 

   (1) 

The experimental data was collected by discharging a fully charged Panasonic 
NCR18650A cell to 2.5 V at constant rates. The experimental data was recorded 
every second, resulting in ~3600 data points for 1C discharge. To reduce the number 
of data points, we used 1 point for every 10s, thus for 1C discharge, the number of 
data points was ~360. The typical nominal capacity of the cell is 3070mAh. The 
chemistry of the cell is not disclosed in its datasheet other than that it uses a nickel 
oxide system. It is common for commercial batteries to not disclose their chemistry, 
especially for positive electrode, making our work for estimation of Up relevant.   
 
Due to the complexity and nonlinearity of the electrochemical model, and the large 
number of parameters involved (in this work, 21 Ups and other parameters), 
parameter optimization can be very challenging and computationally expensive. 
Genetic algorithm (GA) has been a popular approach recently for parameter 
estimation of electrochemical models6. GA is a global optimizer based on the process 
of natural selection and biological evolution. At every step (generation), a certain 
number (population) of individual solutions are randomly selected by mutation, 
crossover and selection from the previous generation. In this work, we used the 
Global Optimization Toolbox in MATLAB for GA.  
 

Open Circuit Potential of the Positive Electrode 

Owing to the existence of multi-stage intercalation voltage plateaus, the OCP-SOC 
relationship of a single electrode cannot be predicted by the general Nernst equation. 
The conventional way of getting the OCP information of a single electrode is by 
fitting a regression model to the experimental data measured at different state of 
charge (SOC)10. The OCP data is usually obtained by super slow discharge (at least 
1/10C, sometimes as low as 1/60 C and even 1/100C) while measuring the potential 
vs. lithium metal as SOC changes. OCP is an intrinsic property of a certain material, 
thus needs to be determined every time when new electrode chemistry is used (eg. 
NCM11, LCO12). The measurement is not only time consuming, but also destructive, 
as measurements need to be done for positive and negative electrode separately. 
Sometimes the experimental measurement can be spared if the chemistry of both 
electrodes is known and has been characterized, though the OCP-SOC relationship is 
not exactly the same for each individual cell even for the same materials fabricated 
with the same structures13. This relationship also changes as battery ages, resulting in 
bigger discrepancy in battery simulation. Furthermore, there are times when detailed 
material information is inaccessible, especially for commercial cells. As an alternative 
way to obtain single electrode OCP, estimation based on model-experimental 
comparison can be useful in practice.        
 
In this study, we proposed a methodology to estimate Up based on a single discharge 
curve. It can be used during the first several cycles, to calibrate the initial status of an 
individual cell. This method can also be used anytime during the lifetime of a battery 
to help track and account for the degradation over cycles.  
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The most common electrode OCP-SOC relationship is of certain polynomial form. As 
a first attempt, we used a third-order polynomial fit for the Up-SOC relationship, 
shown in Equation 1.  
 3 2Up a b c dθ θ θ= + + +   (2) 

Where a, b, c, and d are parameters to be estimated. We assumed that all the other 
parameters needed for the model are known, and used some guess values (listed as 
base case in Table 2.2) to estimate a, b, c, and d only. The best fit was plotted in 
Figure 3, together with the corresponding experimental data. As can been seen from 
the figure, the fit is far from reasonable. One can argue that by increasing the order of 
the polynomial function, the fit will be better and better. However, increasing the 
order of the Up-SOC function will dramatically increase the computational difficulty 
of the optimization problem. As a result, it is not favorable to pursuit the polynomial 
fit function.   
 
A piecewise linear approximated model for Up was used in this study. We picked a 
certain number of Up values at equally spaced SOCs, and used a linear relationship 
for the SOCs between two values we picked, as expressed in Equation 2.  

 
   
U p,i+1 =U p,i + (U p,i+1 −U p,i )×

θ p
s −θ p,i

s

θ p,i+1
s −θ p,i

s ,∀i = 1…∞   (3) 

In this work, we mainly focused on estimating the Up. We chose positive electrode 
because the lithium-ion batteries commercially available now mainly use graphite 
based negative electrode, but the positive electrode material varies from a group of 
lithium metal oxides and the combination of them. The exact material formula and 
properties of positive electrode are generally not known, causing extra difficulty in 
battery management.  

 
Case Studies 

In this section, the results from several case studies estimating Up and other 
parameters in the model will be presented to demonstrate our idea. All the case 
studies were performed based on a single discharge curve at 3000mA at room 
temperature, roughly 1C. For the parameters not estimated in a certain case, we are 
using +-1% of the respective values in the 7th column of Table 2.2 as bounds, and 
estimating at the same time, thus the total numbers of parameter to be estimated are 
the same (31) for all cases.   
 
Case Study 1: Estimation of Up and Resistance  
Our first attempt was to try out the idea of using linear model to approximate Up. We 
estimated Up for different n linear approximated variables, where n = 4, 7, 13, and 21 
Up values (Figure 4). Theoretically, when n is getting closer to infinity, the linear 
model is the same as the real case, but with a bigger n, the computational cost 
increases. We selected n = 21 for all the studies in this paper, because 21 points can 
give us a smooth and accurate enough discharge curve without an unaffordable 
computational expense. In this case, 21 points of the Up and the contact resistance 
were estimated using GA for SP model. The upper and lower bounds for the Up 
values were 2.5 V to 4.4 V. We added another constraint for the Up values such that 
they decrease as the SOC of the positive electrode increases, demonstrated in 
Equation 4.  



 
   
U p,i+1 −U p,i ≤ 0,∀i = 1…∞  (4) 

The upper and lower bounds for RK  were 0.2Ω and 0.01 Ω. No additional 
information about the electrode chemistry was required for the optimization. The 
estimated Up values were listed in the second column of Table 2.1 and plotted in 
Figure 5, while the discharge curve with estimated values can be found in Figure 6. 
As can be seen from Figure 6, the estimated curve matches well with the experimental 
data, suggesting that our linear approximation approach is applicable to the Up. 

 

Case Study 2: Estimation of Up and Transport Parameters 
With the success of Case 1, the next step would be to increase the number of 
parameters actually estimated. The transport and kinetic parameters are harder to 
measure, thus we estimated them together with the Up first. For Case 2, we set the 
resistance to be 0.0615 Ω from Case 1, and estimated 21 Up values with transport 
parameters. The bounds for s

pD  and s
nD  were given as 3.34e-13 m2 s-1 to 1e-12 m2 s-1 

and 1e-12 m2 s-1 to 3e-12 m2 s-1. The results are shown in Figures 5, 7, and Tables 2.1 
and 2.2. 

 
Case Study 3: Estimation of Up, Transport and Kinetic Parameters 
We included the kinetic parameters together with Up values and transport parameters 
in this case. The bounds for s

pD  and s
nD  were given as 3.34e-13 m2 s-1 to 1e-12 m2 s-1 

and 1e-12 m2 s-1 to 3e-12 m2 s-1. The bounds for pk  and nk  were 6.67e-12 m2.5mol-

0.5s-1 to 3e-10 m2.5mol-0.5s-1 and 5e-12 m2.5mol-0.5s-1 to 2.25e-10 m2.5mol-0.5s-1. The 
estimated discharge curve and parameter values can be found in Figure 8 and Tables 
2.1 and 2.2.    
 
Case Study 4: Estimation of Up, Transport, Kinetic and Design Parameters 
In this case study, we estimated Up and all the parameters with wide bounds for SP 
model at the same time. The bounds for s

pD  and s
nD  were the same as in previous 

cases. The bounds for pk  and nk  were 3.33e-11 m2.5mol-0.5s-1 to 1.67e-10 m2.5mol-0.5s-

1 and 2.58e-11 m2.5mol-0.5s-1 to 1.29e-10 m2.5mol-0.5s-1. The bounds for pR  and nR  

were 2µm to 10µm and 2.5µm to 12.5µm. While the upper and lower bounds for pε
and nε  were 0.3 and 0.6. The results are given in Figure 9 and Tables 2.1 and 2.2.

 
 
Error Analysis  
The absolute and relevant errors for each case were also calculated, listed in Table 3. 
The more parameters we estimate at the same time, the greater degree of freedom the 
solution space has, and thus the smaller error can be achieved compared to the 
experimental data. Since the parameter values we used in base case were just guesses 
based on experience, the error incorporated in the parameters, though can be cancelled 
by varying the parameters we are estimating under this specific condition, may show 
up under a different operation condition. This is probably what happened in Case 3. 
Even though the error under 3000mA was smaller compared to Case 1 and 2, the 
prediction for 600mA, 1000mA and 6000mA was further off. In general, the 
prediction under lower rates (C/5 and C/3) was better compared to higher rates (2C), 



this may result from the limitation of SP model. Since the lithium-ion concentration 
gradient in the electrolyte is ignored in the SP model, it is only valid under low rates. 

 

Validation 

To validate the estimated parameter values got from aforementioned cases, we 
simulated the discharge behavior at different rates, and compared with experimental 
data, as shown in Figure 10 (600mA, C/5), 11 (1000mA, C/3), and 12 (6000mA, 2C). 
As can be observed from the plots, the general discharge performance of the battery 
under different discharge rates can be predicted reasonably well by our estimated 
parameters.  
 
Estimation with two discharge curve at different rates might help with the 
predictability, but using more data means more experiments need to be conducted and 
more computation need to be run during estimation. Since estimation with one 
discharge curve can already give us reasonable results under different rate, we will not 
increase the time and efforts required to get and calculate additional information. 
However, depending on the application, if higher accuracy is desired, more data 
points can be easily accommodated in the current optimization framework. 

 
Discussion 

All the estimations above were run on a Dell Precision T7500 desktop with two Intel 
Xeon CPU W5590 3.33GHz processors and 24 GB RAM. We used the Global 
Optimization Toolbox in MATLAB R2015b in a Windows 7 Professional 64-bit 
system. The estimation time was under 10 hours for all four cases. Compared with 3 
weeks for 88 parameters of P2D model needed for parameter identification on a 
cluster of five quad-core computers done by Forman et al.6 and 19 hours required to 
identify the parameters of a thermal P2D model on a cluster with 20 cores14, 10 hours 
is comparatively good. However, if we want to use the estimation as an on-line 
monitoring tool, then the computational cost has to be reduced.     

In this work, we mainly focused on Up, because the negative electrode of the common 
commercial cells today is based on graphite, and the OCP of lithium-ion intercalation 
is well studies, thus readily available when needed. People are pushing the boundary 
of lithium-ion batteries now, and more material including graphene and silicon is 
being investigated as potential next-generation battery material. If required, similar to 
the positive electrode, the linear approximation of negative electrode OCP can be 
done as well.  

Acknowledgement 

The authors are grateful for the financial support from the Department of Energy 
ARPA-E program (Award Number AR0000275) and the Clean Energy Institute at the 
University of Washington. The authors also want to thank Chintan Pathak for helping 
them understand the BMS better. 
 

 
References 

1. C. Fleischer, W. Waag, H. Heyn, and D. Sauer, J. Power Sources (2014) 
http://www.sciencedirect.com/science/article/pii/S0378775314002249. 



2. S. Santhanagopalan, Q. Guo, and R. E. White, J. Electrochem. Soc., 154, A198 
(2007) http://jes.ecsdl.org/cgi/doi/10.1149/1.2422896. 

3. V. Ramadesigan et al., J. Electrochem. Soc., 158, A1048 (2011). 

4. J. C. Forman, S. J. Moura, J. L. Stein, and H. K. Fathy, J. Power Sources, 210, 
263–275 (2012) http://dx.doi.org/10.1016/j.jpowsour.2012.03.009. 

5. L. Zhang et al., J. Power Sources, 270, 367–378 (2014) 
http://dx.doi.org/10.1016/j.jpowsour.2014.07.110. 

6. J. Li et al., J. Electrochem. Soc., 163, A1646–A1652 (2016) 
http://jes.ecsdl.org/lookup/doi/10.1149/2.0861608jes. 

7. M. Doyle, J. Electrochem. Soc., 140, 1526 (1993). 

8. D. Zhang, B. N. Popov, and R. E. White, J. Electrochem. Soc., 147, 831 (2000). 

9. V. Ramadesigan et al., J. Electrochem. Soc., 159, R31 (2012). 

10. Q. Guo and R. White, J. Electrochem. Soc. (2005) 
http://jes.ecsdl.org/content/152/2/A343.short. 

11. W. Appiah, J. Park, S. Song, S. Byun, and M. Ryou, J. Power (2016) 
http://www.sciencedirect.com/science/article/pii/S0378775316304037. 

12. P. Ramadass, B. Haran, P. M. Gomadam, R. White, and B. N. Popov, J. 
Electrochem. Soc., 151, A196 (2004). 

13. S. Lee, J. Kim, J. Lee, and B. Cho, J. Power Sources (2008) 
http://www.sciencedirect.com/science/article/pii/S0378775308017965. 

 

  



Table 1: SPM equations 

Governing Equations and Boundary Conditions of Isothermal Model.   (i = p,n)  

 Governing Equations Boundary Conditions  
Solid phase 
concentration 
(cathode): 
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Voltage : 
( )V t  ( ) ( ) ( )s s

p n overall cV t t t I Rφ φ= − −  (1.3) 

 

Additional equations used in the SPM 

Butler-
Volmer 
kinetics: 
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Table 2.1 Estimated Up Values 

SOC Case1 Case2 Case3 Case4 

0.4 4.3464 4.369989257 4.378048843 4.323072203 

0.43 4.145 4.140727144 4.312005303 4.117938301 

0.46 4.0884 4.096664233 4.261307772 4.065991673 

0.49 4.0687 4.066339986 4.211730865 4.052920373 

0.52 4.0359 4.022854483 4.161307758 4.01638027 

0.55 3.9966 3.985739008 4.111934602 3.957963731 

0.58 3.9445 3.942810635 4.062005303 3.931656102 

0.61 3.889 3.892814072 4.012152941 3.864245232 

0.64 3.8676 3.830109916 3.961786531 3.829605863 

0.67 3.7959 3.79085294 3.912423843 3.752775047 

0.7 3.7594 3.740805119 3.861314123 3.717424988 

0.73 3.6984 3.68161019 3.812174256 3.666763935 

0.76 3.6613 3.641084353 3.762710203 3.635575487 

0.79 3.6311 3.615505129 3.712897752 3.595143106 

0.82 3.5805 3.563430737 3.663692959 3.538127463 

0.85 3.5373 3.514910551 3.610132329 3.496631836 

0.88 3.4841 3.461853964 3.560271627 3.434113624 

0.91 3.4139 3.390614046 3.509807948 3.351897228 

0.94 3.3173 3.285709317 3.407893519 3.230883049 

0.97 3.1506 3.068522404 3.239287855 2.968435316 

0.99 2.7847 2.641094113 2.857889393 2.625952316 

 

 

 

 

 

 

 

 



 

Table 2.2 Estimated  Parameters with Up 

  Unit Case 2 Case 3 
   

Case 4 
Base 
Case 

Reported 
in Ref. 

11 

Transport 
Parameters 

 m2 s-1 6.7108e-
13 

3.4832e-
13 

3.4848e-
13 

6.6756e-
13 9.98e-13 

 m2 s-1 2.6174e-
12 

1.0211e-
12 

1.0618e-
12 

2.0085e-
12 1.57e-14 

Kinetic 
Parameters 

 m2.5mol-

0.5s-1 - 3.4710e-
11 

3.5898e-
11 

1.334e-
10 3.94e-11 

 m2.5mol-

0.5s-1 - 1.0046e-
10 

7.9500e-
11 

1.0307e-
10 3e-11 

Design 
Parameters 

 µm - - 
2.63 

8 4.5 

 µm - - 
2.0 

10 10.5 

 µm - - 
42.59 

43 30 

 µm - - 
46.04 

46.5 54 

 - - - 0.421 0.423 0.2 

 - - - 0.409 0.413 0.37 
 

 

Table 3 Error Analysis for various case studies 

Case Study Absolute Error Relative Error 
Up + R 0.0031 2.9886e-04 
Up + Transport  0.0033 3.1239e-04 
Up + Transport + Kinetic 4.5170e-04 3.4846e-05 
Up + Transport + Kinetic + 
Design 

2.3177e-04 2.0359e-05 
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Figure 2 Selection of number of node points for finite difference method 

Figures 

 
Figure 1 Schematic of the Single Particle Model 

 

 

 

 



Figure 4 Selection of number of piecewise linear approximation functions 

Figure 3 Estimation of Up using polynomial function 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Case – 1: Estimation of open circuit potential of cathode using piece wise linear 
approximation function along with Resistance.  

 

 
Figure 6 Potential profile using predicted values of open circuit potential of cathode 

 

Case – 2: Estimation of open circuit potential of cathode using piece wise linear 
approximation function along transport parameters 

Figure 5 Predicted profile of open circuit potential of the positive electrode using 
piecewise linear approximation function for each cases 



 
Figure 7 Potential profile using predicted values of open circuit potential of cathode and transport parameters 

 

 

Case – 3: Estimation of open circuit potential of cathode using piece wise linear 
approximation function along with transport parameters and kinetic parameters  

 
Figure 8 Potential profile using predicted values of open circuit potential of cathode, transport and kinetic 

parameters 

 

Case – 4: Estimation of open circuit potential of cathode using piece wise linear 
approximation function along with transport, kinetic parameters and design 
parameters 



 
Figure 9 Potential profile using predicted values of open circuit potential of cathode along with transport, kinetic 

and design parameters 

 

 

 

Validation  

 
Figure 10 Comparisons of different parameter estimation case studies with the experimental data for 1000mA 

 



 
Figure 11 Comparisons of different parameter estimation case studies with the experimental data for 600mA 

 
Figure 12 Comparisons of different parameter estimation case studies with the experimental data for 6000mA 


