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A Numeric Symbolic Solution for Impedance Response
of Electrochemical Devices
I. Introduction of the Method
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A numeric symbolic solution technique is introduced for the simulation of ac impedance response of electrochemical devices. The
proposed method is numerical in the spatial coordinates and yields a closed form symbolic solution in the system parameters. The
system of algebraic equations obtained by the spatial discretization is written in matrix form and solved symbolically. Although
this method is capable of simulating ac impedance data for systems with multiple coupled partial differential equations, the method
and its advantages over classical methods are illustrated using diffusion in a planar electrode.
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Various transport and reaction limitations restrict the cost effec-
tiveness, utilization, and efficiency of electrochemical devices. AC
impedance is a powerful technique used by various researchers to
understand electrochemical systems.1-4 Understanding and extract-
ing useful information from ac impedance data is a formidable task.
The main drawback with using circuit approach for simulating ac
impedance response is that it only gives lumped-parameters for the
system of interest and does not involve all of the meaningful quan-
titative system parameters such as the Fickian diffusion coefficient,
rate constants, etc. Rigorous physics based models for simulating ac
impedance response involves solving multiple partial differential
equations �PDEs� in multiple domains making the models prohibi-
tive because of numerical and computational constraints.4 Typically,
only single PDE has been solved analytically in the literature. Re-
cently, an analytical solution was reported for two coupled PDEs.3

For more than one PDE, obtaining an analytical solution involves
complicated eigenvalue and cumbersome matrix calculations. Ana-
lytical solutions may not be easily separable to real and imaginary
parts.

The purpose of this paper is to develop a numeric symbolic so-
lution �NSS� for simulating ac impedance response of electrochemi-
cal devices. The methodology consists of applying finite differences
for the spatial coordinate and a symbolic matrix inversion method
for solving the resulting system of linear algebraic equations. Thus
the NSS is numerical in the spatial coordinate and closed-form in all
the system parameters. In this paper, this scheme is demonstrated by
simulating diffusive impedance response of a planar electrode. This
approach will be extended in the future to multiple PDEs in multiple
spatial coordinates in multiple domains that govern the electro-
chemical behavior of various devices. The efficiency and superiority
of NSS is compared with both analytical and numerical solutions.

Example – Diffusive Impedance

Diffusion in a planar electrode is given by Fickian diffusion as
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The electrode is in contact with the bulk-liquid at x = 0 and the
electrochemical behavior is governed by the surface concentration at
x = L. The electrochemical reaction takes place at the electrode sur-
face. Because impedance experiments are performed about an oper-
ating point with a small perturbation, c in Eq. 1 can be thought of as
a perturbation in concentration with initial condition being zero.

To get the ac impedance response for the electrode, Eq. 1 is
converted from the time domain to the Laplace domain s, and ex-
pressed in dimensionless form as

d2C

dX2 = SC �3�

with the boundary conditions

X = 0, C = 0 and X = 1,
dC

dX
= ��S� �4�

where X = x/L, C = c/cref, ��S� = i�s�L/nFDCref, and S = sL2/D is
the dimensionless Laplace variable. Various approaches for the
simulation of diffusive impedance response of planar electrode �Eq.
3 with the boundary conditions Eq. 4� are described below.

Analytical approach.— Equation 3 can be analytically solved us-
ing a standard classical technique and a closed-form solution for C
as a function of S �s, D, and L� is obtained as5

Canalytical =
��S�sinh�X�S�
�S cosh��S�

�5�

The surface concentration, Cs gives the overpotential and hence
the impedance. Cs at the boundary X = 1 is obtained as �without
losing generosity � is assumed to be 1�

CSanalytical
= Zanalytical = tanh��S�/�S �6�

The impedance response or the Nyquist plot is obtained by sub-
stituting S = I� �� is the dimensionless frequency and is obtained
by multiplying frequency � by L2/D� in Eq. 6 and by separating
the real and imaginary parts. The separation of the total impedance
as real and imaginary parts is simple for this case as the analy-
tical expression does not contain complicated eigenfunctions and
eigenvalues.3

Numerical approach.— A numerical solution to solve Eq. 3 is
performed by applying finite difference or other discretization meth-
ods in the spatial direction, X. Because one has to find both real and
imaginary parts, Eq. 3 is typically converted to real and imaginary
parts before implementing a numerical procedure. By substituting
S = I�, Eq. 3 is separated for real and imaginary parts as
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d2Cre

dX2 = − �Cim

d2Cim

dX2 = �Cre �7�

The boundary conditions are also separated for real and imagi-
nary parts as

X = 0, Cre = 0; Cim = 0

X = 1,
dCre

dX
= 1;

dCim

dX
= 0 �8�

For a particular value of frequency �, the set of equations given
in Eq. 7 is solved numerically with appropriate boundary conditions
given by Eq. 8. By consecutively finding Cre and Cim at the surface
�X = 1� for various values of � numerically, the Nyquist plot is
obtained. For this purpose, Maple’s dsolve numeric command is
used.6

Numeric symbolic solution.— The numeric symbolic solution
approach to solve Eq. 3 involves applying finite differences in the
spatial direction, as the primary step. Then Eq. 3 is converted to
discrete-form �system of algebraic equations� for N number of inte-
rior node points as

Ci−1 − 2Ci + Ci+1

h2 = SCi; h =
1

N + 1
�9�

where i = 1 . . . N. The boundary conditions governing the exterior
node points are also converted to discrete-form as

C0 = 0 �10�
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The above system of algebraic equations can be rewritten and
solved in matrix form as7

AY = B ⇒ Y = A−1B �12�

where Y is the dependent variables vector, Y
= �C1 C2 C3 ¯ CN�T �for all the variables in all the interior node
points�, A is the coefficient matrix and B is the forcing function
vector, B = �0 0 0 ¯ −2/3h�T. If N = 2 interior node points are
used the coefficient matrix A is given as

A = �−
2

h2 − S
1

h2

1

3h2 −
2

3h2 − S� �13�

The simulation of the system is completed by inverting A matrix
symbolically as a function of the system parameters �S or s, D and
L�. A flow chart describing the NSS is presented in Fig. 1. When
N = 2 interior node points are used, the resulting expression for
impedance response is
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The real and imaginary parts are obtained as

Zre =
2�13122 + 567�2 + �4�
9�2916 + 468�2 + �4�

�15�
Zim =
8��324 + �2�

3�2916 + 468�2 + �4�
�16�

It can be noted from Eq. 14 that the NSS technique yields a
closed-form solution as a function of all the system parameters �S or

Figure 1. Computational procedure for numeric symbolic solution �NSS�.
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� or s, L, and D�. For illustration, we showed the results obtained
with two node points. For better accuracy we need to increase the
number of node points. Note that the coefficient matrix in Eq. 12 can
be a function of the Laplace variable S or the frequency, �. Maple
can be used to invert A matrix. However, by following the pattern of
eigenvalues an efficient code can be written for the inverse
symbolically.5,8 A user-friendly program has been written to obtain
the matrix inverse, which does not take more than a minute to find
the inverse even for N = 100 or 1000 node points. All the simula-
tions in this paper are performed in a PC with 1.7 GHz processor
and 1 GB RAM �running Windows XP�.

Comparison of Various Approaches

The impedance responses obtained using the above three ap-
proaches are plotted in Fig. 2 and the corresponding simulation time
required to obtain the curves are shown in Table I. The analytical
solution �solid-line in Fig. 2� is a function of the system parameters
�S or s, L, D, or �� and hence the full curve is obtained by separating
the real and imaginary parts in Eq. 6. The computation time to
obtain the curve is just one second. The numerical approach �dotted
line in Fig. 2� takes more than 45 s to generate the plot. This is
inevitable, because there is a need to solve Eq. 7 repeatedly for
every value of � to get one point in the curve �totally 300 points are
evaluated to obtain a smooth curve�. The NSS is a closed-form
solution of the system parameters S or � and takes only 2 s to
generate the entire curve; both the numerical and NSS solutions
overlap with the analytical solution in Fig. 2.

Figure 2. �Color online� Impedance response of diffusion in a planar elec-
trode �Nyquist plot�. Solid line denotes analytical method, dotted line
�boxed� denotes numerical method, dotted line �circled� denotes numeric
symbolic solution, and solid line �thin line� denotes synthetic experimental
data. Numerical and NSS data points coincide.

Table I. Comparison of different approaches for the simulation of
ac impedance response.

Method
Computation

time �s�

Analytical method 1
Numerical method 45
Numeric symbolic solution 2
NSS is useful for parameter estimation. There are two parameters
involved in the model equations, the thickness of the electrode L,
and the Fickian diffusion coefficient D. Fixing the thickness of the
electrode as 10−6 m, the unknown parameter D is estimated using
Gauss-Newton method from the synthetic experimental data. The
experimental values are generated by distributing 5% randomness
error to the analytical values for D = 10−7 m2/s by considering 300
data points. The expression used to generate experimental values
using random error is

Zexperimental = Zanalytical�0.95

+ 0.01�Random number between 0 and 10��
�17�

Figure 2 compares the synthetic experimental values with theo-
retical values. The synthetic experimental values are then provided
for parameter estimation algorithm along with an initial guess based
on the value used for simulating the ac impedance response. The
following steps are involved in the parameter estimation of imped-
ance data9: �i� start with a good initial guess for parameters, k�0� �ii�
compute the real part, imaginary part and Jacobian of both real and
imaginary parts at each data point and set up the vector with experi-
mental values Yexp, predicted values Ypre, and the Jacobian matrix J,
�iii� the correction factor is obtained by using the expression, �k
= �JTJ�−1JT�Yexp − Ypre� for both real and imaginary parts of the
impedance, �iv� using this, an improved parameter value can be
obtained as k�i+1� = k�i� + �k�i�, the predicted parameter for the next
iteration is the arithmetic average of k�i+1� values of real and imagi-
nary parts. Steps �ii� to �iv� are repeated until a required accuracy is
reached. The Jacobian matrix J is defined as

J = �
� Y1

� k1
....

� Y1
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.... .... ....

� Yn

� k1
....

� Yn

� km

� �18�

where m is the number of parameters and n is the number of experi-
mental data points.

The estimated parameter values based on the three approaches
�analytical, numerical and numeric symbolic solution� are shown in
Table II. The computation time associated with each approaches are
also compared. It is clear from the simulation results that the nu-
merical method requires more time to estimate a single system pa-
rameter. This is because the numerical approach needs additional
time to solve additional differential equations �Jacobians J� associ-
ated with both real and imaginary parts of the impedance. The in-
efficiency of numerical codes for predicting parameters can be over-
come by the NSS. Using the closed form of symbolic solution, the
jacobians involved in the parameter estimation can be exactly cal-
culated. The comparison of computation time shows that the NSS
performs as efficiently as the analytical solution for parameter
estimation. All three approaches are simulated in Maple. Maple
programs to obtain the impedance response and to estimate the pa-
rameters using all the three approaches are available upon request
from the corresponding author for academic and noncommercial
purposes. The NSS program that takes less than 1 min to run based
on advanced matrix inversion method is to be applied for software

Table II. Comparison of estimated parameter values and compu-
tation time for different approaches.

Method
Estimated value

of diffusivity �m2/s�
Computation

time

Analytical method 1.002803726 � 10−7 6 s
Numerical method 1.005148577 � 10−7 41 min
Numeric symbolic solution 1.002811529 � 10−7 35 s
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disclosure/patents. However, Maple’s inbuilt matrix inversion com-
mand can be used to obtain the NSS �this program is available upon
request�.

Discussion

Numerical simulation of ac impedance models is not ideal for
parameter estimation. This is true because for one PDE we need 100
node points in the x-axis for a numerical simulation �for a particular
value of frequency�. To simulate the complete impedance spectra,
for 300 different values of frequency �in the entire domain�, we
solved two sets �one for real and another for imaginary part of total
impedance� of 100 such equations numerically 300 times. When the
numerical approach is used to predict one parameter �diffusion co-
efficient, D� from experimental data, there is a need to solve two
more sets of 100 equations for the sensitivity variable in all the
100 node points. For a model with a single PDE and a single pa-
rameter we would need to solve 2 � 100 + 2 � 100 = 4 � 200
equations numerically 300 times. For estimating parameters numeri-
cally using a good initial guess, we are required to iterate 10 times.
Hence, for a single PDE model with one parameter we have to solve
4 � 200 = 800 equations 300 � 10 = 3000 times.

As is evident from the previous sections, the only major step in
NSS is inverting the coefficient matrix A. But, using advanced ma-
trix methods, the matrix can be inverted symbolically as a function
of S.5,8 The matrix methods involve following the pattern of eigen-
values and eigenvectors of the matrix for N = 2, 3, 4 node points,
etc. A recursive relationship is obtained to find the matrix inverse
symbolically. Once the recursive relationship is obtained the matrix
inverse step does not take more than 1 min to find the inverse of the
matrix even for N = 100 or 1000 node points. Figure 3 shows the
number of node points needed for NSS at different values of dimen-
sionless frequency �, for the simulation of entire impedance re-
sponse curve. This shows that at very low to fairly high values of
frequency the number of node points needed is very small. Then, the
number of node points steeply increases with � when � � 1000.

The NSS can be separated into real and imaginary parts to simu-
late the ac impedance response without additional computation con-
straints. Even if more node points are used to obtain a closed form

Figure 3. �Color online� Number of node points required for NSS for vari-
ous values of �.
of symbolic solution, the NSS works well and simply separates the
real and imaginary parts successfully. It is also interesting to realize
that the computation time needed to obtain the ac impedance re-
sponse using NSS is almost the same as that required by the ana-
lytical solution, whereas the computational time taken for the simu-
lation of impedance response using numerical solution is 45 times
greater than that of the analytical solution. The NSS is expected to
be superior to analytical solutions for estimating transport and ki-
netic parameters if rigorous electrochemical models are considered.
This means that, while rigorous analytical solutions must be
resolved/re-derived for the rigorous models for batteries or other
electrochemical devices, the NSS can provide a solution indepen-
dent of the boundary conditions and geometry. The NSS can also
provide solutions as a function of geometry factor if Eq. 3 has an
additional termp�dC/dX� with p being 0, 1, and 2 for rectangular,
cylindrical and spherical coordinates or D or other parameters as a
function of X.

The advantages of NSS have been validated by comparing the
time taken to obtain an impedance response curve and one param-
eter using the NSS, numerical, and exact analytical solutions. The
NSS exploits the properties of both analytical as well as numerical
approaches. The computation time of NSS is several times superior
to the numerical simulation.

Future work.— The proposed NSS method has been proven to
be as good as the analytical solution and superior to the numerical
simulation. Thus the method can be extended for the simulation of a
rigorous physics based ac impedance model4 for electrochemical
devices such as batteries, fuel cells, capacitors, sensors, etc.10 To
better understand porous electrodes, it is important to consider the
simultaneous phenomenon of coupled gradients of concentration
and potential. Real experimental data can be obtained and used for
the estimation of system parameters such as diffusion coefficient,
electrolyte conductivity, or exchange current for the reaction. Future
communication will address the development of this scheme for
porous electrodes to estimate parameters for Li-ion batteries, PEM
fuel cells, sensors, and other electrochemical devices. In addition,
other discretization methods �collocation, etc.� are also pursued and
will be discussed in future communications. The closed form solu-
tion obtained can also be thought as transfer functions, thus giving
hope for real-time physics based control of electrochemical devices
and real time simulation of stacks and hybrids. The use of NSS for
process control, stack and hybrid system modeling and control, and
for life cycle modeling will also be discussed in future communica-
tions.
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