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Recent interest in lithium-ion batteries for electric and hybrid vehicles, satellite, defense, and military applications has increased
the demand on the computational efficiency of lithium-ion battery models. This paper presents an effective approach to simulate
physics based lithium-ion battery models in real-time �milliseconds� for simulation and control in hybrid environments. The
battery model used for the simulation is derived from the first principles as an isothermal pseudo two-dimensional model with
incorporation of concentrated solution theory, porous electrode theory, and due consideration for the variations in electronic/ionic
conductivities and diffusivities using the Bruggmann coefficient.
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Mathematical modeling of lithium-ion batteries involves the
specification of the dependant variables of interest �e.g., solution
phase potential, solution phase concentration� and the first-
principles-based derivation of governing equations for these depen-
dant variables �based on actual physics of the battery system� with
specification of boundary and initial conditions. Doyle et al.1 devel-
oped a model for a lithium-ion sandwich that consists of a porous
electrode, separator and a current collector. This model is based on
concentrated solution theory,2 and this important effort paves the
way for number of similar model developments because this model
is general enough to incorporate further developments in a battery
system.3-10

Botte et al.11 made an extensive review on mathematical model-
ing of secondary lithium batteries. A review of mathematical models
of lithium and nickel battery systems developed by White’s research
group and other groups at the University of South Carolina are dis-
cussed in detail elsewhere.12 Another review of models for predict-
ing the cycling performance of lithium-ion batteries can be found in
the literature.13 Table I shows a standard pseudo-2D �two-
dimensional� isothermal model for lithium-ion battery.6 The bound-
ary and initial conditions required to solve this system of equations
are given in Tables I and II. The parameters used for the entire
simulation are given in Table III. The corresponding schematic of a
discretization stencil are shown in Fig. 1a and b, respectively.

For analysis and control of lithium-ion batteries in hybrid envi-
ronments �with a fuel cell, capacitor, or electrical components�, there
is a need to simulate state of charge, state of health, etc., of lithium-
ion batteries in real time �milliseconds�. Rigorous physics based
models take up to few minutes to simulate discharge curves depend-
ing on the solver, routines, computers, etc. Circuit or empirical mod-
els �based on the past data� can be simulated in real time. However,
these models fail at various operating conditions, and use of these
models might cause abuse or under utilization of electrochemical
power sources. This paper presents a novel approach that helps us
simulate physics based lithium-ion battery models in real time with-
out compromising on accuracy.

Model simplification for any modeling system depends on the
model complexity and order of the models. In the literature, order
reduction based on volume-averaging, Liapunov–Schmidt tech-
nique, etc., has been illustrated for various systems, including mono-
lith reactors.14-17 Even classical perturbation techniques can help in
simplifying the models and, hence, the number of equations to be
solved. However, to our knowledge these methods have been ap-
plied only for models in which the independent variable, x for ex-
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ample, varies between 0 and 1 or L �constant physical properties
across the entire domain of interest�. Lithium-ion batteries have
three regions of different physical properties with different number
of equations in each region �positive electrode/separator/negative
electrode�. In addition, standard order reduction techniques require a
parameter �for example, aspect ratio, time constant, etc.� based on
which the order of PDEs is reduced �for example, 2D to 1D �one-
dimensional� or 1D PDE to ODE�.

In this paper, we present the progress we have made in simulat-
ing lithium-ion battery models in real time. The math involved in
simplifying lithium-ion battery models is too complicated to be re-
ported in one paper. This paper only provides the basic concept and
encouraging results, the future publications will present further de-
tails. The results obtained by using the reduced-order models are
compared to the rigorous numeric simulation and validated.

Real-time simulation of lithium ion battery models.— Given the
number of space discretized equations involved, real-time simula-
tion of the lithium-ion battery model is impractical as of today.
Real-time optimization and feedback control of a sensitive lithium-
ion battery, where the health of the battery is vital to the very op-
eration of the device, requires quick-solving models that give an
accurate account of the battery variables. The full physics model
described in Table I is therefore not the best candidate for real-time
optimization and control. To facilitate real-time simulation, more
than one mathematical concept has to be used. In the present study
volume averaging, approximation methods and intuition based sim-
plification of the variables are used.

Proof of concept; simple case.— Consider the case of uniform cur-
rent distribution, the electrolyte concentration governing equations
in the three regions are6
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jn and jp are the pore wall flux at the negative electrode and positive
electrode, respectively, and for uniform current distribution they are
given by
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Equations 1-3 are rewritten in dimensionless form as follows
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where the dimensionless variables are � = �D/L2�t, C = �c/c0�, X
= x/L with the dimensionless groups Jp = �L2�1 − t+�/c0D�p�
��I/Flp� and Jn = L2�1 − t+�/c0D�n �I/Fln� where L = lp + ls + ln.

The electrolyte concentration can be volume averaged over the
respective region as follows
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where Lp = lp/L, Ls = ls/L, and Ln = ln/L. Applying Eq. 8 to the
governing equations �Eq. 5-7� yield

Table I. Governing equations for a lithium-ion battery.

Region
Eq.
no. Governing equations

Positive
electrode

1 �p�c � �t = Deff,p�2c � �x2 + ap�1 − t+�jp

initial condition c�t=0 = c0

2 −�eff,p��1 � �x − �eff,p��2 � �x + 2�eff,pRT �F �

3 �eff,p�2�1 � �x2 = apFjp

4 �cs � �t = Ds,p � r2 � � �r �r2�cs � �r �
initial condition cs�t=0 = 0.5cs,max,p

Separator 5 �s�c � �t = Deff,s�
2c � �x2

6 I = −�eff,s��2 � �x + 2�eff,sRT �F �1 − t+�� ln c

Negative
electrode

7 �n�c � �t = Deff,n�2c � �x2 + an�1 − t+�jn

initial condition c�t=0 = c0

8 −�eff,n��1 � �x − �eff,n��2 � �x + 2�eff,nRT �F �

9 �eff,n�2�1 � �x2 = anFjn

10 �cs � �t = Ds,n � r2 � � �r �r2�cs � �r �
initial condition cs�t=0 = 0.85cs,max,n

Table II. Expressions used in the lithium-ion battery model given by
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Note that Eq. 9-11 are ordinary differential equations �ODE� in time
as opposed to the original model equations �Eq. 5-7�, which are
partial differential equations �PDE�. Equations 9-11 are exact and as
good as the original model equations. Hence, order reduction can be
done easily. However, to solve Eq. 9-11, we need to know what the
concentration derivatives �flux� are at the two interfaces x = lp and
x = lp + ls. This is where various approximations come into the pic-
ture. By assuming the concentration profile to be a parabolic profile,
fluxes at the interfaces can be approximated and Eq. 9-11 are con-
verted as �for bruggp = bruggs = bruggn = 4�

Boundary conditions

� − Deff,p�c � �x �x=0 = 0
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At the positive electrode, the governing equation for Cave
cathode is given
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More details about finding the constants are illustrated elsewhere
for solid-phase diffusion approximations.18 Note that Eq. 12-14 can
be solved exactly �linear equations� to obtain the transient response
of the model equations. The accuracy of the reduced-order equations
�Eq. 12-14� depends on the system parameters and the complexity of
the original model equations. This is a very simple model, and
hence, a parabolic profile approximation is sufficient for rates up to
1C rate of discharge. Adding more terms to the polynomial profiles
improves accuracy, but at the cost of higher computation costs,
higher number of equations and needs more work in deriving the
reduced-order equations. The method proposed here differs from
standard collocation procedures in a subtle manner because we do
physics-based averaging and volume averaging on physical vari-
ables first.

The simplified model now has three ordinary differential equa-
tions �which are initial value problems�. Figure 2 gives a compari-
son of the predictive capability of the simplified model for predict-
ing the electrolyte concentration. It can be seen that the simplified

Table III. Parameters used for the simulation (LiCoO2 and LiC6 sys

Symbol Unit

�i S/m
� f ,i

�i

Brugg
Ds,i m2/s
D m2/s
ki mol/�s m2�/�mol/m3�1+
a,i

cs,i,max mol/m3

cs,i0 mol/m3 0
c0 mol/m3

Rp m
li m
RSEI � m2

t+

F C/mol
R J/�mol K�
T K
model is able to predict with no loss in accuracy compared to the
rigorous numerical solution using the governing equation for elec-
trolyte concentration in the three regions.

Simplifying lithium-ion battery models without compromising accu-
racy.— For the simple case shown above, the parabolic profile was
used. For lithium-ion battery models, this approach is not the opti-
mized approach. Any dependent variable can be approximated by

y�x,t� = �
i=0

N1

ai�t�	i�x� �17�

where y�x,t� is the dependent variable of interest, ai�t� is a time-
varying coefficient that needs to be determined and 	i�x� is a space-
dependent function. The function 	i�x� can be chosen based on
mathematical intuition, experience, and research and can take one of
the following forms or a combination of them: linear form �x,
1/x, etc.�, nonlinear form �exp�x�, ln�x�, etc.�, trigonometric form
standard collocation procedures will converge and yield accurate
results. The objective is to not to minimize N1 for a particular vari-
able. The objective is to minimize the total number of differential
algebraic equations �DAEs� that result from equations similar to Eq.
17 for all the dependent variables in all the regions to predict the
discharge curves accurately �i.e., �Ni�. This is obtained by combin-
ing standard collocation schemes with volume averaging, Liapunov–
Schmidt technique, perturbation, Green’s function theory, etc. The
method needed to simplify each dependent variable in a particular
region will be communicated later.

The system of partial differential equations �PDE� shown in
Table I form the core of governing equations for battery simulation
for a LiCoO2 �positive electrode�, LiC6 �negative electrode� based
system. Suppose, we discretize the positive electrode, separator, and
negative electrode into 100 equally spaced node points in linear
length scale, i.e., in x, the positive electrode now has 100 differential
equations for the electrolyte concentration, 100 algebraic equations
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for the electrolyte potential �potential in the electrolyte phase�, and
100 algebraic equations for the solid-phase potential. If we take 20
node points in r for the solid particles present in every node point in
x, then for the solid phase concentration we have 1 � 100 � 20
differential equations. Thus, for a single porous electrode �say for

Figure 1. �a� Schematic illustration of lithium ion cell sandwich and �b�
lithium-ion battery stencil �rigorous numeric model�.

Figure 2. Variation of dimensionless concentration plotted as a function of
dimensionless cell distance X for various times. There is good agreement
between the rigorous numerical model and the reformulated simplified model
for the simple case of uniform current distribution �Eq. 1-3 and Eq. 12-14�.
positive electrode�, we have 2300 DAEs. Following the same num-
ber of node points in x, the separator now has 100 differential equa-
tions for the electrolyte concentration and 100 algebraic equations
for the electrolyte phase potential. The negative electrode is dis-
cretized similar to the positive electrode and has a total of 3
� 100 + 1 � 100 � 20 = 2300 DAEs to solve. Thus, the number
of differential algebraic equations to be solved for the rigorous
model is 3 � 100 + 1 � 100 � 20 + 2 � 100 + 3 � 100 + 1
� 100 � 20 = 4800 DAEs. By using parabolic profile and other
approximations, solid-phase diffusion can be approximated and the
number of DAEs are reduced to 302 DAEs, as shown in Ref. 18.

By using the approximations discussed in this paper, we are able
to predict the discharge curves accurately with just 49 DAEs. Note
that 49 DAEs are needed for matching for all the intrinsic variables.
With our approach, we can choose to go “approximate” in the in-
trinsic variables and solve only discharge curves accurately with
only 27 DAEs. More information regarding model simplification is
outlined in Fig. 3, and each step in the flowchart will be published as
a separate paper in the future.

These models take 30 s to 2 min to run in the Maple environ-
ment using a DAE solver called Besirk.19 A variant of the same
model runs in 85 ms in Fortran environment to predict an entire
discharge curve �1.7 GHz processor and 1 GB RAM�. An execut-
able code that predicts the discharge behavior in real time is avail-
able on request from the corresponding author. We have tested our
simplified models for rates up to 2C and are in the process of testing
for rates up to 50C �for higher rates solid-phase approximation
needs to be redefined�.

Discussion

Discharge behavior of lithium-ion batteries is the prime goal of
the simulation performed in this paper. Figure 4 gives the discharge
curve for 1C and 1/2C rates of discharge. It can be seen that for
these rates of discharge the simplified model compares very well to
the rigorous numeric model. The merit of the approach is evident
when comparing the number of governing equations that are solved.
The simplified model specifies 49 DAEs as opposed to 302 DAEs
for the rigorous code. It is also noteworthy that 302 is the minimum
number of DAEs required for a converged finite difference solution.
The simplified model for all practical situations �rates of discharge�
uses a maximum of 49 specified equations for a converged solution,
which compares very well, even with 302 DAEs based finite differ-
ence code.

Figure 3. Computation scheme for model simplification.
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The simplified model also predicts the intrinsic variables accu-
rately. The intrinsic variables, namely, overpotential ���, solution
phase potential ��2�, solid-phase potential ��1�, and electrolyte
concentration �Fig. 5� determined by the simplified model, are plot-
ted and compared to a rigorous finite difference code. The interfaces
are the positive electrode-current collector junction �x = 0�, positive
electrode-separator �electrolyte� junction �x = lp�, separator-negative
electrode junction �x = lp + ls�, and the negative electrode-current
collector junction �x = lp + ls + ln�. Figure 6 shows the comparison
of solution phase potential at various interfaces for both simplified
and rigorous numeric models. It is seen that the changes in solution
phase potential at the current collector-negative electrode junction
and negative electrode-separator junction are predicted well by the
simplified model. Figure 7 shows the comparison of overpotential at
various interfaces. It has been clearly seen that the simplified model,
although saving computational time, does not compromise physics
of the system.

The form of eigenfunction in Eq. 17 for each dependent variable
in a particular region determines the efficiency of the simplified
code. More details regarding eigenfunctions for a particular depen-
dent variable in a particular region will be discussed in future pub-
lications.

Conclusion

This paper presents an efficient approach to simulate discharge
behavior of lithium-ion batteries in real time �milliseconds�. Only
preliminary results are discussed in this paper, and future publica-
tions will discuss the math involved in simplifying these models in
more depth. Since the model simplification method is demonstrated
using low to moderate rates of discharge due to mass transport limi-
tations, the simplified model presented is also valid only under these
circumstances. The method proposed is also expected to be valid for
all other Li-ion battery chemistries and other electrochemical power
sources, such as PEM fuel cells, nickel-metal hydride batteries, etc.
The method developed has significance in hybrid modeling and con-
trol, parameter estimation from experimental data �capacity fade and
lifetime prediction�, etc.
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Figure 7. �Color online� Overpotential � is plotted as a function of time of
discharge at different interfaces comparing the reformulated simplified and
rigorous numerical models. Good agreement is seen between the two models.
Figure 4. �Color online� Discharge curves for 1C and 0.5C rate comparing
the rigorous numerical model and the reformulated simplified model. Good
Figure 6. �Color online� Solution phase potential at different interfaces com-
paring the reformulated, simplified, and rigorous numerical models are plot-
ted for a 1C rate of discharge. There is good agreement between the two
models.
Figure 5. �Color online� Solution phase concentration profiles for 1C rate at
different interfaces comparing the rigorous numerical model and the refor-
mulated simplified model. There is good agreement between the two models.
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List of Symbols

ai specific surface area of electrode i �i = p, n�, m2/m3

bruggi Bruggman coefficient of region i �i = p, s, n�
c electrolyte concentration, mol/m3

c0 initial electrolyte concentration, mol/m3

cs,i concentration of lithium ions in the intercalation particle of electrode i
�i = p, n�, mol/m3

cs,i,0 initial concentration of lithium ions in the intercalation particle of elec-
trode i �i = p, n�, mol/m3

cs,i,max maximum concentration of lithium ions in the intercalation particle of
electrode i �i = p, n�, mol/m3

D electrolyte diffusion coefficient, m2/s
Ds,i lithium ion diffusion coefficient in the intercalation particle of electrode i

�i = p, n�, m2/s
F Faraday’s constant, C/mol
I applied current density, A/cm2

i1 solid phase current density, A/m2

i2 solution phase current density, A/m2

is,0 exchange current density for the solvent reduction reaction, A/m2

js solvent reduction current density, mol/m2s
ji wall flux of Li+ on the intercalation particle of electrode i �i = n, p�,

mol/m2s
ki intercalation/deintercalation reaction rate constant of electrode i

�i 
 p, n�, mol/�mol/m3�1.5

li thickness of region i �i = p, s, n�, m
Ms molar weight of the solvent reaction product, g/mol

n negative electrode
p positive electrode
r radial coordinate, m
R universal gas constant, J/�mol K�

RSEI initial SEI layer resistance at the negative electrode, � m2

Ri radius of the intercalation particle of electrode i �i = p, n�, m
s separator

t+ Li+ transference number in the electrolyte
T absolute temperature, K

Ui open circuit potential of electrode i �i = p, n�, V
Us standard potential of the solvent reduction reaction, V

x spatial coordinate, m
� thickness of the solvent reduction product film, m

�0 initial thickness of the solvent reduction product film, m

�i
porosity of region i �i = p, s, n�
�f,i volume fraction of fillers of electrode i �i = p, n�
�i dimensionless concentration of lithium ions in the intercalation particle of

electrode i ��i = cs,i/cs,i,max�
� ionic conductivity of the electrolyte, S/m

�eff,i effective ionic conductivity of the electrolyte in region i
�i = p, s, n�, S/m

�s density of the solvent reduction product film, g/m3

�i electronic conductivity of the solid phase of electrode i �i = p, n�, S/m
�eff,i effective electronic conductivity of the solid phase of electrode i

�i = p, n�, S/m
�1 solid phase potential, V
�2 electrolyte phase potential, V
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