
Journal of The Electrochemical Society, 156 �4� A260-A271 �2009�A260
Mathematical Model Reformulation for Lithium-Ion Battery
Simulations: Galvanostatic Boundary Conditions
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This paper presents an effective first step in the mathematical reformulation of physics-based lithium-ion battery models to
improve computational efficiency. While the additional steps listed elsewhere �Electrochem. Solid-State Lett., 10, A225 �2007��
can be carried out to expedite the computation, the method described here is an effective first step toward efficient reformulation
of lithium-ion battery models to expedite computation. The battery model used for the simulation is derived from the first
principles as an isothermal pseudo-two-dimensional model with volume-averaged equations for the solid phase and with incor-
poration of concentrated solution theory, porous electrode theory, and with due consideration to the variations in electronic/ionic
conductivities and diffusivities. The nature of the model and the structure of the governing equations are exploited to facilitate
model reformulation, yielding efficient and accurate numerical computations.
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Mathematical modeling of lithium-ion batteries involves the
specification of the dependent variables of interest �e.g., solution-
phase concentration� and the first principles based derivation of gov-
erning equations for these dependent variables �based on the physics
of the battery system� with specification of boundary/initial condi-
tions and nonlinear expressions for transport/kinetic parameters.
Doyle et al.1 developed a model for a lithium-ion sandwich that
consists of a porous electrode, separator, and a current collector.
This model is based on the concentrated solution theory.2 This im-
portant effort paved the way for a number of similar models, be-
cause it is general enough to incorporate further developments in a
battery system.3-13 Reviews of models for lithium-ion batteries can
be found elsewhere in the literature.10-12 Table I depicts a pseudo-
two-dimensional isothermal model for a lithium-ion battery which
has been converted to a one-dimensional �1D� model using approxi-
mations for solid-state diffusion.14-16 Table II presents the various
expressions used in the model. The parameters used for the simula-
tion are given in Table III. For analysis and control of lithium-ion
batteries in hybrid environments �with a fuel cell, capacitor, or elec-
trical components�, there is a need to simulate state of charge, state
of health, and other parameters of lithium-ion batteries in millisec-
onds. Rigorous physics-based models take a few seconds up to a few
minutes to simulate discharge curves, depending on the solvers, rou-
tines, computers, etc. Circuit-based or empirical models �based on
the past data� can be simulated in milliseconds. However, these
models fail at various operating conditions, and use of these models
might cause abuse or under-utilization of electrochemical power
sources. This paper presents the mathematical analysis for reformu-
lation of physics-based models.

Lithium-Ion Battery Model Complexities

Simulation of lithium-ion battery models requires simultaneous
evaluation of concentration and potential fields, in both solid as well
as liquid phases. In addition, the porous nature of the battery elec-
trodes leads to highly nonlinear and heterogeneous electrochemical
reaction kinetics. The transport properties such as ionic and elec-
tronic conductivities and lithium-ion diffusivity might also vary dur-
ing the course of electrochemical reactions. It has been well estab-
lished that volume-averaging17,18 coupled with polynomial
approximation for the solid phase works well at low-to-medium
rates of discharge.19,20 Hence, the model considered is given in
Table I, where the solid-phase diffusion equation is addressed with
this approximation. The readers are advised at this point that the
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volume-averaged equations are not valid at short times and pulse
charges/discharges. The solid-phase equations should be reformu-
lated in an efficient form before reformulation is done for the other
variables. However, this paper focuses on reformulation in the x
direction, and hence the discussion is limited to volume-averaged
equations for the solid-phase equation.

In general, the numerical simulation of lithium-ion battery mod-
els is done by discretizing all the variables in the x coordinate using
finite difference. Let us assume that we discretize the cathode, sepa-
rator, and anode into 50 equally spaced node points in linear length
scale, i.e., in x. The cathode now has 50 differential equations for the
electrolyte concentration, 50 algebraic equations for the electrolyte
potential �potential in the electrolyte phase�, and 50 algebraic equa-
tions for the solid-phase potential. Also, we have 50 differential and
50 algebraic equations for the solid-phase average and surface con-
centrations. Thus, for a single porous electrode �say, for cathode�,
we have 250 differential algebraic equations �DAEs�. Following the
same number of node points in x, the separator now has 50 differ-
ential equations for the electrolyte concentration and 50 algebraic
equations for the electrolyte potential. The anode is discretized simi-
lar to the cathode and has a total of 5 � 50 = 250 DAEs to solve.
Thus, the number of DAEs to be solved for the full-order model is
5 � 50 + 2 � 50 + 5 � 50 = 600 DAEs.

Given the number of space-discretized equations involved as 600
DAEs, milliseconds simulation of the lithium-ion battery model is
impractical if standard discretization schemes are directly employed.
Real-time optimization and feedback control of the sensitive
lithium-ion battery, where the health of the battery is vital to the
very operation of the device, requires quick-solving models that can
give an accurate account of the battery variables. The full physics-
based model described in Table I is therefore not the best candidate
for these requirements. In this investigation, consideration has been
given for various possible techniques to solve for dependent vari-
ables without losing accuracy.

The authors have given general information on their reformula-
tion of lithium-ion battery models to enable milliseconds
simulation.21 However, this article gives specific information on a
particular method of reformulation for dependent variables in the x
direction, and it can be further improved in terms of computational
efficiency. In the next section, details on the approach used to refor-
mulate each dependent variable in each region of the lithium-ion
battery model are provided.

The authors would like to mention that there is a significant
difference between approximation for a model and reformulation for
CS license or copyright; see http://www.ecsdl.org/terms_use.jsp
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the same. For example, a series solution for a differential equation
with a fixed number of terms in the series is an approximation for a
model. However, if enough terms are chosen and if the series solu-
tion is developed to make sure that the solution has converged for
any set of parameters or operating conditions, it is an effective
model-reformulation approach because the accuracy is not lost.

Model reformulation is an active area of research for many en-
gineering and science fields.22 There are standard methods available
in the literature for reducing the given set of coupled partial-
differential equations �PDEs� to reduced order models with different
levels of accuracy and details. Proper orthogonal discretization
�POD� uses the full numerical solution to fit a reduced set of eigen-
values and nodes to get a meaningful solution with a reduced num-
ber of equations.23 However, this method requires rigorous numeri-
cal solutions to build the POD reduced-order models. Also, when the
operating current is doubled, the boundary conditions are changed,
or if the parameter values are changed significantly, the POD model
needs to be reconstructed.

The approach presented in this paper is analytical and is the
result of doing analytical mathematical analysis, and hence it can be
used confidently for parameter estimation and control purposes. This
method can be considered as mathematical model reformulation.
The method described for the variables in the x coordinates in this
paper is equivalent to an analytical solution, applicable for even
higher rates of discharge and other operating conditions �pulses,
constant potential, and constant power� provided an efficient ap-
proximation is used.

Mathematical Analysis for Efficient Model Reformulation

This section describes the step-by-step mathematical details that
reduce the 12 coupled nonlinear multiple PDEs from rigorous bat-
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Table I. Governing equations for a lithium-ion battery.
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Table II. Expressions used in the lithium-ion battery model given
by Table I.

�eff,i = �i
bruggi�4.1253 � 10−2 + 5.007 � 10−4c − 4.7212 � 10−7c2
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tery modeling to a very few DAEs to achieve milliseconds simula-
tion for online control and optimization. The approach involves con-
sidering each dependent variable separately and finding a suitable
mathematical method to minimize the computational burden associ-
ated with that particular variable. While doing such an investigation,
it is necessary to keep the dependency of a chosen variable with
other dependent/independent variables intact.

For the model considered in Table I, the following dependent
variables are solved in x in each electrode: �1, �2, c, cs

ave, and jp.
The governing equations for these five variables �varying with x� are
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All of the above equations vary as a function of x and t. �cs
surf can be

obtained as a function of x and t from its equation given in Table I
as a postcalculation after jp is obtained�. In the next section, the
advantage of solving for jp as opposed to cs

surf is illustrated.
Instead of solving this model with 250 DAEs, for one porous

electrode, this section illustrates one way to reduce the number of
DAEs by performing various mathematical analyses. In our group,
we have attempted and arrived at various possible ways of simulat-
ing this model, including finite-element method, finite difference in
x solved using BANDJ and DASSL, orthogonal collocation, etc. By
attempting various methods, we have finally arrived at efficient, and
perhaps the two best possible, approaches for this system of equa-

Table III. Parameters used for the simulation (LiCoO2 and LiC6 sys

Symbol Unit

�i S/m
�f,i

�i

Brugg
Ds,i m2/s
D m2/s
ki Mol/�s m2�/�mol/m3�1+�a,i

cs,i,max mol/m3

cs,i0 mol/m3 0
c0 mol/m3

Rp m
li m

RSEI � m2

t+

F C/mol
R J/�mol K�
T K
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tions characterized by its DAE nature. These reformulations are
based on finite differences and polynomial representation and are
discussed in detail below.

Finite difference formulation: Method for model refor-
mulation.— In the literature, finite difference is the most commonly
used method to discretize the spatial derivatives in the governing
equations. In this section we provide the details for model reformu-
lation if finite difference is used. The steps are described in detail for
each variable. A flowchart describing the same is given in Fig. 1.

Solid-phase potential.— The governing equation for solid-phase po-
tential is derived from Ohm’s law and is given by Eq. 3 and 9 in
Table I for positive and negative electrodes, respectively. If jp is a
constant, clearly Eq. 11 can be solved to obtain a closed-form solu-
tion. However, jp is a nonlinear function of the dependent variables,
as shown in Eq. 15. If finite difference is applied in the x direction,
Eq. 11 can be written as

�eff,p
�1i+1 − 2�1i + �1i−1

h1
2 = apFjpi i = 1 . . . N �16�

where N is the number of interior node points used. Equation 6 can
be written in matrix form as

A�1 = jp + b �17�

Equation 17 can be inverted to get

sitive
ctrode Separator

Negative
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00 100
.025 0.0326
.385 0.724 0.485

4
10−14 3.9 � 10−14

7.5 � 10−10

� 10−11 5.0307 � 10−11

554 30555
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1000
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Decoupling concentration equation

Exact solution for solution phase potential

Exact solution for solid-phase potential

Numerical simulation of decoupled equations

STEP 1

STEP 2

STEP 3

STEP 4

Benchmark with rigorous model numerical simulationSTEP 5

10 PDEs in x,t

7 PDEs in x,t

12 PDEs in x, t

Figure 1. �Color online� Schematic of steps involved in reformulation using
the finite-difference approach.
tem).

Po
ele

1
0
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1.0 �

2.334
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�1 = A−1jp + A−1b �18�

When two node points in the x axis are used for discretization �N
= 2�, the discretized form of the equation is as follows. At x = 0,
i = 0

�10 = 4.2 �19�

For 0 	 x 	 lp, 0 	 i 	 3

�eff,p
�12 − 2�11 + �10

h1
2 = apFjp1 �20�

�eff,p
�13 − 2�12 + �11

h1
2 = apFjp2 �21�

At x = lp, i = 3

− �eff,p��11 − 4�12 + 3�13

2h1
	 = 0 �22�

For simplicity, �2 and �1 are written as �2 and �1, respectively, in
the discretized equations. Typically, for linear boundary conditions,
the value at the boundaries �0 and 3� for this case can be eliminated
to obtain two coupled equations for two interior nodes as

�eff,p
�12 − 2�11 + 4.2

h1
2 = apFjp1 �23�

�eff,p
2��11 − �12�

3h1
2 = apFjp2 �24�

The above set of equations can be written in matrix form as defined
in Eq. 17 for the interior nodes 1 and 2. For two interior node points,
the matrix inverse can be performed, and the solution is obtained as

��11

�12
	 =

apFh1
2

�eff,p
�− 1 − 3/2

− 1 − 3
	� jp1

jp2
	 − �− 1 − 3/2

− 1 − 3
	�4.2

0
	
�25�

When three interior node points are used, the analytical solution is


�11

�12

�13
� =

apFh1
2

�eff,p 

− 1 − 1 − 3/2
− 1 − 2 − 3

− 1 − 2 − 9/2
�
 jp1

jp2

jp3
� − 
− 1 − 1 − 3/2

− 1 − 2 − 3

− 1 − 2 − 9/2
�

�
4.2

0

0
� �26�

Typically, 50 node points might be needed �and used� in the litera-
ture for getting a converged solution. Matrix methods can be used to
derive and store the inverse matrix and solution a priori in the com-
puter to eliminate the need for keeping �1 in the model
equations.24,25 This way, we can reduce the number of variables in
each electrode to be four. A general expression can be obtained for
eigenvalues and eigenvectors as a function of N, the number of node
points, so that there is no loss of accuracy while performing this
step. For the original equation with the boundary conditions, the
analytical solution for the eigenvalue is


i = 2�1 − cos���2i − 1�
�2N + 1� 	, i = 1 . . . N �27�

Even though similar equations can be derived for eigenvectors as a
function of N, the number of interior node points, a numerical ap-
proach might be more efficient �Ref. 24 and references therein�. This
step does not introduce any error �by developing a code that is
generic for any number of node points, this step is equivalent to
having an infinite number of node points and near-zero error for
spatial discretization�. Importantly, this step reduces the number of
equations from 12 to 10 PDEs.
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Analytical solution for solution-phase potential.— The first-order
equation in Table I is the governing equation for the electrolyte
potential. The nonlinear conductivity complicates the equation fur-
ther. The linear term for the electrolyte potential gradient is taken to
the left side, and finite difference is applied as explained for the
solid-phase potential

−
d�2

dx
=

iapp

�eff,p
+

�eff,p
d�1

dx

�eff,p
−

2RT�1 − t+�
F

d ln c

dx
�28�

Unlike �1, �2 is relevant to all three regions, and both the variable
�2 and the electrolyte current density are continuous at the cathode/
separator and separator/anode interface. However, during galvano-
static conditions, the current density at the interface is equal to the
applied current density �solid-phase current is zero at the cathode/
separator and separator/anode interface�. This helps in solving for
each of the regions independently. This step does not introduce any
error as discussed earlier for the solid-phase potential. If finite dif-
ference is applied in the x direction, Eq. 28 can be written as

−
1

2

�2i+1 − �2i−1

h
=

iapp

�eff,p
+

1

2

�eff,p��1i+1 − �1i−1�
h�eff,p

−
RT�1 − t+�

F

�ci+1 − ci−1�
hci

�29�

where N is the number of interior node points used. Equation 29 can
be written in matrix form as

A2�2 = B1�1 + b1f + b2 �30�

Using Eq. 8, we have

�2 = A2−
−1B2jp + A2−

1 B3f �31�

where B2 is obtained from Eq. 8, f is a nonlinear function of other
dependent variables resulting from the governing equation, and B3 is
another nonlinear function in c that combines b1 and b2 at various
node points in x. If electrolyte conductivity is assumed as a constant,
then Eq. 31 would be easier to solve.

When two node points in the x axis are used for discretization
�N = 2�, the discretized form of the equation is as follows. At x
= 0, i = 0

1

2

− �22 − 3�20 + 4�21

h
= 0 �32�

For 0 	 x 	 lp, 0 	 i 	 3

−
1

2

�22 − �20

h
=

iapp

�eff,p
+

1

2

�eff,p��12 − �10�
h�eff,p

−
RT�1 − t+�

F
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hc1

�33�

−
1

2

�23 − �21

h
=

iapp

�eff,p
+

1

2

�eff,p��13 − �11�
h�eff,p

−
RT�1 − t+�

F

�c3 − c1�
hc2

�34�

At x = lp, i = 3

−
1

2

�21 + 3�23 − 4�22

h
=

iapp

�eff,p
�35�

This yields the solution for electrolyte potential at various node
points and at various regions by following the same. Note that de-
pending on the selection of discretization approaches and boundary
conditions, the resulting matrices might be singular �with just one
eigenvalue = 0�. These systems can be handled by arbitrarily setting
F2 = constant at the interfaces and then solving numerically for an
additional equation that relates flux to the current density at the
CS license or copyright; see http://www.ecsdl.org/terms_use.jsp
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interface. Importantly, this step reduces the number of equations
from 10 to 7 PDEs.
Decoupling concentration equations.— At this stage, only c has to
be solved in all the regions with additional nonlinear algebraic equa-
tions defined from the previous steps. If finite differences are applied
in the spatial direction for all the regions, the discretized form can
be written in matrix form �after substituting the parameters of the

system and eliminating the concentration values at the interfaces� as


dc̄1

dt

dc̄2

dt

dc̄3

dt

dc̄4

dt

dc̄5

dt

dc̄6

dt

� = 

− 0.0401 0.04012 0 0 0 0

0.0597 − 0.1184 0.0783 − 0.0196 0 0

− 0.0333 0.1332 − 2.8665 2.7657 0 0

0 0 2.8064 − 3.0281 0.2957 − 0.0739

0 0 − 0.0314 0.01254 − 0.1917 0.0976

0 0 0 0 0.0663 − 0.0663

�

c̄1

c̄2

c̄3

c̄4

c̄5

c̄6

�
+ 


1464272.72 0 0 0 0 0

0 1464272.72 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 950377.73 0

0 0 0 0 0 950377.73

�

jp1

jp2

0

0

jn1

jn2

� �36�
This can be denoted as

dc

dt
= Bc + bj �37�

The coefficient matrix handles the flux continuity at the interfaces
and the boundary conditions. An analytical solution for this matrix is
much more complicated than the previous case. Matrix simulation
for various values of node points N �same node points used in each
region� can be run, and an empirical relationship for eigenvalues can
be found as a function of N. Standard numerical methods for finding
eigenvalues of banded matrices can be performed in advance in a
computer to be stored and used for various simulations.24,26 These
values can be tested by comparing with rigorous numerical calcula-
tions for the matrix for various values of N. This will help in decou-
pling the equations, which will make the simulation much more
efficient instead of solving the equations directly. When two node
points in the x axis are used for discretization �N = 2� in all three
regions, the discretized form of the governing equation can be writ-
ten in the matrix form shown in Eq. 36. The form of Eq. 36 and its
eigenvalues/eigenvectors are independent of the value of the applied
current density.

The eigenvalues for the B matrix can be found as follows


 = �− 5.739475381 − 0.3184711833

− 0.1606699925 0.00000000016 − 0.07270344595

− 0.01902588106� �38�

�Note that one of the eigenvalues is indeed zero. However, because
of numerical errors in matrix manipulations, a small value can help
in avoiding the singularity�. Equation 37 can now be written as
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dc

dt
= P
P−1c + bj �39�

If P−1c = c̄, this simplifies Eq. 29 as
dci

dt
= 
ici + B4ji �40�

The form of Eq. 30 for i = 1 is given as

dc1

dt
= − 5.739475381c1 + 4300.157028jp1 − 16758.95072jp2

+ 25052.24504jn5 − 6536.712142jn6 �41�

Similar equations can be derived for other eigen-nodes and c̄. Note
that for N = 100 or 200 node points, matrix equations can be per-
formed in Maple, stored and used for future purposes, or called to a
Fortran file. The corresponding author would be happy to provide
sample Maple codes that address this concept.

Numerical simulation of decoupled equations.— At this stage, even
if 50 node points are used in each region, the resulting 150 decou-
pled equations for c coupled with 100 decoupled algebraic equations
for cs,surf or jp/n and 100 decoupled ordinary differential equations
�ODEs� for cs,ave,p/n �which occurs only in the electrode� can be
solved efficiently in Fortran. After this step, the reformulated models
can be run in less than 100 ms as required in a hybrid environment,
which might have supercapacitors with time constants less than 1 s.
Two different approaches are proposed to perform numerical simu-
lation of decoupled equations, �i� direct simulation of resulting
DAEs using DASSL27 or similar solvers and �ii� the decoupled
equation for concentration, integrated as
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ci = ci0
exp�
it� + �

0

�

exp�
i�t − ����B4jp�idt �42�

The integration is carried out by choosing certain numbers of dis-
cretized or Gaussian points in t. This yields a system of nonlinear
algebraic equations which can be readily solved. Note that the cal-
culation of integrals involving higher-order eigenvalues can be ob-
tained by performing suitable approximations/transformations on the
first few integrals.

Benchmarking.— The reformulated models are tested with the full-
order model �with approximation for the solid phase� used in the
literature. Both external/system �voltage–time curve, process vari-
able� and internal variables are expected to match exactly for rates
less than 2C. One can imagine the difficulty with the finite
difference/volume/element approaches in solving the rigorous
model. Matrix methods are needed to find the eigenvalues and
eigenvectors as a function of N, the number of node points. Unfor-
tunately, we could not find any patterns reported in the literature for
banded matrices in mixed domains �cathode/separator/anode� with
varying diffusion coefficients in each region. Finding eigenvalues as
a closed-form expression as in Eq. 27 is called “pattern” in math
literature.24-26 While it is possible that a pattern exists, numerical
analysis can be performed to obtain them empirically as a function
of N. Our experience suggests that finite difference is not the best
possible approach for the reformulation. The details are provided in
this manuscript for the readers to avail this approach if they prefer to
stick to finite-difference reformulation. In the next section, we show
how polynomial representation can be used to implement model
reformulation.

Reformulation based on polynomial representation.— Solid-phase
potential.— Instead of finite differences, if jp is assumed to be a sum
of polynomials or functions given by

jp = �
i=0

N

�pi f i�x� �43�

where f i�x� is a function in x, Eq. 11 can be integrated in x to obtain

�1 = c1 + c2x +
apF

�eff,p
�
i=0

N

�pi � �� f i�x�dx	dx �44�

In the literature, various kinds of polynomials have been used for
model reformulation �e.g., Chebyshev polynomials,20 proper or-
thogonal decomposition,23 etc.�. If the functions chosen have exact
double integrals, we have an analytical solution for this equation
which is valid as long as enough terms are chosen in Eq. 43. If
simple polynomials are chosen, jp is given by

jp = �
i=0

N

�pix
i �45�

and �1 is given by

�1 = c1 + c2x +
apF

�eff,p
�
i=0

N

�pi
xi+2

�i + 1��i + 2�
�46�

The integration constants in Eq. 43 or 46 are solved using the
boundary conditions

��1�x=0 = 4.2 �47�

� − �eff,p
��1

�x
�

x=lp

= 0 �48�

For the above boundary conditions, the constants are �using Eq. 46�
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c1 = 4.2 and c2 = −
apF

�eff,p
�
i=0

N
�pilp

i+1

�i + 1�
�49�

From this analysis, it is clear that using polynomial for jp is more
advantageous than using the finite difference, finite element, or finite
volume methods for reformulating �1. It is advantageous because
double integration to get �1 is easier compared to inverting matrices
in the finite-difference approach, which involves keeping track of
eigenvalues, eigenvectors, or matrix inversions. Using one of the
reformulation approaches outlined above, an analytical solution can
be derived for the solid-phase potential distribution in each porous
electrode. This reformulation process enables a closed-form solution
for solid-phase potential distribution in each electrode as a function
of other dependent variables without compromising on accuracy and
without losing any physics of the battery system. Moreover, this
reformulation technique reduces one PDE to one algebraic equation.
At this stage, the original model for solid-phase potential is reduced
to

�1�x� = 4.2 +
apF

�eff,p
�
i=0

N
�pi

i + 1
� xi+2

i + 2
− lp

i+1 �50�

Solution-phase potential.— The governing equation for solution-
phase potential is given by modified Ohm’s law. If �eff,p is a con-
stant, clearly the governing equation for electrolyte potential can be
solved analytically, yielding �assuming t+ is a constant�

�2�x� = c1 −
I

�eff,p
x −

�eff,p

�eff,p
�1�x� +

2RT

F
�1 − t+�ln c �51�

However, �eff,p is a nonlinear function of the dependent variable
�electrolyte concentration� for various chemistries. For example, for
Li-ion chemistry where the electrolyte consists of 1 M LiPF6 in a
mixture of ethylene carbonate:ethyl methyl carbonate, it is typically
expressed as

�eff,p = �p
bruggp�4.1253 � 10−2 + 5.007 � 10−4c − 4.7212 � 10−7c2

+ 1.5094 � 10−10c3 − 1.6018 � 10−14c4� �52�

where c is a function in x. Equation 52 can now be integrated in x to
obtain �assuming t+ to be a constant�

�2�x� = k1 − I�
x

1

�eff,p
dx − �eff,p�

x

1

�eff,p

��1

�x
dx +

2RT

F
�1 − t+�ln c

�53�

provided I, the applied current, is a constant �true for galvanostatic
boundary conditions�. If the function governing the variation of
1/�eff,p with respect to other dependent variables has an exact inte-
gral, we have an analytical solution for this equation. If not, simple
polynomials are chosen for 1/�eff,p given by

1

�eff,p
= �

i=0

N

pix
i �54�

and �2 can be solved as

��2�x��cathode = k1 − I�
i=0

N

pi
xi+1

i + 1
− �eff,p� +

2RT

F
�1 − t+�ln c

�55�

where � is a product of two summation series resulting from inte-
gration. The respective boundary and initial conditions are used,
including the continuous-flux boundary conditions at the electrode/
separator or separator/electrode interfaces to solve for constants. In
addition, the Galerkin-type-collocation weighted average method is
used to solve for the constants.15,16 For example, each constant pi is
obtained by minimizing the residue of the governing equation with a
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weighting function given by the coefficient of the particular constant
as

1

lp
�

x=0

lp

�w1Ge��2��cathodedx +
1

ls
�

lp

lp+ls

�w2Ge��2��separatordx

+
1

ln
�

lp+ls

L

�w3Ge��2��anodedx = 0 �56�

where w1, w2, and w3 are the weight functions and Ge��2� denotes
the governing equation of �2. Note that six of the constants in the
polynomials are obtained from the boundary conditions at x = 0, lp,
lp + ls, and L. At the electrode/separator interfaces, both the elec-
trolyte potential and its fluxes are continuous.

Solid-phase average concentration.— The solid-phase average con-
centration cs

ave dependency with jp �see Table I� can be decoupled by
assuming polynomial representations as follows

csp
ave = �

i=0

N

�pi�t�xi �57�

Substituting Eq. 57 in the governing equation for solid-phase aver-
age concentration and equating like terms on both sides gives

d

dt
�pi�t� = −

3

Rp
�pi i = 0 . . . N �58�

The system of ODEs given by Eq. 58 can be solved to obtain solid-
phase average concentration distribution across the porous electrode.
This system of ODEs is computationally more efficient to solve than
solving the original governing equation for solid-phase average con-
centration directly because of the decoupled nature.

Pore-wall flux.— The series assumed for pore-wall flux is

jp = �
i=0

N

�pix
i �59�

The constants are obtained using Galerkin-type collocation

�
0

lp

w�x�Ge�jp�dx = 0 �60�

To speed up the convergence of the polynomial representation, the
average value for jp is used as an additional constraint. The average
value for jp is obtained using the governing equation for solid-phase
potential. Integrating over the positive electrode, we have

��eff,p
��1

�x
�

x=lp

− ��eff,p
��1

�x
�

x=0
= − apFjp

avelp �61�

Using the boundary condition for �1, this can be written as14,21

jp
ave = −

iapp

apFlp
�62�

This average pore-wall flux provides and paves the way for quicker
convergence for the polynomial representation. Similarly, the aver-
age flux at the negative electrode can be derived as

jn
ave =

iapp

anFln
�63�

Electrolyte concentration.— The governing equations for electro-
lyte concentration are derived from Fick’s law of mass transport and
concentrated solution theory and are given as Eq. 1, 15, and 17 in
Table I for the positive electrode, separator, and negative electrode,
respectively. The dependent variable for each region is approxi-
mated with polynomial expressions as
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c = �
i=0

N

�i�t�xi+1 �64�

Equation 52 can be substituted into the governing equation for elec-
trolyte concentration to get

Gep = �c�x��cathode = �p�
i=0

N

xi+1 d

dt
�pi�t�

− Deff,p��
i=0

N

�i − 1�ixi−2�pi�t�	
− ap�1 − t+��

i=0

N

aix
i �65a�

Ges = �c�x��separator = �s�
i=0

N

xi+1 d

dt
�si�t�

− Deff,s��
i=0

N

�i − 1�ixi−2�si�t�	 �65b�

Gen = �c�x��anode = �n�
i=0

N

xi+1 d

dt
�ni�t�

− Deff,n��
i=0

N

�i − 1�ixi−2�ni�t�	
− an�1 − t+��

i=0

N

aix
i �65c�

Equation 65 is then used to arrive at individual equations using
Galerkin collocation as

1

lp
�

x=0

lp

w1Gepdx +
1

ls
�

lp

lp+ls

w2Gesdx +
1

ln
�

lp+ls

L

w3Gendx = 0

�66�

As before for electrolyte potential, six of the constants in the poly-
nomials are found using the boundary conditions. In addition, vol-
ume averaging can be performed to the original set of PDEs.

The electrolyte concentration can be volume-averaged over the
respective region as follows

�p�
x=0

lp �c

�t
dx + �s�

x=lp

lp+ls �c

�t
dx + �n�

x=lp+ls

L
�c

�t
dx

= Deff,p� �c

�xx=lp

−
�c

�xx=0
� + ap�1 − t+��

x=0

lp

jpdx

+ Deff,s� �c

�xx=lp+ls

−
�c

�xx=lp
� + Deff,n� �c

�xx=L
−

�c

�xx=lp+ls
�

+ an�1 − t+��
x=lp+ls

L

jndx �67�

This can be simplified using the boundary conditions to get

�plp
dCave

Cathode

dt
+ �sls

dCave
Separator

dt
+ �nln

dCave
Anode

dt
= 0 �68�

This can be integrated to obtain
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Cave
Total =

�pCave
Cathode + �sCave

Separator + �nCave
Anode

�plp + �sls + �nln
= 1000 �69�

This is true for any chemistry and can also be derived from overall
mass balance of the cell. This provides for and facilitates a quicker
convergence of concentration profiles in terms of polynomials. If
this condition is not used, a higher number of terms may be needed
in the polynomial representation, and the polynomial representation
might even be unstable for a lower number of terms.

The initial conditions for solving the system of ODEs repre-
sented by Eq. 66 are given as

�i�0� = c0 i = 0 . . . N �70�
For improved efficiency, the decoupled system of equations is

arrived from Eq. 56 by writing the system of equations in matrix
form and decoupling the same

d�i

dt
= f��,D,t+,a,�i=0. . .N,�i=0. . .N� for each i = 0 . . . N �71�

At this stage, if N = 4 is chosen for Eq. 58 and 71, then the
model for each electrode is reduced to 4 + 4 + 1 + 1 + 1 = 11
DAEs. This yields 11 + 5 + 11 = 27 DAEs for the full model. If
N = 8 is chosen for Eq. 58 and 71, then the model for each electrode
becomes 8 + 8 + 1 + 1 + 1 = 19 DAEs. This yields 19 + 9 + 19
= 47 DAEs for the rigorous full model.

This means that for lithium-ion battery modeling, we now need
to solve only 4 � 3 + 4 � 2 + 3 � 1 + 2 � 1 + 2 � 1 = 27
DAEs or 27-47 DAEs, depending on matching the discharge curve
alone or matching the entire profile output with the rigorous numeri-
cal simulation for up to 2C rate of charge/discharge. These equations
are solved using DASSL, a DAE solver, to obtain discharge
curves.27

By using the approximations discussed in this paper, we are able
to predict the discharge curves accurately with just 47 DAEs. Note
that 47 DAEs are needed for matching for all the intrinsic variables.
With our approach we can choose to go “approximate” in the intrin-
sic variables and solve only discharge curves accurately with only
27 DAEs.

These models take 30 s to 2 min to run in a Maple environment
using a DAE solver called Besirk.28 A variant of the same model
runs in 15–50 ms in a Fortran environment to predict an entire dis-
charge curve �1.7 GHz processor and 1 GB RAM�. To predict state
of charge at a particular time, the time taken is of the order of
5–10 ms. The reformulated models have been tested for rates up to
2C, and work is in progress for the process of testing for rates up to
50C �for higher rates, solid-phase approximation needs to be rede-
fined�. The efficiency of the reformulation can be further improved
using the Liaponuv–Schmidt technique, dimensional analysis, per-
turbation, etc., as discussed in the earlier work.21

Results and Discussion

Model reformulation.— Discharge behavior of lithium-ion bat-
teries is the prime goal of the simulation performed in this paper.
Figure 2 gives the discharge curves for 1C �30 A/m2� and 0.5C rates
of galvanostatic discharge. For these rates of discharge, the reformu-
lated model compares well with the full-order numeric model. The
merit of this approach is evident when comparing the number of
governing equations that are solved. The reformulated model speci-
fies 47 DAEs as opposed to 250 DAEs for the rigorous model. Also,
250 DAEs is the minimum number of equations required for a con-
verged finite difference solution of the full-order model. The refor-
mulated model for all practical situations �rates of discharge� uses a
maximum of 47 specified equations for a converged solution, which
compares well even with 250 DAEs based on the finite difference
code.

The reformulated model also predicts the intrinsic variables ac-
curately as shown in Fig. 3. The intrinsic variables, namely, overpo-
tential ���, solution-phase potential �� �, pore-wall flux � j /j �, and
2 p n
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electrolyte concentration �c�, determined by the reformulated model
are plotted and compared with the results generated from a rigorous
finite-difference code. The interfaces are the positive electrode–
current collector junction �x = 0�, the positive electrode–separator
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Figure 2. �Color online� Discharge curve for 1C and 0.5C rate comparing
the rigorous numerical model and reformulated model based on polynomial
representation. There is good agreement between the two models.
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model and reformulated model based on polynomial representation. There is
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�electrolyte� junction �x = lp�, the separator–negative electrode junc-
tion �x = lp + ls�, and the negative electrode–current collector junc-
tion �x = lp + ls + ln�. It has been clearly seen that the reformulated
model saves computational time without compromising the physics
of the system.

The coefficients of polynomial used to approximate the electro-
lyte concentration c, the electrolyte potential �2, the solid-phase
surface concentration jp/n, and the solid-phase surface concentration
cs,avg,p/n are plotted in Fig. 4-7 as a function of time. The coefficients
in the polynomial for various dependent variables are normalized �to
its maximum value�. From these figures it is clear that significant
changes happen over time for all the coefficients, but a good pattern
in time is observed, suggesting future reformulation based on as-
sumed profiles in time for the dependent variables.

Figure 4. �Color online� �a� Positive electrode, �b� separator, and �c� nega-
tive electrode. Dynamic behavior of the coefficients in series solution for
electrolyte concentration at 1C rate of discharge used for the reformulated
model based on polynomial representation.
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Convergence and stability.— The method proposed here is ana-
lytical for the algebraic variables and polynomial approximation for
the differential variables. In addition to Galerkin collocation, vol-
ume averaging the original equation provides the average concen-
tration in each region related to the overall average concentration
and the initial condition and the average pore-wall fluxes in the
positive and negative electrodes. This condition helps in getting the
polynomial representation to converge faster. The method reported
is found to be stable based on testing the same for various chemis-
tries and rates. However, the reformulated code is highly sensitive to
the initial conditions for the algebraic variables, and an analytical
Jacobian might be needed for the DAE solver.

Parameter estimation.— The reformulated model retains the
physics of the original model. Because of this, parameter estimation
can be done confidently.29 Figure 8 compares the prediction of trans-

Figure 5. �Color online� �a� Positive electrode, �b� separator, and �c� nega-
tive electrode. Dynamic behavior of the coefficients in series solution for
electrolyte potential at 1C rate of discharge used for the reformulated model
based on polynomial representation.
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port and kinetic parameters with the reformulated model from the
experimental data for the cells from Quallion LLC. It is clear that
for life data prediction, the reformulated model can be more advan-
tageous.

Because of the accuracy and simplicity of the reformulated
model, sensitivity equations can be derived easily, and even the
numerical Jacobian is likely to be more accurate and stable com-
pared to the original finite-difference form of the model.

Generality and limitations.— Clearly, the method presented here
is directly applicable for charging also, as it only changes the sign of
the applied current density. As mentioned earlier, the readers are
advised that the volume-averaged equations are not valid at short
times and pulse charges/discharges. The solid-phase equations
should be reformulated in efficient form before reformulation is
done for the other variables. However, this paper focuses on refor-
mulation in the x direction, and hence the discussion is limited to
volume-averaged equations for the solid-phase equation. A good
comparison of various approximations for solid-phase reformulation
is presented elsewhere in the literature15,16 and that approach pro-
vides high efficiency at short times. A mixed-order finite element
was proposed and is probably the best possible approach at this
point in time. However, their approach uses a discretization scheme
in time which restricts the approach for standard discretization
schemes and is not applicable for DASSL-type adaptive solvers,
which cannot handle time-discretized equations. A similar form can
be constructed from mixed-order finite difference which is found to
be efficient even for varying diffusivities in time.30

Figure 6. �Color online� �a� Positive electrode and �b� negative electrode.
Dynamic behavior of the coefficients in series solution for electrochemical
reaction kinetics at 1C rate of discharge used for the reformulated model
based on polynomial representation.
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Previous approaches31 are robust and can handle high rates by
adding more terms to the spectral solution equations. However, this
solution increases to high numbers for the coefficients requiring
stricter tolerances and lesser computational efficiency. An alterna-
tive, equivalent, and efficient form can be derived using a Galerkin-
type integral.30 The scope of this paper is restricted to volume-
averaged equations for the solid phase.

For lumped parameter models for the temperature, an additional
ODE can be solved in addition to the governing equations consid-

Figure 7. �Color online� �a� Positive electrode and �b� negative electrode.
Dynamic behavior of the coefficients in series solution for solid-phase aver-
age concentration at 1C rate of discharge used for the reformulated model
based on polynomial representation.

Figure 8. �Color online� Comparison of five-parameter prediction with the
reformulated model based on polynomial representation to experimental
data.
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ered earlier. This does not affect the solution of solid and electrolyte
phase potentials, pore-wall flux, the algebraic nature and its solution
are still preserved. Arhenius-type behavior can be incorporated into
the reformulated model equations even in a final stage with T as a
time-varying variable as opposed to a parameter. If the objective is
to find only temperature change, the intrinsic variables might be
solved in an approximate manner. This is beyond the scope of this
paper. If temperature variation with distance is not negligible across
the distance, the parameters change with distance, and algebraic
equations cannot be directly integrated. However, series expansions
like the one used for �eff,p can be employed.

If the operating mode is applied potential or applied power, the
boundary conditions change. In this case, the constants of integra-
tions are affected. The effect of resistance from the solid electrolyte
interphase layer can be easily included by modifying the kinetic
expression in the negative electrode. This should not affect the re-
formulated model. However, if moving boundaries are to be in-
cluded, then the reformulated model has to account for the same.

Mathematical model reformulation for different boundary condi-
tions �applied potential or power�, temperature distribution, and
moving boundaries will be communicated in future publications.

Perspectives and Future Work

In this paper, mathematical analysis is used to reduce the order
and number of equations without compromising on accuracy and
physics. The original model chosen is a reduced 1D model with
volume-averaged approximation for the solid-phase equations. The
methods described here are valid for battery models in the x direc-
tion, i.e., along the direction of movement of current from the cath-
ode current collector to the anode current collector. Polynomial
forms for jp and jn, the pore-wall flux, appear to be the best possible
way to reformulate the original model. Clearly, different forms of
the series representation can give better results and are currently
being attempted by our group.

The model chosen �averaged equations for the solid-phase con-
centration� is valid only at low-to-medium rates of discharge. This
proves to be advantageous while using DASSL-type solvers in time.
For high rates of discharge, one might need a large number of node
points or polynomials in r. At this number, the DASSL-type solver
may not provide any advantage, and perhaps the linear equations
can be solved analytically if simpler discretization schemes are used
in time.

In addition, the plots for the coefficients in the polynomial for
various dependent variables are normalized �to its maximum value�
and plotted. From Fig. 4-7, it is clear that the averaged solid-phase
concentration behaves the smoothest of all. This is expected, be-
cause the governing equation for the average solid-phase concentra-
tion �Eq. 4 in Table I� is an integral of the pore-wall flux. These
figures also suggest that perhaps a double summation in x and t can
be assumed for all the variables. The prudent way to approach this
would be to attempt this for only one variable first and check for
efficiency and convergence, then move forward for all the model
equations. We are attempting to do this, and if we are successful we
will report the results. For electrolyte concentration, different con-
stants are used in the polynomial representations in each region
�positive electrode, separator, and negative electrode�. It is possible
to arrive at eigenfunctions based on linearized versions of the mod-
els. The use of these eigenfunctions might reduce the number of
constants needed in the polynomial representation.32,33

Conclusions

This paper presents an efficient approach to simulate discharge
behavior of lithium-ion battery models for galvanostatic boundary
conditions with improved computational efficiency using polyno-
mial representation. The approach presented is similar to Galerkin
collocation based on weighted residuals coupled with analytical so-
lution of algebraic equations and volume-averaging for the variables
of interest. The DAE nature of the model helps in solving for some
of the dependent variables analytically. The model-reformulation
Downloaded 04 Feb 2009 to 129.252.86.83. Redistribution subject to E
method is demonstrated using low-to-moderate rates of discharge;
however, the reformulation technique presented is also valid for dif-
ferent circumstances, including high rates of discharge and mass-
transport-limited situations. This approach is currently in progress to
enable the same level of computational efficiency while using mul-
tiple units or multiple power sources as needed in a hybrid system.
The method reported here is likely to be valid and applicable for
engineering models with DAE nature, including fuel cells, monolith
reactors, etc. Source codes used for model reformulation in Maple or
Matlab/Fortran will be posted on the corresponding author’s web-
site. Also, for control with microchips, RAM is likely to be a bigger
concern compared to CPU time. A smaller number of DAEs and
states should help in developing better controller algorithms.
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List of Symbols

ai specific surface area of electrode i �i = p,n�, m2/m3

bruggi Bruggman coefficient of region i �i = p,s,n�
c electrolyte concentration, mol/m3

c0 initial electrolyte concentration, mol/m3

cs,i concentration of lithium ions in the intercalation particle of elec-
trode i �i = p,n�, mol/m3

cs,i,0 initial concentration of lithium ions in the intercalation particle of
electrode i �i = p,n�, mol/m3

cs,i,max maximum concentration of lithium ions in the intercalation par-
ticle of electrode i �i = p,n�, mol/m3

D electrolyte diffusion coefficient, m2/s
Ds,i lithium-ion diffusion coefficient in the intercalation particle of

electrode i �i = p,n�, m2/s
F Faraday’s constant, C/mol
I applied current density, A/cm2

i1 solid-phase current density, A/m2

i2 solution-phase current density, A/m2

is,0 exchange current density for the solvent-reduction reaction, A/m2

js solvent-reduction current density, mol/m2 s
ji wall flux of Li+ on the intercalation particle of electrode i �i

= n,p�, mol/m2 s
ki intercalation/deintercalation reaction-rate constant of electrode i

�i = p,n�, mol/�mol/m3�1.5

li thickness of region i �i = p,s,n�, m
Ms molar weight of the solvent reaction product, g/mol

n negative electrode
p positive electrode
r radial coordinate, m
R universal gas constant, J/�mol K�

RSEI Initial SEI layer resistance at the negative electrode, � m2

Ri radius of the intercalation particle of electrode i �i = p,n�, m
s separator

t+ Li+ transference number in the electrolyte
T absolute temperature, K

Ui open-circuit potential of electrode i �i = p,n�, V
Us standard potential of the solvent reduction reaction, V

x spatial coordinate, m
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Greek

�,�,,� coefficients of polynomials used in model reformulation
� thickness of the solvent reduction product film, m

�0 initial thickness of the solvent reduction product film, m
�i porosity of region i �i = p,s,n�

�f,i volume fraction of fillers of electrode i �i = p,n�
�i dimensionless concentration of lithium ions in the intercalation

particle of electrode i ��i = cs,i/cs,i,max�
� ionic conductivity of the electrolyte, S/m

�eff,i effective ionic conductivity of the electrolyte in region i �i
= p,s,n�, S/m

�s density of the solvent reduction product film, g/m3

�i electronic conductivity of the solid phase of electrode i �i
= p,n�, S/m

�eff,i effective electronic conductivity of the solid phase of electrode i
�i = p,n�, S/m

�1 solid-phase potential, V
F2 electrolyte-phase potential, V
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