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Lithium-ion batteries are typically modeled using porous electrode theory coupled with various transport and reaction mechanisms
with an appropriate discretization or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery
models is the need for simulating solid-phase diffusion in a second dimension r. It increases the complexity of the model as well
as the computation time/cost to a great extent. Traditional approach toward solid-phase diffusion leads to more difficulties, with
the use of emerging cathode materials, which involve phase changes and thus moving boundaries. A computationally efficient
representation for solid-phase diffusion is discussed in this paper. The operating condition has a significant effect on the validity,
accuracy, and efficiency of various approximations for the solid-phase diffusion. This paper compares approaches available today
for solid-phase reformulation and provides two efficient forms for constant and varying diffusivities in the solid phase. This paper
introduces an efficient method of an eigenfunction based Galerkin collocation and a mixed order finite difference method for
approximating/representing solid-phase concentration variations within the active materials of porous electrodes for a pseudo-two-
dimensional model for lithium-ion batteries.
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Electrochemical power sources are expected to play a vital role
in the future in automobiles, power storage, military, mobile, and
space applications. Lithium-ion chemistry has been identified as a
good candidate for high power/high energy secondary batteries. Sig-
nificant progress has been made toward modeling and understanding
of lithium-ion batteries using physics-based first-principles models.
First-principles-based battery models typically solve electrolyte con-
centration, electrolyte potential, solid-state potential, and solid-state
concentration in the porous electrodes1,2 and electrolyte concentra-
tion and electrolyte potential in the separator. These models are
based on transport phenomena, electrochemistry, and thermodynam-
ics. These models are represented by coupled nonlinear partial dif-
ferential equations �PDEs� in one to two dimensions and are typi-
cally solved numerically and require a few minutes to hours to
simulate.

Even when one-dimensional transport in the macroscale �x� is
considered, the continuum models that are used to describe the elec-
trochemical behavior of lithium-ion batteries, involve three coupled
nonlinear PDEs �in x,t� in each porous electrode and two coupled
nonlinear PDEs �in x,t� in the separator. For predicting the thermal
behavior, one has to add an additional equation for temperature. In
addition, solid-state diffusion should be solved in the pseudo second
dimension �r� in the electrode. Li-ions diffuse �intercalate� into and
out of the solid particles of porous electrodes in the pseudo second
dimension. Hence, in addition to the equations in the x direction,
solid-state diffusion should be solved in the pseudo dimension �r� in
the porous electrodes. This diffusion in the microscale is typically
modeled using Fick’s law of diffusion. One of the major difficulties
in the electrochemical engineering models is the inclusion of solid-
phase diffusion in a second dimension r, which increases the com-
plexity of the model as well as the computation time/cost to a great
extent. Traditional simulation approaches toward solid-phase diffu-
sion lead to more difficulties with the use of emerging cathode ma-
terials, which involve phase changes and thus moving boundaries.
Concentration variations in the solid phase is governed by Fick’s
law of diffusion, and the same in spherical coordinates is given as
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where Ds = D0f�c�. Equation 1 can be converted to a dimensionless
form using the following dimensionless variables and parameters
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This paper discusses two computationally efficient representa-
tions for the solid-phase diffusion. An efficient eigenfunction based
Galerkin collocation method is introduced and discussed in the pa-
per. Further, a mixed order finite difference �FD� method with opti-
mal node spacing is introduced, which can be used to reduce the
computational cost/time significantly even with varying diffusivities
in the solid phase. The operating condition has a significant effect on
the validity, accuracy, and efficiency of various approximations for
the solid-phase diffusion. The discretization and solver scheme used
in time is also a significant factor in deciding the best possible
approximation for the solid phase. This paper also compares various
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methods1-6 for approximating/representing solid-phase concentra-
tion variations within the active materials of porous electrodes for a
full-order pseudo-two-dimensional �2D� model for lithium-ion bat-
teries. A comparison among these available methods along with a
brief mention about their merits and usability is made to identify the
best possible method and incorporate in a full-order pseudo-2D
model.1

Existing Approximations and the Need for Efficient
Reformulation

Porous electrode models of Li-ion batteries often use approxima-
tions to eliminate the time-consuming calculation in the second di-
mension r for the solid-phase diffusion. These methods include the
Duhamel’s superposition method,1 diffusion length method,3 the
polynomial approximation method,4 the pseudosteady-state �PSS�
approach by Liu5 and the penetration depth analysis and mixed or-
der finite element approach.6

Each of the above listed methods has its own advantages and
disadvantages when used in Li-ion battery models. The following
section gives a brief summary about each of the methods and dis-
cusses their merits and usability.

Duhamel’s superposition method.— The Duhamel’s superposi-
tion method1 is a robust method available for representing the solid-
phase diffusion for constant diffusivities. This method relates the
solution of a boundary value problem with time-dependent boundary
conditions to the solution of a similar problem with time-
independent boundary conditions by a simple relation. More infor-
mation about the method and equations are presented elsewhere.1,2

Duhamel’s superposition method is a robust method and is valid
for any kind of operating condition, such as high rates of discharge,
pulse power, etc. One of the major drawbacks of this method is that
it cannot be used in DASSL-like solvers, which do not accept equa-
tions that are discretized in time and might as well be time-
consuming for very stiff problems depending on the time steps
taken. In addition, it cannot be used for nonlinear diffusivities.

Diffusion length method.— The diffusion length method’s
approach3 is based on a parabolic profile approximation for the solid
phase. The diffusion length method predicts that the surface concen-
tration and volume-averaged concentration inside a particle are lin-
early dependent on each other, which should be valid only after the
diffusion layer builds up to its steady state. Therefore, the method is
inadequate at short times or under dynamic operations, such as pulse
or current interrupt operations. The prediction based on the diffusion
length method is inadequate at short times and is very efficient at
long times and low rates.

Polynomial approximation.— The polynomial approximation
method by Subramanian et al.4 is based on parabolic profile approxi-
mation and volume averaging of the solid-phase diffusion equation.
This high order polynomial method uses a different approach from
the diffusion length method to improve the solution accuracy at
short times. The diffusion length method uses the empirical expo-
nential term in the equation and determines the multiplier value by
matching surface concentration profiles to the exact solutions. The
high order polynomial method uses a higher order polynomial for
the concentration profile in the derivation, and one could derive new
sets of equations with an even higher order polynomial model, if
needed, following the same procedures discussed in the papers.4,7

This method is very efficient at long time ranges and for low/
medium rates and is ideal for adaptive solvers for pseudo-2D mod-
els. However, it is inaccurate at short times and for high rates/pulses
and hence would not be a suitable method for implementing in mod-
els for Hybrid Electric Vehicles �HEVs� and other high rate appli-
cations.

PSS method.— The PSS approach by Liu5 is very robust and, by
having enough equations, this approach can cover the entire spec-
trum of high/low rates, pulses, etc. This is a form of a finite integral
transform technique to eliminate the independent spatial variable r
Downloaded 25 May 2010 to 128.252.20.193. Redistribution subject to E
from the solid-phase diffusion equation. For diffusion problems with
a time-dependent pore wall flux, jn appears in the boundary condi-
tion and in the calculation of coefficients.

However, this method involves terms/coefficients, which blow
up when the number of terms increases adding numerical difficulties
for simulation. More details are given in the Results and Discussion
section where this method is compared with our proposed approach
implemented in this paper.

Penetration depth method.— The penetration depth analysis ap-
proach was used earlier with empirical fits to the numerical solution
for penetration depth near the surface of the particle. The advantage
of this method is that it is very accurate at short times/pulses and
more accurate and efficient penetration depth solutions can be di-
rectly obtained from the PDE as discussed elsewhere.6

The drawback with this approach is the need to be reinitialized
every time and that it does not give a good match for varying �
values. Though this method is very accurate and efficient at short
times, it is not ideal for adaptive solvers in a pseudo-2D model
�increases stiffness�.

Finite element method.— While the governing equation 1 de-
scribes solid-phase concentration along the radius of each spherical
particle of the active material, the macroscopic model requires only
the concentration at the surface, cs �x,t�, as a function of the time
history of local reaction current density, j�t�. The PDE is trans-
formed from spherical to planar coordinates and is discretized in the
r direction with N suitably chosen linear elements. They used five
elements with node points placed at �0.7,0.91,0.97,0.99,1.0	 � Rs.
Transformed back to spherical coordinates, the discretized system is
represented as ordinary differential equations in state space form and
then solved.6

The finite element node sizes were probably obtained by trial and
error and may not be optimal at long times or different operating
conditions. The following section describes two methods that can be
used for solid-phase diffusion approximation and explains the deri-
vation of the same.

Galerkin Reformulation of Solid-Phase Diffusion

The reformulation discussed here is based on eigenfunction
based Galerkin collocation for constant diffusivity. In constant dif-
fusivity, f�C� in Eq. 6 and 9 is 1. The following section describes the
derivation for the eigenfunction based Galerkin collocation, and the
equations for approximation are given at the end. Expanding Eq. 6
can be written as

�

� �
c�x,�� =

2x
�

� x
c�x,�� + x2 �2

� x2c�x,��

x2 �10�

A general solution for the variable c�x,�� can be written as a poly-
nomial approximation given as

a��� + b���x2 + 

n=1

�
dn���sin��nx�

x
�11�

where �n,n = 1 . . . m are the eigenvalues of the given problem �Eq.
22�. To get the value of c�x,��, we need to evaluate the time-
dependent coefficients in the solution a���, b���, and dn���. This
trial function is assumed to be the solution for c�x,�� as the func-
tions sin��nx�/x are the eigenfunctions satisfying the given problem
as given in Ref. 5. In general, a polynomial form is assumed.7 How-
ever, having the solution for constant boundary conditions as the
trial function helps in simplifying the integrals. The choice is up to
the researchers; however, eigenfunctions for problems with constant
boundary conditions and linear models are a good basis for nonlin-
ear and time-varying boundary conditions. This idea follows the
Duhamel’s superposition method1 wherein models with time-
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varying boundary conditions are obtained from constant boundary
condition models using the convolution theorem.

The coefficients are obtained by solving the final equation using
the boundary conditions given above and solving for cave���. We
introduce the average concentration as

cave��� = �
0

1

3c�x,��x2dx �12�

The coefficients a��� and b��� are obtained in terms of cave��� and
simplifying the expressions substituting sin��n� = �n cos��n� we
have
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Calculating cave��� from the above equation, multiplying with dif-
ferential volume 3x2, also multiplying by sin��nx�/x and integrating
to find cave���, after simplification we have
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To solve the above equation efficiently, we introduce variable Qn
such that

dn��� =
d

dt
Qn��� �17�

Substituting the above relation and integrating the above equation
we have
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where kn is a constant for integration.
Grouping like terms we may write Eq. 18 as
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Simplifying and substituting �n = tan��n�, the above equation can
be written as
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The above equation can be written as
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Substituting Qn� = Qn − kn does not alter the value of d��� as dQn/d�
remains unchanged. Hence, the final set of equations is not affected
by the value of integration constant kn�.

The final set of equations can be written as
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An important advantage of this approach is that this reformula-

tion is very robust, and by having enough Q values, in other words,
enough number of Eq. 24, this approach can cover the entire spec-
trum of high/low rates, pulses, etc., such as the PSS method by Liu.
However, in Liu’s PSS approach, the q values vary as q1 � q2
� q3 � q4 and the order of q4 is as high as 1040 causing stiffness
and numerical instability in the pseudo-2D models using this ap-
proach. The q values mentioned here are the q values in the final set
of equations obtained from the PSS method5 as mentioned in Eq.
9a-c in Ref. 2. The present reformulation overcomes this problem. In
this method, the Q values vary as Q1 � Q2 � Q3 � Q4; in other
words, we have a converging series in Qn, which makes this ap-
proach equivalent to the PSS model in accuracy but highly efficient
in a pseudo-2D environment for computation avoiding stiffness and
computational difficulties.

Finite Difference Approach with Unequal Node Spacing

Finite Difference method is one of the most widely used numeri-
cal techniques to solve ordinary or partial differential equations. The
use of the FD method has been the first choice for solving first
principles based lithium-ion battery models. However, for a
CS license or copyright; see http://www.ecsdl.org/terms_use.jsp
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pseudo-2D model, when dealing with a second dimension r for dis-
cretization, the number of equations increases by many folds and
thereby making the simulation of the system slower and complex.
About 20 node points in the r direction increase the number of
equations by a great deal, and hence, based on the mixed order finite
element approach discussed earlier, where the size of linear elements
were unequal instead of fixed equal elements, we used a mixed order
FD approach, wherein we use less node points with unequal node
spacing. The derivation of FD notations for different approximations
for the derivatives is given in the following section.

Taylor series expansions at x = x + hi+1 and x − hi are written as

f�x + hi+1� = f�x� + � d

dx
f�x�hi+1 +

1

2
� d2

dx2 f�x�hi+1
2 �26�

f�x − hi� = f�x� − � d

dx
f�x�hi +

1

2
� d2

dx2 f�x�hi
2 �27�

where hi is the unequal node spacing between the ith node in the
domain.

Truncating the series expansion with the required amount of ac-
curacy and solving for the first and second-order derivatives, we can
obtain the formula for the central FD for the first and second-order
derivatives. We use an order of h2 accuracy for all our approxima-
tions

�dc
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2 + cihi
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Similarly, forward and backward FD relations for the derivatives can

be obtained and used for boundary conditions. etc., and minimized N and the central processing unit �CPU� time.
�dc

dx
�
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ci+2hi+1
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Figure 1 presents a general methodology for obtaining an effi-
cient reformulation/representation for the solid-phase equation for
nonlinear diffusivities. First, a mixed FD representation is written,
say with N = 5 node points. For the optimization, hi = 1/�N + 1� is
the initial guess with 0.001 � hi � 0.999 as the constraint and the
error between the expected full-order numerical solution and the

Fickian Diffusion
(r,t)

Cs(t)
(various delta(t))

numerical
solution of
particle diffusion
equation

D(c) Mixed-FD
Representation

Optimization
Routine

Update
if needed

Tolerance

Coupled pseudo-2D
Model

Figure 1. �Color online� Schematic of steps involved in mixed FD method
for optimized spacing and hence reformulation of solid-phase diffusion.
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mixed FD method is minimized to a set tolerance. Typically,
Jacobian-based methods are sufficient for convergence.8 For difficult
nonlinearities, global and robust optimization might be needed for
convergence and robustness9,10 though they are likely to be very
slow compared to direct Jacobian based methods.

For the solid-phase diffusivity �Ds� varying as a function of con-
centration, the Galerkin approach cannot be used. We used FD with
unequal node spacing in the r direction and discretized the diffusion
equation.6 The mixed FD form of this equation with constant Ds
using the above derived FD stencil is given as

d

d�
Ci = 2

hiCi+1 − hiCi + hi+1Ci−1 − hi+1Ci

hihi+1�hi+1 + hi�

− 2
hi+1

2 Ci−1 − hi+1
2 Ci − hi

2Ci+1 + hi
2Ci



j=1

i

hjhihi+1�hi+1 + hi�

i = 1 . . . N

�32�

where N is the number of interior node points. A similar expression
for varying Ds can be derived.

One of the advantages of this method is that, for our case, the
concentration gradient is nearer the surface compared to the center,
and hence, strategically placing more node points near the surface
and less node points at the center would give results with the same
accuracy with lesser total number of node points compared to a large
number of equally spaced node points. Lesser number of node
points in r leads to lesser number of equations and hence faster
simulation for the whole battery model. The placement of these node
points are important, and to find the exact position of these node
points, we ran an optimization algorithm to find the best h1, h2, h3,
This method is very accurate for short times/high rates/pulses and is
recommended for varying diffusion coefficients. Varying diffusivi-
ties are important and is likely to get more attention because of its
requirement for addressing stress effects in the Li-ion batteries.11

The approach is robust as an optimization algorithm proposed in this
paper will automatically detect instead of having to guess and arrive
at the node spacing by trial and error.

Coupling Solid-Phase Diffusion with Full-Order Pseudo-2D
Battery Models

In the traditional formulation of solid-phase diffusion, Eq. 1-4
are coupled to the equations of a full-order pseudo-2D model for
lithium-ion batteries, which is described elsewhere.1,12,13 For com-
parison, two efficient methods, the eigenfunction based Galerkin
method and the mixed FD method �with five internal nodes� are also
coupled to the full-order pseudo-2D model.

Three pseudo-2D codes were written in Fortran and solved with
the DASKR differential–algebraic equation solver, which is a root-
finding version of DASPK.14 They consisted of the traditional FD in
the r and x �with 50 node points in the x direction and 35 in r
direction� model, the Galerkin model, and the mixed FD model for
intraparticle diffusion. For all cases in Fig. 6, D is constant.
s
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Results and Discussion

Figure 2 shows the comparison of the Galerkin method, with
traditional FD �full-order� numerical solution for varying ���� val-
ues and a constant Ds along with the PSS method. From this figure,
results obtained with the full-order numerical solution �50 node
points in r� can clearly be efficiently obtained at the reduced com-
putational time with no compromise in accuracy. Though this figure
compares the results for a single PDE �solid-state diffusion alone�,
the results obtained help in simulating a pseudo-2D model with
efficient approximation/representation for the solid phase.

Figure 3a shows the values of Qi obtained when solving the
above equation for the given sin function as input for the current. As
described above, it can be seen that the values of Qi decrease with
increasing i as well as with time as opposed to the PSS method thus
giving a converging solution and also making it easier for stiff equa-
tion solvers to converge faster and more efficiently. The qi values
from Ref. 2 are plotted in Fig. 3b, and it is clearly observed that they
are a diverging series at low precision computations and reach very
high values, which may cause the solvers to become unstable. Thus
the Galerkin method provides a more efficient way of including the
solid-phase diffusion without compromising accuracy for all pos-
sible operating conditions with constant diffusion coefficients.

Figure 4 shows the comparison of the mixed FD method with
five internal nodes for a constant value of ���� and a constant Ds
compared with the full-order numerical solution. The reformulation
agrees accurately with the full-order numerical solution. Again, both
at short times and long times, the mixed FD representation matches
with the full-order solution. The values of optimized node spacing
obtained in this case for different values of hi are 0.2183372643,
0.1779355824, 0.1228253438, 0.1698047152, 0.1499086011, and 0
0.1611884932.

Proton diffusion into nickel hydroxide electrodes used in Ni–MH
batteries is a strong function of solid-phase concentration and de-
creases approximately 3 orders of magnitude. This varying transport
property was captured by using the complex faradaic impedance of
the nickel hydroxide active material and reported as Eq. 5
elsewhere.15 This work has been used for accounting the variable
diffusion coefficient in Ref. 16 to determine a diffusion coefficient
that is a function of the dimensionless flux rate of the material dif-
fusing into the particle. Verbrugge and Koch17 expressed the inter-
calate diffusion coefficient as an indirect function of solid-phase
concentration consisting of fraction occupancy of the intercalating
host material and activity coefficient. The significance of taking an
account of this variation in intercalating electrodes was demon-
strated by Subramanian et al.18 Here, mathematical models are de-
veloped to simulate the potentiostatic charge/discharge of a partially
graphitic carbon fiber and the galvanostatic discharge of a lithium
foil cell under solid diffusion limitations. Evidence that shows the
importance of accounting for nonlinear diffusion was shown by

Figure 2. �Color online� Comparison of eigenfunction based Galerkin refor-
mulation with full-order numerical solution and PSS by Liu for ���� = 1
+ sin�100�� and n = 5.
Downloaded 25 May 2010 to 128.252.20.193. Redistribution subject to E
Karthikeyan et al.19 for the recently popular LiNi0.8Co0.15Al0.05O2
positive active material in lithium-ion batteries where the thermody-
namic expressions along with the activity correction are incorpo-
rated into a single particle diffusion model for a Li-ion cell. Hence,
the use of nonlinear diffusion, wherein the diffusion coefficient is a
function of concentration, is becoming more and more popular in
the battery modeling domain, and the mixed order FD method is
capable of giving accurate results with nonlinear diffusivities as
well. To illustrate this fact, Fig. 5 is presented with the comparison
of mixed order FD method with five internal nodes for constant ����

(b)

(a)

Figure 3. �Color online� �a� Plot of Qi values obtained during the simulation
of Fig. 2 showing the converging behavior for increasing i and with time. �b�
Plot of qi values from the PSS method obtained during the simulation of Fig.
2 showing the diverging behavior for increasing i and with time.

Figure 4. �Color online� Comparison of mixed FD method with five interior
nodes with full-order numerical solution for constant D and ���� = 1, etc.
s
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and Ds varying as a simple function of C with the full-order numeri-
cal solution. For varying Ds, f�C� = 1 + 0.1 C, mixed FD approach
was efficient and accurate at short times.

Comparisons between the solid-phase diffusion models for the
full-order pseudo-2D model and approximations developed show
excellent agreement. The time history of the cell voltage was moni-
tored for several discharge rates. For very high discharge rates of 5C
and 10C, Fig. 6 shows the comparison of the full-order Galerkin
�with five q values� and mixed FD �with five internal nodes� meth-
ods for constant Ds. The computations were terminated when the
potential dropped to 2.5 V. Agreement is very good between the
traditional FD and the mixed FD methods, indicating that this effi-
cient method could substitute for the traditional method for any
discharge rate �low or high�. The mixed FD method agrees remark-
ably with the full-order FD method and can also be used for non-
linear diffusivities and hence can increase the computational effi-
ciency of the whole battery model. The eigenfunction based
Galerkin collocation approach included in a full pseudo-2D Li-ion
battery model also shows excellent agreement at high rates of dis-
charge indicating that this is a good alternative for cases with con-
stant diffusivities.

Table I shows the CPU time taken for performing the above
mentioned simulations and it can clearly be seen that the two pro-
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posed methods take lesser simulation time compared to the simula-
tion time for a full order pseudo-2D model. The eigenfunction based
Galerkin method takes more time compared to the mixed FD
method. The solid-phase reformulations are necessary for a faster
simulation of Li-ion battery models, which help in faster estimation
of parameters from these models from the experimental data.20

Conclusion

The different approximation schemes available for solid-phase
approximation for Li-ion batteries were reviewed and certain disad-
vantages pertaining to some of those methods were discussed. To
overcome these small disadvantages, an eigenfunction based Galer-
kin weighted residual approximation was presented, which provides
efficient reformulation for the solid-phase equation for constant dif-
fusivities. The result from this method compares very well with the
PSS method and also facilitates easily converging solutions for the
Q values. Mixed order FD based on finite volume equations can be
derived for varying values of diffusion coefficients as a function of
concentration �nonlinear case� and are very efficient for short times
and so far seem to be the only option for reformulating nonlinear
diffusivities efficiently. The two methods presented here seem to be
better compared to the existing solid-phase approximations with ab-
solutely no shortcomings as they are valid for any kind of operating
conditions. For the linear diffusivity �Ds is constant�, the eigenfunc-
tion based Galerkin collocation is the most efficient method, which
does not compromise on accuracy, however, providing excellent
computational efficiency. For nonlinear diffusivities, the mixed or-
der FD method can be used to obtain accurate solutions by using
lesser optimally spaced node points thereby reducing the total num-
ber of equations being solved for the full pseudo-2D Li-ion battery
model.

Future work involves efficient reformulation for moving bound-
ary models for phase change materials and coupling the solid-phase
models with reformulated model12 to enable simulation at very high
rates.
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List of Symbols

c0 reference concentration, mol/m3

cs concentration of lithium ions in the intercalation particle of elec-
trode, mol/m3

c̄ average concentration of lithium ions in the intercalation particle
of electrode, mol/m3

C dimensionless concentration of lithium ions in the intercalation
particle of electrode

C̄ dimensionless average concentration of lithium ions
Ci dimensionless concentration at ith node point
Ds Li-ion diffusion coefficient in the intercalation particle of elec-

trode, m2/s
D0 diffusion coefficient at reference concentration c0, m2/s
h node spacing at ith node point

Table I. Comparison of CPU times taken for full order
pseudo-2D Galerkin-based and mixed FD methods for obtaining
discharge curves in Fig. 6 at 5C and 10C rates.

Method
CPU time

for 5C rate�s�
CPU time

for 10C rate�s�

Full order pseudo-2D 19.2 20
Galerkin based 4.5 4.84
Mixed FD 1.438 1.297
i
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j�t� pore wall flux of Li ion the intercalation particle of electrode,
mol/m2 s

q volume averaged concentration flux, mol cm−4

Rs radius of the intercalation particle of electrode, m

Greek

�n positive eigenvalues
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