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We develop an approximate analytical solution for the shape of a nonaxisymmetric sessile drop using regular
perturbation methods and ignoring gravity. We assume that the pinned, contorted triple-line shape is known and is a
small perturbation of the circular footprint of a spherical cap. We obtain an analytical solution using regular
perturbation methods that we validate by comparing to the numerical solution of the Young-Laplace equation
obtained using publicly available Surface Evolver software. In this process, we also show that the pressure inside the
perturbed drop is unchanged and relate this to the curvature of the drop using the Young-Laplace equation. The rms
error between the perturbation and Evolver solutions is calculated for a range of contact angles and amplitudes of triple-
line perturbations.We show that the perturbation solutionmatches the numerical results well for awide range of contact
angles. In addition, we calculate the extent to which the drop surface is affected by triple-line contortions.We discuss the
applicability of this solution to the possibility of real time hybrid experimental/computational characterization of the 3D
sessile drop shapes, including obtaining local contact angle information.

1. Introduction

Sessile drops are characterized by the angle between the
liquid-vapor interface and the solid-liquid surface at the solid-
liquid-vapor triple line. This angle, known as the contact angle,
is determined by the relative magnitudes of the liquid-solid
and liquid-vapor interfacial energies. Drops on ideal, rigid, flat,
and homogeneous surfaces take the shape of a spherical cap (in
the absence of gravity) with perfectly circular triple lines and
constant contact angles. On real surfaces, the triple lines are
pinned into contorted shapes and the wrinkles spread to the
surface of the spherical cap, resulting in a variation of the local
contact angle around the periphery. The pinning of the triple line
at heterogeneities and the local contact angle along the contorted
triple line determine the local wetting/dewetting characteristics of
the drop, particularly the contact angle hysteresis.1 It is thus
necessary to determine the 3D shapes of drops on real hetero-
geneous surfaces.

Previous studies of the wetting characteristics of heterogeneous
surfaces have employed 3D simulations of the drop.2,3 However,
recognizing that the triple-line interactions with heterogeneities
determine the drop contact behavior,4,5 Vedantam and
Panchagnula6,7 have proposed a 2D approach (based on the
average contact angle of the sessile drop) that focuses purely on
the triple line and its interactions with heterogeneities on the solid
surface. One of the stated purposes of the full numerical simula-

tions is to determine the local contact angle on the triple line
because the local advancing/receding behavior is influenced by
this parameter. The local contact angle can be calculated from the
3D shape of the drop subject to the pinned triple-line shape.8

Several previous studies of numerical computations of 3D drop
shapeshavebeenperformedusing theSurfaceEvolverprogram.2,9,10

However, such simulations are computationally intensive and
have been restricted to the calculation of drop shapes on relatively
simple patterns of heterogeneities. In this article, we propose an
alternative, approximate analytical solution of the nonaxisym-
metric drop shape with a generally contorted triple line based on
the regular perturbation method.

The 3D shape of sessile drop surface is governed by the
Young-Laplace equation,4 which relates the capillary pressure
difference sustained across an interface separating two static
fluids to the local mean curvature, κ,

Pi -Po ¼ σK ð1Þ
Here,Pi is the local pressurewithin the drop,Po is the atmospheric
pressure, and σ is the surface tension of the liquid. In the case of
small sessile drops, gravity can be neglected and Pi and Po are
both constant. The Young-Laplace equation (eq 1) thus indi-
cates that the liquid-vapor surface has a constant mean curva-
ture.

In the presence of pinning heterogeneities, the surfaces of sessile
drops become wrinkled. However, the Young-Laplace equation
still holds true for the drops in the pinned condition, and themean
curvature of the liquid-vapor interface is constant in the absence
of gravity. Using this and the fact that the wrinkled drop is a
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perturbation of the axisymmetric drop, we develop a perturbation
solution to predict the shape of the sessile drop for a generally
nonaxisymmetric pinned triple line. We validate the analytical
solution by comparing the drop shapes for the same triple-line
topology and drop volume to the numerical solution of the exact
Young-Laplace equation obtained using public domain Surface
Evolver software.11 Finally, using the analytical solution, we
investigate the dependence of the local contact angles on the
configuration of the triple-line shape of a sessile liquid drop on a
solid substrate. An extensive parametric study is also conducted
by varying the contact angle that the drop makes with the solid
substrate and the amplitude of the triple-line contortions in order
to ascertain the domain of applicability of the analytical solution.
We find that the perturbation approach matches the numerical
computation well for a wide range of contact angles and pinning
strengths of the heterogeneities. Finally, we determine the extent
to which the drop surface is affected by the contortions on the
triple line.

2. Theory

In this section, we summarize the development of the perturba-
tion solution for the shape of the sessile drop. The analytical
solution is based on a perturbation expansion of the mean
curvature subject to a contorted pinned triple line.

Consider a drop exhibiting a contact angleRwhile sessile on an
ideal (defect-free) surface as shown in Figure 1. Let A be the
origin, θ be the zenith angle, and j be the azimuthal angle. LetO
be the geometric center of the sphere that the drop is part of. Let
the pressure inside and outside the dropbePi andPo, respectively.
Without a loss of generality, we assume that the drop in the
unperturbed state is the unit radius.

In the case of the drop on an ideal surface, the triple line is a
circle with radius of sin R given by the equation

r ¼ sin R; θ ¼ π

2
ð2Þ

The unperturbed surface of the sessile drop is a part of a sphere
that in the chosen coordinate system can be expressed by the
equation

f uðr,θ,jÞ : r-FðθÞ ¼ 0 ð3Þ

where

FðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
- cos θ cos R ð4Þ

It may be noted that the volume of the unperturbed drop, Vu,
enclosed by this surface is given by

V u ¼
Z 2π

0

Z π=2

0

Z FðθÞ

0

r2 dr sinðθÞ dθ dj

¼
Z 2π

0

Z π=2

0

F3

3
sin θ dθ dj ð5Þ

With F(θ) given by eq 4, it can be shown using MAPLE that the
volume of the unperturbed drop is the same as that of the
spherical cap given by

V u ¼ π

3
ðcos3 R- 3 cos Rþ 2Þ ð6Þ

The unit normal vector n̂u on this surface is given by

n̂u ¼ rf u
jrf uj

¼ F êr -Fθêθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þF2

θ

q ð7Þ

where subscript θ on F denotes differentiation. The curvature κu
of the drop is calculated by taking the divergence of the normal
vector n̂u that is given by the following equation:

Ku ¼ rn̂u ð8Þ

Using eq 5, the curvature κu is given explicitly by

Ku ¼

1

F sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þFθ

2
p 2F sin θ-Fθ cos θþ sin θ

FFθ
2 -FθθF2

F2 þFθ
2

 !2
4

3
5
ð9Þ

Upon simplifying eq 9 using eq 4, we note that the value of κu is 2
for any value ofθ andR, as is to be expected for the unit sphere. So
far we have considered the unwrinkled spherical cap to be the
drop surface. We now consider a situation in which the triple line
is pinned in a contorted configuration because of heterogeneities
on the surface.Wewill assume that the contorted triple line can be
described by

r ¼ sin Rð1þ εgðjÞÞ; θ ¼ π

2
ð10Þ

where g(j) (of order 1) is assumed to be a periodic function of j
and ε is the (small) amplitude of perturbation from the ideal
contact circle radius given by eq 2. For this perturbed triple line,
let the 3D perturbed surface be given by

f pðr, θ,jÞ : r- ðFðθÞþ εGðθ,jÞÞ ¼ 0 ð11Þ

This ansatz is the most general form in which the triple-line
contortions contribute to O(ε) wrinkling of the surface. That is,
the O(ε) contortions of the triple line do not affect the O(1)
spherical cap shape of the drop in keeping with a regular
perturbation expansion. We note that this choice is the same as

Figure 1. Schematic representation of a sessile drop.

(11) Brakke, K. A. The Surface Evolver; 1992.
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in Popova12 and Myshkis et al.,13 who have both presented a
similar regular perturbation solution for the shape of the non-
axisymmetric drop, albeit restricted to the case of R = 90�.

The unit normal vector n̂p on this perturbed surface can be
evaluated just as was done for the unperturbed surface. Retaining
the terms in n̂p only up to order ε, we may write

n̂ p ¼ F êr -Fθêθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þF2

θ

q þ εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þF2

θ

q
"

Fθ

F2 þF2
θ

f-GθF þGFθgêr

-
ðGθF2 þGFFθÞ

F2 þF2
θ

êθ -
Gj

sin θ
êj

#
þOðε2Þ ð12Þ

The curvature κp of the perturbed surface is once again
evaluated by finding the divergence of the normal vector, n̂p

Kp ¼ rn̂p ð13Þ

Again, by retaining theO(ε) terms,we find that κp is of the form

Kp ¼ Ku þ εð f 1ðθÞGθθ þ f 2ðθÞGθ þ f 3ðθÞGjjÞþOðε2Þ ð14Þ
FromtheYoung-Laplace equation (eq1), ifPi

0 is the (constant)
pressure within the perturbed drop and Po is the atmospheric
pressure, then it follows that

Pi
0 -Po ¼ σKp ð15Þ

First, it can be seen from the above that because Pi
0 is constant

within the drop, κp does not depend on θ and j. This implies that
theO(ε) term on the right-hand side of eq 14 is at most a function
of R. Therefore,

Kp ¼ Ku þ εCðRÞþOðε2Þ ð16Þ
with C(R) as yet undetermined. Second, we calculate the per-
turbed surface such that the perturbed and unperturbed drops
have the same volume. In this regard, the volume enclosed by the
perturbed surface is given by

V p ¼
Z 2π

0

Z π=2

0

Z ðF þ εGÞ

0

r2 dr sin θ dθ dj ð17Þ

and the perturbed drop surface is given by eq 11 and hence the
upper limit of the innermost integral. By retaining terms up to
O(ε), we may write

V p ¼
Z 2π

0

Z π=2

0

F3

3
sinðθÞ dθ dj

þ ε

Z 2π

0

Z π=2

0

F2G sinðθÞ dθ djþOðε2Þ ð18Þ

Using eq 16 together with eq 14, we find that

f 1ðθÞGθθ þ f 2ðθÞGθ þ f 3ðθÞGjj ¼ CðRÞ ð19Þ
This is the governing equation for G(θ, j), and the forms of
functions fi(θ) (i = 1, 2, 3) are included in the Appendix. The

boundary conditions for G(θ, j) are

Gðθ, 0Þ ¼ Gðθ, 2πÞ; Gjðθ, 0Þ ¼ Gjðθ, 2πÞ;

Gθð0,jÞ ¼ 0; Gj
π

2
,j

� �
¼ gðjÞ ð20Þ

The solution of G(θ, j) can be separated into particular and
homogeneous solutions such that

Gðθ,jÞ ¼ GðpÞðθÞþGðhÞðθ,jÞ ð21Þ
where G(p)(θ) is allowed to satisfy the equation

f 1ðθÞGðpÞ
θθ þ f 2ðθÞGðpÞ

θ ¼ CðRÞ ð22Þ
subject to the conditions

GðpÞ
θ ð0Þ ¼ 0; GðpÞ π

2

� �
¼ 0 ð23Þ

andG(h)(θ,j) satisfies the homogeneous version of eq 19 given by

f 1ðθÞGðhÞ
θθ þ f 2ðθÞGðhÞ

θ þ f 3ðθÞGðhÞ
jj ¼ 0 ð24Þ

subject to the boundary conditions

GðhÞðθ, 0Þ ¼ GðhÞðθ, 2πÞ;
GðhÞ

j ðθ, 0Þ ¼ GðhÞ
j ðθ, 2πÞ;

GðhÞ
θ ð0,jÞ ¼ 0; GðhÞ π

2
,j

� �
¼ gðjÞ ð25Þ

A solution to eq 22 subject to eqs 23 can be written using the
method of variation of parameters after defining a function
ψ(0) = exp[-

R
( f2/f1) dθ]. This solution takes on the form

GðpÞðθÞ ¼ CðRÞ C1 þC2

Z
ψ dθþ

Z R
ψ dθ

ψ
dθ

�

þ
Z

ψd θ

� � Z
dθ

ψ

� ��
¼ CðRÞHðθ,RÞðsayÞ ð26Þ

whereC1 andC2 are determined fromeqs 23.Wewill now turnour
attention to the solution of eq 24 subject to the first three
boundary conditions of eqs 25 using the method of separa-
tion of variables in order to develop an analytical solution for
G(h)(θ, j).

GðhÞðθ,jÞ ¼ TðθÞ PðjÞ ð27Þ

Substituting eq 27 into eq 19 yields

f 1ðθÞT 00 þ f 2ðθÞT 0

f 3ðθÞT
¼ -

P00

P
¼ þ λ2 ð28Þ

Here, the prime denotes differentiation with respect to its argu-
ment and λ2 is the separation constant in the usual sense. The
equation forP(j) constitutes an eigenvalue problemwith sine and
cosine functions being independent solutions,

PmðjÞ ¼ AðsÞ
m sinðmjÞþAðcÞ

m cosðmjÞ ð29Þ

(12) Popova, L. N., Nonaxisymmetric equilibrium shapes of a drop on a plane.
Fluid Dyn. 1983, 18, 634-637.
(13) Myshkis, A. D.; Babskii, V. G.; Kopachevskii, N. D.; Slobozhanin, L. A.;

Tyuptsov, A. D. Low Gravity Fluid Mechanics; Springer-Verlag: Berlin, 1987.
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Here m = 1, 2, 3... (the set of nonzero integers) are the
corresponding eigenvalues that arise from the periodicity condi-
tion in eq 20 and Am

(s) and Am
(c) are still arbitrary constants whose

values need to be determined to satisfy the fourth boundary
condition of eq 20. Becausem=1 represents a rigid translation of
the drop (for small ε), we consider only the m > 1 case.
Corresponding to eachm>1, the equation for Tm(θ) constitutes
a boundary value problem

f 1ðθÞT
00
m þ f 2ðθÞTm

0 -m2f 3ðθÞTm ¼ 0; 0 < θ <
π

2
ð30Þ

with the boundary conditions

Tm
π

2

� �
¼ 1 and Tm

0ð0Þ ¼ 0 ð31Þ

By solving eqs 30 subject to eqs 31, we obtain the complete
solution for G(h)(θ, j) and therefore G(θ, j) as

Gðθ,jÞ ¼ CðRÞ Hðθ,RÞþ
X¥
m¼ 1

TmðθÞðAðsÞ
m sinðmjÞ

þAðcÞ
m cosðmjÞÞ ð32Þ

The perturbation part of the triple line given by eq 10 can be
written in terms of eigenfunctions sin(mj)and cos(mj) as

gðjÞ ¼
X¥
m¼ 1

BðsÞ
m sinðmjÞþBðcÞ

m cosðmjÞ ð33Þ

Here Bm
(s) and Bm

(c) are the Fourier coefficients that describe the
perturbations on the triple line. By imposing the fourth boundary
condition in eq 25 on the solution in eq 32, it can readily be seen
that Am

(c) = Bm
(c) and Am

(s) = Bm
(s) because H(π/2, R) = 0 from the

second condition in eq 23. The solution in eq 32 is now fully
determined except for the function C(R). We now turn to
determining C(R). Using eq 5, we can rewrite eq 18 as

V p ¼ V u þ ε

Z 2π

0

Z π=2

0

F2 G sinðθÞ dθ djþOðε2Þ ð34Þ

By using eq 32 for G(θ, j) and realizing thatG(h) is in a separable
form, eq 34 becomes

V p ¼ V u þ 2πεCðRÞ
Z π=2

0

F2H sin θ dθþ

ε
X¥
m¼ 1

�Z π=2

0

F2TmðθÞ sin θ dθ

�
AðsÞ
m

Z 2π

0

sinðmjÞ djþ

AðcÞ
m

Z 2π

0

cosðmjÞ dj
��

þOðε2Þ ð35Þ

The term inside the square brackets is identically zero for all m,
which implies that

V p ¼ V u þ 2πεCðRÞ
Z π=2

0

F2H sin θ dθþOðε2Þ ð36Þ

Itmay be recalled thatwe requireVp=VuþO(ε2). In addition, it
was verified numerically that

R
0
π/2 F2H sin θ dθ 6¼ 0 in general for

all R. Therefore, we conclude that C(R) � 0 and the solution for

G(θ, j) is given by

Gðθ,jÞ ¼
X¥
m¼ 1

TmðθÞðBðsÞ
m sinðmjÞþBðcÞ

m cosðmjÞÞ ð37Þ

Because the boundary value problem given by eqs 30 and 31 does
not have a general analytical solution, a 15-term series solution
developed in MAPLE is therefore used as an approximation. It
must be mentioned that for the special case of R = π/2, eqs 30
reduce to the associated Legendre equation. The solutions for
Tm(θ) for this special case are the associated Legendre functions
of the first kind. For any other R, the series Tm(θ) can be
construed as a generalized associated Legendre function of the
first kind.

3. Numerical Solution

The analytical solution given by eq 32 is validated using the
surface shape calculated using a numerical solution of theYoung-
Laplace equation. We use open source program Surface Evolver
for this purpose. Surface Evolver is an interactive program for the
study of the evolution of surfaces that are shaped by surface
tension and other energies. The algorithm calculates the velocity
of each vertex, and the vertex is moved in the direction such that
the surface evolves toward a minimum energy by the gradient
descent method. Thus, the final equilibrium shape is calculated
following a series of energy-minimizing successive approxima-
tions starting from an initial state. More details of the algorithm
and the program implementation can be found in the user
manual.14

For a given shape of the triple line such as that given in eq 10
and the drop volume, the drop shape is computed using Surface
Evolver. The initial shape with which we start the evolution of the
drop is a pyramid, with the base forming the triple line given by
eq 10. The vertices and edges that form the triple line are
constrained to remain on the θ = π/2 plane and are rendered
immobile. During the process of evolution through refinement,
the drop shape is allowed to evolve into the final equilibrium
shape subject to the constraints of constant volume and an
immobile triple line. For the purpose of validating the analytical
solution, we begin with a simple form of g(j) in eq 33 given by

gðjÞ ¼ sinðnjÞ ð38Þ
The mean contact angle that the drop makes with the substrate
(R), the number of undulations (n), and the amplitude of undula-
tions (ε) are the parameters in this problem. For a given grid
(number of facets), the Surface Evolver iteration process was
allowed to progress until convergence was achieved to 12 sig-
nificant digits. In addition, the number of facets used to approx-
imate the surface is also gradually increased (using the refinement
feature) fromabout 4000 to about 66000 facets (ormore) until the
converged energies from successively refined grids differed only in
the sixth significant digit. At this point, a grid-independent
solution was thought to have been realized. It may be noted that
the sequence of operations employed was the same for all cases
but the number of iterations required for the solution to reach
complete convergence was different for different cases of n and ε.

The grid-independent Surface Evolver solution was used to
validate the perturbation solution. For purposes of comparison,
the total rms error in the radii at all vertex locations between the
analytical and numerical solutions was calculated. This process

(14) Brakke, K. Surface Evolver User’s Manual; 2008.
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involves extracting information on the coordinates of all of the
vertices from the Surface Evolver solution in a Cartesian coordi-
nate system and transforming it into a spherical polar system in
which the analytical solution is available. With a knowledge of θ
and j at each vertex from the Surface Evolver solution, we
compute the value of the radius from the analytical solution for θ
and j, With the value of the radius at each vertex obtained
through both the analytical and Surface Evolver solutions, the
rms error is calculated over all of the vertex points and presented
as a ratio with the mean radius of the drop.

4. Results and Discussion

A parametric study was conducted using the analytical and
Surface Evolver solutions to quantify the variation of the rms

error as a function of the mean contact angle that the dropmakes
with the substrate (R), the number of undulations (n), and the
amplitude of undulations (ε). Figures 2-4 depict the variation of
the rms error with ε for different R and n.

Figure 2 represents the plot between the rms error versus ε for
four different values of n (=4, 8, 12, and 15) forR=90�. It can be
seen from the graph that the rms error increases with increasing
triple-line undulation amplitude (ε) as well as with the number of
undulations (n). It can also be observed from this graph that the
difference between the Surface Evolver and analytical solutions
reaches a maximum value of 0.7% for ε = 0.1 and n = 15. The
maximum local error in percentage terms for the four values of n is
indicated in parentheses for ε=0.05 and 0.1. The inset images in
the plot show the 3D shape of the drop obtained from the Surface
Evolver and analytical approaches for the case of n = 12 and

Figure 2. Plot of rms error vs ε for different n values and a contact angle of 90�. The inset images correspond to the circled data point.

Figure 3. Plot of rms error vs ε for different n values and a contact angle of 45�. The inset images correspond to the circled data point.

http://pubs.acs.org/action/showImage?doi=10.1021/la101168b&iName=master.img-002.jpg&w=325&h=238
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ε = 0.075. The perturbation solution is shown in pseudocolor
with the color scale indicating the local error in percentage terms.
First, it can be seen that the shapes of the dropobtained fromboth
approaches are almost identical. Second, the maximum local
error occurs in the region above the contact line. Third, from the
maximum errors, for ε= 0.1 the maximum error is only 2.21%.
Therefore, it can be concluded that the approximate analytical
solution has been validated. Furthermore, it must be mentioned
that the numerical solution took approximately 6 min on a 2.2
GHz processor whereas the analytical solution is obtained in 5 s.

Figures 3 and 4 represent plots similar toFigure 2 for the cases of
R = 45 and 135�, respectively. The qualitative trends in the
variation of the rms error versus ε and n are similar to those in
Figure 2. However, the maximum rms errors for R=45 and 135�
are 3.7 and 4%, respectively, which are both higher than for R=
90�. On each of these two figures, a comparison is provided
between the exact and perturbation solutions for one data point,
which is circled. It can be observed from these images that the local
error for the 45� case is highest at the top of the drop whereas for
the 135� case the local errors are high near the contact line. In
addition, the maximum local errors for ε = 0.05 and 0.1 are also
indicatedon theFigure. Themaximum local error is on the order of
ε for this case. The perturbation solution drop shapes are colored
by the local error according to the color bar shown in each graph.

In conclusion, the data in Figures 2-4 shows that the pertur-
bation solution agrees well with the Surface Evolver solution. A
primary benefit of the analytical approach lies in being able to
calculate the local contact angle at any point on the triple line
without needing to resort to the full numerical solution. In a
typical experiment, it may be possible to measure the detailed
shape of the triple line.15,16 However, measuring the local contact
angle is very difficult. This perturbation solution therefore pre-
sents ameans to calculate the local contact angle for a given triple-
line shape and drop volume.

Consider a situation of a small sessile drop (of radius smaller
than the capillary length) of volumeV. From the measurement of
the triple line, it possible to calculate the average radius of the
contact “circle”. From these two measurements, it is possible to
calculate the radius of the spherical capR and the contact angleR.
After the drop radius is nondimensionalized to unity, the analy-
tical solution described by eq 32 is applicable. Coefficients Bm

(s)

and Bm
(c) can be obtained from a Fourier transform (in the j

Figure 4. Plot of rms error vs ε for different n values and a contact angle of 135�. The inset images correspond to the circled data point.

Figure 5. Drop shapes obtained from numerical and analytical solutions for a real triple line.
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Jager, R.; Barkay, Z. Contact angle hysteresis on polymer substrates established
with various experimental techniques, its interpretation, and quantitative char-
acterization. Langmuir 2008, 24, 4020-4025.

(16) Cubaud, T.; Fermigier, A. Advancing contact lines on chemically patterned
surfaces. J. Colloid Interface Sci. 2004, 269, 171-177.

http://pubs.acs.org/action/showImage?doi=10.1021/la101168b&iName=master.img-004.jpg&w=327&h=230
http://pubs.acs.org/action/showImage?doi=10.1021/la101168b&iName=master.img-005.jpg&w=320&h=139


DOI: 10.1021/la101168b 10723Langmuir 2010, 26(13), 10717–10724

Prabhala et al. Article

coordinate) of the experimentally measured triple line. Pre-
sumably, the Fourier transform and the analytical solution
computation can all be performed in approximately real time
with some optimization and on a parallel machine resulting in
real time 3D drop surface information. This can be realized
from merely obtaining and analyzing a sequence of images of
the triple line and knowledge of the drop volume. Such a
hybrid theoretical/experimental approach has been proposed
previously10 and could serve to provide virtual 3D information
in real time. In addition, the local contact angle information

can yield information related to defect sites that adjoin and pin
the triple line.

Figure 5 represents the comparison of the drop shape obtained
by the Surface Evolver and analytical approaches for a sessile
drop on a chemically heterogeneous substrate. The shape of the
triple line was obtained fromAnantharaju et al.,17 who employed

Figure 6. Plot of the local contact angle vs the azimuthal angle j obtained from the Surface Evolver and the analytical solutions.

Figure 7. Plot of the variation of the amplitude of the triple-line contortionTm(θ) as a function of the zenith coordinateθ . Note thatθ=0at
the top of the drop.

(17) Anantharaju, N.; Panchagnula, M. V.; Vedantam, S. Asymmetric wetting
of patterned surfaces composed of intrisically hysteretic materials. Langmuir 2009,
25, 7410-7415.
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phase field simulations of the advancing triple line on a substrate
with square regions of a hydrophobicmaterial of advancing angle
145� and receding angle 125� embedded in a hydrophilic material
of advancing angle 95� and receding angle 83�. A Fourier analysis
was performed on the triple-line shape of Figure 9 inAnantharaju
et al.,17 and only the 15 most significant terms were retained in
eq 33. The values of n and ε for these 15 terms are listed in Table 1,
along with the average contact angle, R= 104�. The same triple-
line shape was imposed as the boundary condition for both the
analytical and Surface Evolver solutions. In addition, both
calculations were carried out for the same drop volume, allowing
us to compare these results. The rms error for this case is 4.03%.

Figure 6 is a plot of the local contact angle versus the azimuthal
angle j obtained from both Surface Evolver and the analytical
solution. As can be seen, the agreement between the two is
remarkable. Deviations between the two solutions are observed
only where the contortions in the triple line are of very high
frequency.

Figure 7 is a plot of Tm(θ) versus θ for m = 3, 5, and 10 and
R = 120�. This plot depicts the decay of the undulations
introduced at the triple line. As can be seen from this plot, the
higher-frequency contortions vanish closer to the triple line. For
the case studied in Figure 5, it was found that for more than 90%
of the drop surface area the drop shape remains within 1% of a
spherical cap. This conclusion is qualitatively consistent with
empirical observations of sessile drop surfaces in which even on
significantly heterogeneous surfaces the drops seem to maintain
their spherical cap shape, especially for larger contact angles.

5. Summary and Conclusions

An analytical solution based on a perturbation expansion was
developed to predict the shape of the sessile drop (in the absence

of gravity) for a given triple-line description. A numerical
procedure was also developed in Surface Evolver to predict the
3D shape of the drop. A comparison between the analytical and
numerical methods was made by calculating the rms error in the
radius at all vertices of the Surface Evolver solution. Various test
cases were run to check the validity of the analytical solution. The
contact angles considered were 45, 90, and 135�. The number and
amplitude of perturbations created on the triple line were varied
for all three different contact angles. The calculation of the
analytical solution is relatively much faster than the numerical
solution, and the error between the two solutions is relatively
low. The applicability of this solution to a hybrid experimental/
computational investigation is discussed.

Appendix

The partial differential equation that governs the perturbation
quantity G(θ, j) is given by eq 19

f 1ðθÞGθ þ f 2ðθÞGθ þ f 3ðθÞGjj ¼ 0 ð19Þ

The forms of the functions fi(θ) (i = 1, 2, 3) are included herein.

f1ðθÞ ¼ - 2þ 2 cos3 R cos3 θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
- cos θ cos3 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
þ cos θ cos R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
- cos5 θ cos3 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 R þ sin2 R

p
- cos3 θ cos R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
þ 3 cos4 R cos2 θ

- 3 cos4 R cos4 θ- 4 cos2 θ cos2 Rþ cos4 R cos6 θ

þ 2 cos2 R cos4 θþ cos2 θ- cos4 Rþ 2 cos2 R

f2ðθÞ ¼ - 4 sin θ cos3 R cos2 θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
- sin θ cos θþ 4 cos4 θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
sin θ cos3 R

þ cos2 θ sin θ cos R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
þ 5 sin θ cos2 R cos θ- 4 sin θ cos θ cos4 R

þ 8 cos3 θ sin θ cos4 R- 4 sin θ cos4 R cos5 θ

- 5 sin θ cos3 θ cos2 R

f3ðθÞ ¼ - 1þ cos θ cos R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ cos2 Rþ sin2 R

p
- cos2 θ cos2 Rþ cos2 R

Table 1

serial
no.

azimuthal
wavenumber

(m)

amplitude of
perturbations

(εm)

1 4 0.021
2 7 0.007
3 35 0.0068
4 27 -0.0066
5 15 0.0054
6 44 0.0054
7 40 -0.0053
8 17 0.0052
9 52 0.0052
10 56 -0.0046
11 9 0.0039
12 31 -0.0038
13 11 0.0036
14 25 -0.0031
15 30 -0.0007


