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a  b  s  t  r  a  c  t

Estimation  of consistent  initial  conditions  is very  crucial  for  the  successful  solution  of
differential–algebraic  equation  (DAE)  systems  that  arise  in  many  fields  of  science  and  engineer-
ing.  In  this  paper,  an efficient  perturbation  approach  for initialization  of DAE  systems  of  index-1  is
proposed  and  implemented  for DAE  models  governing  batteries.  In  addition,  different  existing  solvers
are  compared  for consistent  initialization  of  DAE  systems.  The  proposed  approach  does  not  necessarily
eywords:
AE

nitialization
onsistent initial condition
erturbation approach

require  a nonlinear  solver  for  initialization  and  builds  on the  applicability  and  usability  of robust  and
efficient  explicit,  linearly  implicit  and  semi-implicit  integrators  in time.  Three  different  problems  are
presented  wherein  the  proposed  approach  is observed  to  work  for  a  wider  range  of inconsistent  initial
conditions  compared  to  other  existing  generally  used  routines.  It is  also  observed  that  the  present
approach  is computationally  efficient  compared  to  the  other  existing  approaches  in a given  environment.
ndex-1 DAEs

. Introduction

Dynamic physical processes arise in many areas of engineering,
cience and economics, and are usually modeled using ordinary dif-
erential equations (ODEs) or partial differential equations (PDEs).
owever, some of the states in these physical processes are con-

trained, and such states are governed by algebraic equations and
he resulting mathematical model contains ODEs/PDEs coupled
ith nonlinear algebraic equations (Kunkel & Mehermann, 2000).
umerical solution of DAE systems is more difficult as compared

o ODE models due to the existence of linear and non-linear alge-
raic equations and due to discontinuities in the algebraic variables
ver the independent variable space. A DAE system in general is
haracterized by its index, which is defined as the number of dif-
erentiations required to convert a DAE system into an ODE system.
igher the index of the system, less reliable the solutions are with
lassical numerical methods. DAE systems of index greater than 2
re in general difficult to solve and is still an active area of research.

In modeling of various chemical and electrochemical processes,

AE models of index-1 are commonly encountered, in particu-

ar during simulation of batteries at different operating conditions
herein simulation of continuous charge/discharge curves involve
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state detections. For a system of DAEs, some solution approaches
involve differentiation of the algebraic equations to obtain ODEs
for algebraic variables. Differentiation process may impose addi-
tional constraints and add stiffness. Depending on the algorithm
chosen to solve a DAE model, the original constraints may  not be
satisfied due to the error introduced by the numerical computation
of the differentiated constraints (Garcia, 2000). Another difficulty
that arises while solving a DAE model is the lack of consistent initial
conditions. While solving a DAE model, it is crucial to use consis-
tent initial conditions for both the differential and the algebraic
variables. However, in many modeling situations, consistent initial
conditions may  not be directly available for all the variables. This is
especially true for batteries where state of charge and state of health
change with the number of cycles and state events may  happen at
different points in the performance curves. Consequently, many
good solvers fail to solve DAE models resulting from simulation of
battery models (Wu & White, 2001).

Estimation of consistent initial conditions is a challenging step
and very crucial for the successful solution of DAE models. Several
methods have been proposed for the estimation of consistent ini-
tial conditions in the literature. Sincovec, Erisman, Yip, and Epton
(1981) suggested integration of the DAE systems of index-n with
implicit Euler method. After at least n steps, the solution trajectory
will be reached, and the computed value of algebraic variables will
be a set of consistent initial conditions. A variation of this method

was used in the DASSL solver (Brenan et al., 1989) for the calcu-
lation of initial derivatives of algebraic variables for a given set of
consistent values. Kröner et al. (1992) made further improvements
in integration step size selection and error control of the initializa-

dx.doi.org/10.1016/j.compchemeng.2011.01.003
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
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Nomenclature

ai specific surface area of electrode i (i = p, n), m2/m3

c electrolyte concentration, mol/m3

c0 initial electrolyte concentration, mol/m3

cs,i concentration of lithium ions in the intercalation
particle of electrode i (i = p, n), mol/m3

cs,i,0 initial concentration of lithium ions in the interca-
lation particle of electrode i (i = p, n), mol/m3

cs,i,max maximum concentration of lithium ions in the inter-
calation particle of electrode i (i = p, n), mol/m3

D electrolyte diffusion coefficient, m2/s
Ds,i lithium ion diffusion coefficient in the intercalation

particle of electrode i (i = p, n), m2/s
F Faraday’s constant, C/mol
I applied current density, A/cm2

i1 solid phase current density, A/m2

i2 solution phase current density, A/m2

js solvent reduction current density, mol/m2s
ji wall flux of Li+ on the intercalation particle of elec-

trode i (i = p, n), mol/m2 s
ki intercalation/deintercalation reaction rate constant

of electrode i (i = p, n), mol/(mol/m3)1.5

li thickness of region i (i = p, s, n), m
n negative electrode
p positive electrode
r radial coordinate, m
R universal gas constant, J/(mol K)
s separator
t+ Li+ transference number in the electrolyte
T absolute temperature, K
x spatial coordinate, m
εi porosity of region i (i = p, s, n)
� ionic conductivity of the electrolyte, S/m
�eff,i effective ionic conductivity of the electrolyte in

region i (i = p, s, n), S/m
�s density of the solvent reduction product film, g/m3

�i electronic conductivity of the solid phase of elec-
trode i (i = p, n), S/m

�eff,i effective electronic conductivity of the solid phase
of electrode i (i = p, n), S/m

Ф solid phase potential, V
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Ф2 electrolyte phase potential, V

ion algorithm used in the DASSL routine. Gear (1971) presented
n algorithm where he used explicit Euler formulation for a DAE
ystem and then Newton’s method was used for the corrections.
f the correction step does not meet the convergence criteria, then
he Jacobian is reevaluated. The author suggested that the algo-
ithm will be useful for a DAE system with multiple solutions for the
lgebraic variables, provided the multiple solutions remain distinct
ithin the error criteria.

Pantelides (1988) proposed a method based on a graph-
heoretical approach for finding the minimal set of equations in
rder to obtain a semi-explicit index-1 DAE system. Unger, Kröner,
nd Marquardt (1995) implemented a slightly different version
f Pantelides’ algorithm based on the structural analysis of the
parsity patterns of the Jacobian matrix of the system. Kröner,
arquardt, and Gilles (1997) suggested the use of restrictive damp-

ng strategies if a DAE system is encountered with steep gradients.

ieira and Biscaia Jr. (2001) proposed an initialization technique
hich is based on the approximation of dynamic response of a

ystem with a discontinuous perturbation of a similar system.
rziglod (1987) based his algorithm on detailed decomposition
cal Engineering 35 (2011) 2227– 2234

of the DAE system; however this approach requires knowledge of
the analytical expressions for differentiations. A pure numerical
approach was  proposed by Leimkuhler, Petzold, and Gear (1991)
for a DAE system of index-n. The authors construct the consistency
equations with total differentials for the DAE system with time
up to an order n. The resulting set of equations was solved using
the least square approach. Existence and uniqueness of solution
was proved by the authors for a DAE system with linear coeffi-
cients. Reissig, Boche, and Barton (2002) proposed an initialization
approach based on the Laplace transform for the time invariant
linear DAEs. In this approach, consistent initial conditions of DAE
systems were estimated using mapping functions. They also men-
tioned that for every DAE system there exists a unique family of
mapping functions. Reis (2007) considered the consistent initializa-
tion differential–algebraic systems on infinite-dimensional Hilbert
spaces based on a decoupling form where he formulated sufficient
criteria for an initial value being consistent with a given inho-
mogeneity. The initial value thus had to fulfill not only algebraic
relations being hidden in the system but also the (hidden) boundary
constraints that come. He also formulated perturbation results for
consistently initialized systems. Lamour and Mazzia (2009) com-
bined the results concerning the solvability of DAEs with properly
stated leading terms with an appropriate method for the approxi-
mation of the derivative, and proposed an algorithm that provides
the necessary data to formulate the initial conditions. The authors
stated that this method works at least for nonlinear DAEs up to
index 3. Estévez Schwarz (2009) defined and analyzed DAEs in
nonlinear Hessenberg form of arbitrary high order with regard to
consistent initialization. For this class of DAEs, he proposed that the
hidden constraints can be systematically described and the consis-
tent initialization can be determined through step-by-step solving
of linear sub-problems.

Efforts have also been made for estimation of consistent ini-
tial conditions using optimization techniques. Vieira and Biscaia
Jr. (2000) compared various initialization techniques and proposed
a method based on the optimization strategy. In their approach,
they optimized a set of equations consisting of consistency equa-
tions, additional constraints and hidden constraints estimated
using differentiations. The authors suggested that hybrid optimiza-
tion methods are more appropriate for the estimation of consistent
initial conditions. Gopal and Biegler (1999) used a sequential lin-
ear programming approach for estimation of initial conditions with
and without discontinuities.

Several solvers are available for solutions of DAE models such as
LSODI (Nuclear Energy Agency website, 2010), LIMEX (Deuflhard,
Hairer, & Zugck, 1987), DASSL (Brenan et al., 1989), and RADAU5
(Hairer & Wanner, 1991). Recently, many easy to use ODE solvers
(ode15s, ode15i, etc.) from MATLAB® (Mathworks website, 2010),
“NDsolve” from MATHEMATICA® (Wolfram website, 2010), and
“dsolve” from MAPLE® (Maplesoft website, 2010) are available to
solve non-stiff, stiff and moderately stiff DAE models of index-
1. A more recent software package is JACOBIAN® (Numerica
Technology website, 2010), a general purpose modeling and
optimization package, which features numerical algorithms for
systems of hybrid discrete and continuous DAEs. Its initializa-
tion procedure uses Newton–Raphson technique. It also handles
sparse Jacobians of DAE systems through sparse direct methods,
which is often more convenient than preconditioned Krylov meth-
ods.

Many of these solvers fail to solve the DAE models for batter-
ies with inconsistent initial conditions but on the other hand work
reasonably well with consistent initial conditions (for both depen-

dent variable and its derivative). Wu and White (2001) presented
an initialization subroutine (DAEIS) which was based on a nonlinear
equation solver. They showed that the range for inconsistent initial
conditions was broader for the DAEIS subroutine than with some
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f the readily available solvers such as LSODI, LIMEX, and DASSL for
AE models.

In spite of these recent advancements, many of these DAE
olvers and initialization routines fail due to the convergence prob-
em of Newton iteration and the singular/ill-conditioned Jacobian

atrix resulting from a small integration step. When convergence
riteria of Newton iterations are not satisfied, these solvers reduce
ntegration step size to a smaller value. This may  be a good approach
or a DAE system with nearly consistent initial conditions, but may
ot be useful with inconsistent initial conditions that are far off

rom the consistent initial conditions. Due to a very small step size,
acobian matrix becomes singular, resulting in failures of the DAE
olvers. Therefore, the available DAE solvers with initialization rou-
ines might fail with inconsistent initial conditions (Wu & White,
001).

In this paper, an efficient approach for finding consistent initial
onditions for a DAE system is presented. This approach is based
n the singular perturbation method and the use of efficient ODE
olvers in a dummy  variable. We  estimated consistent initial con-
itions for DAE systems arising from the battery models and the
esults are presented in Section 3. To our knowledge, singular per-
urbation technique has been attempted to only solve DAEs directly
Garcia, 2000) (by perturbing the entire system including the ODEs
nd algebraic equations). However, this results in forcing the per-
urbed dynamics of the ODE variables and algebraic variables to
he dynamics of the original system. In addition, for using explicit
olvers to integrate the resulting ODEs with time-variant mass-
atrix, there is a need to invert Jacobian matrices for the full system

s opposed to the algebraic equations alone. The proposed approach
n this paper uses the perturbation approach only to find the con-
istent initial conditions, which once obtained can be used to solve
he original set of DAEs with readily available solvers.

. Efficient approach for consistent initial conditions for
AE systems

Consider a physical process represented by the following DAE
ystem

dy

dt
= f (t, y, z) (1a)

 = g(t, y, z) (1b)

here we assume that f and g are differentiable (at least once),
nd y ∈ � n, z ∈ � m are the differential and algebraic variables of
he system respectively. This set of equations results from model-
ng of some physical process, or discretization of spatial variables
f partial differential equations (PDEs). To find consistent initial
onditions for the algebraic variables (z), initial conditions for dif-
erential variables are substituted in Eq. (1b) to have

(t0, y0, z) = 0 (2)

t time t = 0, z(0) has to be found that satisfies

(t0, y0, z0) = 0 (3)

any initialization solvers including DAEIS use nonlinear equation
olving subroutine to solve g(t0) = 0 (the functional dependence of

 on y and z is dropped henceforth for simplicity), which may  not
onverge easily and nonlinear solvers require high computational

ffort. Instead, if we assume a perturbation parameter ε, which is a
ery small constant such that

(t) = lim
ε→0

g(t + ε) = 0 (4)
al Engineering 35 (2011) 2227– 2234 2229

Then algebraic part of the given DAE model (Eq. (1b)) at time t = t + ε
can be written as

g(t + ε) = 0 (5)

Expanding g(t + ε) = 0 using the Taylor series expansion, we have

g(t) + ε
dg(t)

dt
+ O(ε2) = 0 (6)

In Eq. (6),  t is an arbitrary dummy  variable and can be replaced with
� as,

g(�) + ε
dg(�)

d�
= 0 (7)

Eq. (7) can be written in terms of the partial derivatives as

g + ε

[
∂g

∂y

∂y

∂�
+ ∂g

∂z

∂z

∂�
+ ∂g

∂�

]
= 0 (8)

Equation (8) can be simplified as

g + ε

[
∂g

∂y
f + Ja lg e

∂z

∂�
+ ∂g

∂�

]
= 0 (9)

which can be written in compact form after substituting the initial
value for differential variables as

−ε × Ja lg e ×
[

∂z

∂�

]
= Fa lg e(�, z) (10)

where

Fa lg e = g + ε
∂g

∂y
f + ε

∂g

∂�

Ja lg e =

⎡
⎢⎢⎢⎣

∂g1

∂z1
· · · ∂g1

∂zm
...

. . .
...

∂gm

∂z1
· · · ∂gm

∂zm

⎤
⎥⎥⎥⎦

(11)

where m is the number of algebraic variables. As ε → 0, and when
the steady state is reached, g = 0 will be satisfied in Eq. (7).  The
crucial factor in Eq. (10) is the Jacobian matrix. The accuracy of
the convergence of this ODE system with time depends on the
nature of the problem, ε, accuracy of the Jacobian evaluation, and
the tolerance required.

Finally, the resulting equation is in the form of a dummy dif-
ferential variable �, which can be solved using the available ODE
solvers until the steady state of all the algebraic variables or the
convergence criterion in g is met.

At steady state, we  have Fa lg e = 0, which means

g + ε
∂g

∂y
f + ε

∂g

∂�
= 0 (12)

By choosing ε to be very low and waiting till a steady state is
reached, we have,

Fa lg e
∼= g(t0) = 0 (13)

The validity of Eq. (7) or (10) can be easily verified for linear systems
of equations.

It can be proved (at least for linear systems) that the solution
of Fa lg e will reach the steady state (consistent initial condition)
as time goes to infinity. The dynamics of the solution depends on
ε, and the difference between the initial guess and the consistent
solution. For very low values of ε in Eq. (10), numerical solvers

might face difficulties. The wider range of the proposed approach
reported in this paper can be primarily contributed to the ability
of the approach to reach the steady state irrespective of the initial
conditions.
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The resulting system of equations after applying the proposed
erturbation approach (Eq. (10)) is in the form of an ODE that can
e solved using the plethora of good ODE solvers that are available

n the literature. The ODE solvers can be chosen to be implicit, semi-
mplicit, or explicit and not requiring a nonlinear solver at any point
n the dummy  variable � (including intermediate time steps). To use
xplicit solvers, Eq. (10) can be rewritten as

a lg e
dz

d�
= −Fa lg e(�, z)

ε
(14)

owever, the left hand side of Eq. (14) needs to be factorized and
hen directly used in explicit solvers such as LSODI. (Alternatively
ne can invert Ja lg e matrix and use explicit solvers, however, inver-
ion is not recommended for large systems.) This approach provides
he advantage of faster simulation time with a wide range of incon-
istent initial conditions for the DAE system. The system of DAE can
ow be solved with the available solvers using the consistent initial
onditions obtained by the above approach.

The proposed approach differs from Davidenko’s approach
Davidenko, 1953) for the solution of nonlinear algebraic equations;
hich is given by

dz

d�
= −g (15)

here J and g are the Jacobian matrix and function vector of the
lgebraic system. Davidenko’s approach does not include partial
erivatives of g with respect to y and �. Since g is originally a func-
ion of y, z, and �, Taylor series expansion with partial derivatives
sed in this paper is more accurate. When the partial derivatives
ith respect to y and � are zero for g, the proposed approach

educes to Davidenko’s approach for ε = 1. It can be concluded that
he proposed approach provides a wider range of validity compared
o Davidenko’s approach.

The applicability of the proposed approach is evaluated by solv-
ng some of the difficult problems of different dimensions reported
n the battery domain. Particularly, we have evaluated the efficacy
f the above approach with a simple numerical example of a DAE
ystem (a DAE system of dimension 2 with 1 algebraic equation and

 ODE) followed by the problem described by Wu  and White (2001)
a DAE system of dimension 2 with 1 algebraic equation, 1 ODE)
or a Ni based battery, the reformulated model of lithium-ion bat-
ery (Subramanian, Boovaragavan, Ramadesigan, & Arabandi, 2009)
a DAE system of dimension 27 with 15 algebraic equations and
2 ODEs) and the finite difference descretized model of lithium-

on battery proposed by Newman and his group (Doyle, Fuller, &
ewman, 1993) (a DAE system of dimension 300 with 181 algebraic
quations and 119 ODEs). A schematic of the proposed initialization
pproach is given in Fig. 1.

. Results and discussion

.1. DAE system of dimension 2 (1 algebraic equation and 1 ODE)

Consider a simple DAE system as described below where z is
 differential variable and y is an algebraic variable. The latter
xamples in this paper illustrate the importance of the proposed
pproach in a better manner compared to this particular problem.
owever, this is a much simpler problem and is presented only

o illustrate the procedure of solving a system of DAEs with the
roposed initialization approach.
dz

dt
= −2z + y2 (16)

100 ln y + 2z = 5 (17)
Fig. 1. Schematic of the proposed initialization method for simulation of index-1
DAE systems.

The initial value of the differential variable can be set as

z(0) = 2 (18)

Step by step solution of the above equations using the proposed
method is discussed below.

Eq. (17) is satisfied when the initial condition for the algebraic
variable y is exp(−0.01), and only a very few solvers work when
values other than this is given as initial condition. The above equa-
tions are not solvable directly in majority of solvers that come built
in with mathematical packages like Maple®, Matlab®, etc. when
the initial value of y is given a value other than exp(−0.01). To
increase the range of initial values we  use the proposed method
as follows. To estimate the exact initial condition, the proposed
approach involves applying Eq. (10) as

ε

(
−100(dy/dt)

y
+ 2

dz

dt

)
= 100 ln(y) − 2z(0) + 5 (19)

where ε is the perturbation parameter. Substituting Eq. (16) and
the initial condition of z(0) in the above equation we get

ε
(

−100(dy/dt)
y

− 8 + 2(y)2
)

= 100 ln(y) + 1 (20)

The above equation can be solved using any available ODE solver
with different initial guesses and carefully choosing the value of
the perturbation parameter, to obtain a steady state solution for y,
which will be the consistent initial condition and can be used for
solving the original set of DAEs and obtain the desired solution.

Table 1 gives the range of values of initial conditions for y that
can be given for successful simulation of the above equations using
various solvers. Table 1 lists the range of initial values of y that work
with the built in initialization approach of each solver and also the
range of values with the proposed approach. It can be seen that,
a few recent solvers like JACOBIAN® have a wider range with the

built in approach, however the other solvers still fail for a value far
away from the consistent initial value. Table 1 also gives an idea of
how sensitive the range of initial conditions is for different values
of ε, the choice of which must be carefully made since too small
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Table 1
Working range of inconsistent initial values and ε for the problem in Section 3.1 for
various solvers.

Solver With fixed z(0) = 2.0, range for y(0)

DASKR 0.15 ≤ y(0) ≤ 1.82
DASSL 0.890 ≤ y(0) ≤ 1.090
DASSL (Davidenko initialization) 1.E−16 ≤ y(0) ≤ 690,030
JACOBIAN 1.E−300 ≤ y(0) ≤ 1.E300

Proposed approach
(JACOBIAN)

1.E−300 ≤ y(0) ≤ 15,800, ε = 1.E−7
1.E−300 ≤ y(0) ≤ 5.E6, ε = 1.E−12
1.E−300 ≤ y(0) ≤ 5.E8, ε = 1.E−16
1.E−300 ≤ y(0) ≤ 1.E300, ε ≤ 1.E−29

Proposed approach (DASKR)

1.E−40 ≤ y(0) ≤ 70,000, ε = 1.E−7
1.E−40  ≤ y(0) ≤ 2.9E7, ε = 1.E−12
1.E−40 ≤ y(0) ≤ 180, ε = 1.E−14
No convergence, ε = 1.E−16

Proposed approach (DASSL)

1.E−16 ≤ y(0) ≤ 12,510, ε = 1.E−6
1.E−16  ≤ y(0) ≤ 14, ε = 1.E−7
1.E−16  ≤ y(0) ≤ 3.7, ε = 1.E−10
No  convergence, ε ≤ 1.3E−11

Consistent value
y(0) = 0.9900498390197754
Found by DASKR and JACOBIAN
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This is close to proposed method results if
ε = 1.E−7

alues of ε would make the system unstable/stiff and unsolvable.
he following examples illustrate the importance of the proposed
pproach for use with battery models.

.2. DAE system of dimension 2 (1 algebraic equation and 1 ODE)

The following DAE system arises while modeling the galvanos-
atic charge/open-circuit/discharge processes of a thin film nickel
ydroxide electrode. This system is of dimension 2, in which y1 and
2 are mole fractions of nickel hydroxide and potential difference
t the solid liquid interface respectively.

�V

W

dy1

dt
= j1

F

1 + j2 − iapp = 0

here

j1 = i01

⎡
⎣ 2(1 − y1) exp

(
0.5F

RT

)
(y2 − �eq,1)

−2y1 exp
(

−0.5F

RT

)
(y2 − �eq,1)

⎤
⎦

j2 = i02

⎡
⎣ exp

(
F

RT

)
(y2 − �eq,2)

−exp
(

− F

RT

)
(y2 − �eq,2)

⎤
⎦

(21)

he parameter values are given in Table 2. The units of system
ariables and parameters are omitted here for simplicity. The con-
istent initial values of dependent variables in Eq. (21) are not easily
vailable from the modeling information. For a discharged nickel
lectrode, the initial value of the differential and algebraic variables
re estimated as

y1(0) = 0.05
y2(0) = 0.38

(22)

hich are not consistent values with respect to Eq. (21).
Many available DAE solvers failed to solve this system of equa-

ion with the initial guess values given by Eq. (22) (Wu & White,

001). In addition, many DAE initialization subroutines and solvers
ailed to solve this system of equations over a wide range of incon-
istent initial conditions. We  have used eight available solvers or
nitialization subroutines (given in Table 3) for either solving this
Fig. 2. Simulation of a DAE system governing the galvanostatic charge/open-
circuit/discharge processes of a thin film nickel hydroxide electrode given by Wu
and  White (2001), with consistent initial conditions.

equation with the initial guess given by Eq. (22) or estimating the
consistent initial condition.

For the approach described in this paper, Eq. (21) can be cast
into the reduced system of equation for estimating the consistent
initial condition according to Eq. (10) as

ε

( −0.0002 e19.46229155y2−8.174162450

−0.0002 e−19.46229155y2+8.174162450

)

×
(

0.005651477584(1 − y1(0)) e19.46229155y2−8.174162450

−0.005651477584y1(0) e−19.46229155y2+8.174162450

)

+ ε

⎛
⎜⎝

0.003892458310(1 − y1(0)) e19.46229155y2−8.174162450

+0.003892458310y1(0) e−19.46229155y2+8.174162450

+0.000000003892458310 e38.92458310y2−11.79414868

+0.000000003892458310 e−38.92458310y2+11.79414868

⎞
⎟⎠

×dy2

d�
= −0.0002(1 − y1(0)) e19.46229155y2−8.174162450

+ 0.0002y1(0) e−19.46229155y2+8.174162450

− 0.0000000001 e38.92458310y2−11.79414868

+ 0.0000000001 e−38.92458310y2+11.79414868 + 0.00001

(23)

where ε and y1 are the perturbation parameter and differential
variable respectively. Corresponding solution obtained from our
approach is plotted in Fig. 2. Comparison of performance of var-
ious solvers and initialization subroutines along with the method
described above are given in Table 3. Table 3 shows the conver-
gence range of the algebraic variable (initial guess) with different
available DAE solvers and the proposed approach. As y1 is the dif-
ferential variable, we only estimated the range for the algebraic
variable y2. The error messages obtained from various solvers are
given as

• LIMEX: MORE THAN JRMAX = 20 STEP-SIZE REDUCTIONS DUE TO
EXTRAPOLATION TABLEAU

• RADAU5: MATRIX IS REPEATEDLY SINGULAR
• DASSL: THE CORRECTOR FAILED TO CONVERGE REPEATEDLY OR

WITH ABS(H) = HMIN
• MATLAB: NEEDS A BETTER GUESS y0 FOR CONSISTENT INITIAL CON-
DITIONS
• MATHEMATICA: UNABLE TO FIND INITIAL CONDITIONS THAT SAT-

ISFY THE RESIDUAL FUNCTION WITHIN SPECIFIED TOLERANCES
• JACOBIAN: INITIALIZATION FAILED, SIMULATION FAILED
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Table  2
Parameter used for the simulation of nickel electrode (Section 3.2).

Parameters Value Parameters Value

F (Faraday’s constant), C/mol 96,487 V (volume), m3 1 × 10−5

R (universal gas constant), J/(mol K) 8.314 i01 (exchange current density), A/cm2 1 × 10−4

T (temperature), K 298.15 i02 (exchange current density), A/cm2 1 × 10−10

�eq,1 (equilibrium potential), V 0.420 iapp (applied current density), A/cm2 1 × 10−5

�eq,2 (equilibrium potential), V 0.303 � (density), g/cm3 3.4
W  (mass of active material), g 92.7

Table 3
Working range of the inconsistent initial values for various solvers.

Solver With fixed y1(0) = 0.05, range of y2(0)

LIMEX 0.318 ≤ y2(0) ≤ 0.377
RADAU5 0.348 ≤ y2(0) ≤ 0.352
DASSL 0.321 ≤ y2(0) ≤ 0.370
DASSL (Davidenko initialization) −0.74 ≤ y2(0) ≤ 1.54
MATLAB® (ode15s) −0.31 ≤ y2(0) ≤ 0.93
MAPLE® (dsolve, numeric) Failure for any value other than consistent initial condition
MATHEMATICA® (NDSolve) −0.27 ≤ y2(0) ≤ 1.04
DAEIS −0.974 ≤ y2(0) ≤ 1.663
JACOBIAN® − 10.5 ≤ y2(0) ≤−9.5, − 6.5 ≤ y2(0) ≤ − 5.5, − 4.0 ≤ y2(0) ≤ − 2.85, − 2.0 ≤ y2(0) ≤ 1.515
Proposed approach (MAPLE®) −10 ≤ y2(0) ≤ 10
Proposed approach (JACOBIAN®) −17.1 ≤ y2(0) ≤ 17.7

2(0) ≤
2(0) ≤
5024

t
a
r
o
a
v
t
c

0

F
f
c
a

Proposed approach (DASSL) −16.3 ≤ y
Proposed approach (approximate, MAPLE®) −0.67 ≤ y
Consistent value y2(0) = 0.3

It is observed that the proposed perturbation based initializa-
ion approach has a broader range for inconsistent initial conditions
s compared to the other available solvers and initialization sub-
outines (see Fig. 3 and Table 3). We  have also solved this system
f equations with an approximate perturbation approach. Here,
pproximate perturbation approach means substituting the initial
alues of the dependent variables in the left hand side of Eq. (23) for
he Jacobian matrix. This results in the following equation which
an be solved using explicit solvers

.1620939380ε + 0.3297276483ε
dy2

d�

= −0.000190 e19.46229155y2−8.174162450
+0.000010 e−19.46229155y2+8.174162450

−0.0000000001 e38.92458310y2−11.79414868

+0.0000000001 e−38.92458310y2+11.79414868 + 0.00001 (24)

ig. 3. Wider range of inconsistent initial conditions using the proposed approach
or the simulation of a DAE system governing the galvanostatic charge/open-
ircuit/discharge processes of a thin film nickel hydroxide electrode given by Wu
nd  White (2001).
 16.45
 1.5

It was  found that the solution procedure is computationally
efficient (because of the simplicity of the equation) but the
domain/range of the inconsistent initial condition reduces signifi-
cantly. It is also observed that with JACOBIAN® solver, the range of
proposed approach is much wider than with the solvers in MAPLE®

environment. Hence, the selection of solvers for numerical simu-
lation of the resulting ODE system has an effect on the range of
validity of the proposed approach.

Fig. 4 shows the effect of perturbation parameter on the speed of
convergence of the algebraic variable. This figure is plotted using
the initial guess of 5 for the algebraic variable y2 in Eq. (23) and
changing the value of the perturbation parameter. It is observed
that with decreasing value of the perturbation parameter ε, the
speed of convergence increases (i.e. the system reaches the steady

state quickly). Note that decreasing the values of perturbation
parameter improves the accuracy and the speed of convergence.
However, the stiffness of the equations increases with decreasing

Fig. 4. Effect of perturbation parameter, ε on the speed of convergence (attaining
steady state) with the proposed approach with inconsistent initial conditions for
the  algebraic variable.
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ig. 5. Steady state (consistent initial conditions) profiles of the algebraic variables
f  the reformulated model for a lithium-ion battery using the proposed approach.

he perturbation parameter below a certain value. Our experience
uggests that for values of the perturbation parameter lesser than
0−9, many solvers become too slow and computationally ineffi-
ient when the steady state is expected at � � 1.

.3. DAE system of dimension 27 (15 algebraic equations and 12
DEs)

The reformulated model used in this work is derived from the
rst-principles porous electrode-based electrochemical engineer-

ng model of lithium-ion battery (Subramanian et al., 2009). This
odel consists of 27 DAEs out of which 12 are ODEs and 15 are alge-

raic equations. In battery modeling scenario, the consistent initial
onditions are unknown to the modeler and hence these types of
AEs are difficult to solve even with very good DAE solvers. We

ried to solve this system of equations in many solvers available
ithin MAPLE®, MATLAB®, and with DASSL, and observed the fail-
re of the initialization subroutine of these solvers for the set of
arameters we used. For brevity, we are not providing details of
he modeling equations in this paper, but interested readers can
nd more details elsewhere (Subramanian et al., 2009).

The reformulated model is cast as described in Section 2 and
he perturbation approach is used to find the consistent initial con-
itions. It is observed that the perturbation approach estimates
onsistent initial conditions for all the algebraic variables efficiently
see Fig. 5). Fig. 5 shows the plot of algebraic variables attaining
teady state based on the above mentioned approach for the refor-
ulated model of lithium-ion battery. It is also observed that the

FSOLVE” subroutine in MAPLE® (which uses analytic Jacobian)
ften encounters failure while solving this system of equations
ith inconsistent initial conditions. The total CPU time taken by

FSOLVE” is approximately 41 s in comparison with 0.360 s using
he approach described in this paper (written in Maple® envi-
onment) in a PC with a 2.6 GHz dual core processor and 2GB of
AM. Note that the CPU time reported depends on the environ-
ent and the solvers used. The object of this paper is to illustrate
he robustness of the proposed approach to obtain consistent initial
onditions in an efficient manner for a DAE system.

To compare the proposed approach with other solvers, we used
ACOBIAN® solver for the initialization of reformulated model.
al Engineering 35 (2011) 2227– 2234 2233

It was observed that the computational efficiency of the pro-
posed approach for the reformulated model is comparable with
JACOBIAN®. Nevertheless, the range of inconsistent set of initial
conditions is broader as compared with that of the built-in ini-
tialization routine in JACOBIAN®. For a set of inconsistent initial
conditions, we  multiplied the consistent set of initial conditions
with a constant number. It is found that proposed approach works
with the constant varying in the range of −3.5 to 8.5 whereas
JACOBIAN® works for a range of 0.766–2.719. It is also observed
that compared to other existing solvers (LIMEX, RADAU5, DASSL,
NDSOLVE, ode15s, and dsolve), JACOBIAN® solver works for a wider
range of inconsistent initial conditions.

3.4. DAE system of dimension 300 (with 181 algebraic equations
and 119 ODEs)

Another example used for testing the efficacy of the proposed
approach is a pseudo 2 dimensional lithium-ion battery model
developed by Newman (Doyle et al., 1993). This model consists
of a porous electrode, a separator, and a current collector. The
independent variables for the lithium-ion battery model are the
two spatial variables x, r, and time variable t. It should be noted
that the variations in r direction is approximated using a parabolic
profile model (Gu, Wang, & Liaw, 1998; Subramanian, Diwakar, &
Tapriyal, 2005; Wang, Gu, & Liaw, 1998). The governing equations
for all these variables are given in Table 4 and the explanations
for variables and other quantities and expressions are available
elsewhere (Subramanian et al., 2005). A related model (BVP) in x
was initialized using a modified multiple shooting technique earlier
(Boovaragavan & Subramanian, 2007; Keller, 1968).

Lithium-ion battery model given in Table 3 discretized with 25,
25, and 15 grid points in the two  electrodes and the separator
respectively using finite difference method, resulted in 300 DAEs.
This set of finite difference equations was  cast as described in Sec-
tion 2 and the consistent initial conditions were evaluated. It is
observed that the proposed perturbation approach estimates con-
sistent initial conditions for all the algebraic variables efficiently. It
is also observed that the “FSOLVE” subroutine in MAPLE® encoun-
ters failure while solving this system of equations when the grid
points are increased beyond 6, 6 and 3 in the two  electrodes and
the separator respectively.

The above model was successfully run for N = 5, 10, 20, 30, etc.
It is interesting to note that the battery model converges for N as
low as 10 node points, but solvers like DASSL/DASKR fails without
initialization at N = 10, 15, 20 or 30 node points. However, if we use
very high node points, say N = 100 or 200 node points, DASSL can
initialize by tweaking the tolerances by trial and error. The pro-
posed method works at different values of N, and is faster than the
inbuilt initialization methods of solvers when using very high node
points. The use of initialization developed here helps us simulate
battery models even at lower to middle number of node points
thereby reducing the simulation time required by a large amount.

4. Limitations

It is observed that the proposed approach has the following
limitations

(1) The proposed approach is valid only for explicit DAEs of index-1.

(2) The efficiency of this approach depends on the value of per-

turbation parameter. It is found that, lower the value of the
perturbation parameter, in general lower than 10−6; stiffer will
be the set of equations to solve (Eq. (10)) using ODE  solvers.
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Table  4
Governing equations for DAE of dimension 300, for describing galvanostatic discharge of a lithium-ion battery (Doyle et al., 1993).

Region Eq. no. Governing equations Boundary conditions

Positive electrode

1 εp
∂c
∂t

= Deff ,p
∂2c
∂x2 + ap(1 − t+)jp

initial condition c|t=0 = c0

−Deff ,p
∂c
∂x

∣∣
x=0

= 0 and −Deff ,p
∂c
∂x

∣∣
x=lp,−

= −Deff ,s
∂c
∂x

∣∣
x=lp,+

2 −�eff ,p
∂˚1
∂x

− �eff ,p
∂˚2
∂x

+ 2�eff  ,pRT

F (1 − t+) ∂ln c
∂x

= I −�eff ,p
∂˚2
∂x

∣∣
x=0

= 0 and − �eff ,p
∂˚2
∂x

∣∣
x=lp,−

= −�eff ,s
∂˚2
∂x

∣∣
x=lp,+

3 �eff ,p
∂2˚1
∂x2 = apFjp

∂˚1
∂x

∣∣
x=0

= − I
�eff  ,p

and ˚1 = 4.2

4 d
dt

cave
s + 3 jp

Rp
= 0 and Ds,p

Rp
(csurf

s − cave
s ) = − jp

5 cave
s

∣∣
t=0

= cs,max,p

Separator
5 εs

∂c
∂t

= Deff ,s
∂2c
∂x2 −Deff ,p

∂c
∂x

∣∣
x=lp,−

= − Deff ,s
∂c
∂x

∣∣
x=lp,+

and − Deff ,s
∂c
∂x

∣∣
x=lp+ls ,−

= −Deff ,n
∂c
∂x

∣∣∣
x=lp+ls ,+

6 I = −�eff ,s
∂˚2
∂x

+ 2�eff  ,sRT

F (1 − t+) ∂ln c
∂x

−�eff ,p
∂˚2
∂x

∣∣
x=lp,−

= −�eff ,s
∂˚2
∂x

∣∣
x=lp,+

and − �eff ,s
∂˚2
∂x

∣∣
x=lp+ls ,−

= −�eff ,n
∂˚2
∂x

∣∣
x=lp+ls ,+

Negative electrode

7 εn
∂c
∂t

= Deff ,n
∂2c
∂x2 + an(1 − t+)jn

initial condition c|t=0 = c0

−Deff ,s
∂c
∂x

∣∣
x=lp+ls ,−

= −Deff ,n
∂c
∂x

∣∣
x=lp+ls ,+

and − Deff ,n
∂c
∂x

∣∣
x=lp+ls+ln

= 0

8  −�eff ,n
∂˚1
∂x

− �eff ,n
∂˚2
∂x

+ 2�eff  ,nRT

F (1 − t+) ∂ln c
∂x

= I −�eff ,s
∂˚2
∂x

∣∣
x=lp+ls ,−

= −�eff ,n
∂˚2
∂x

∣∣
x=lp+ls ,+

and ∂˚2
∂x

∣∣
x=lp+ls+ln

= 0

∂2˚1 −�eff ,
∂˚1

∣
∂˚1

∣
I

cave
s

∣∣
t

5
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9  �eff ,n ∂x2 = anFjn

10 d
dt

cave
s + 3 jn

Rn
= 0 and Ds,n

Rn
(csurf

s − cave
s ) = − jn

5

. Conclusions

The proposed approach is based on an iteration free solver in a
ummy  variable form with a wider range of validity compared to

teration based direct nonlinear solvers. This initialization approach
an be used when initialization failure is encountered with many
f the available DAE solvers. The examples demonstrated in this
aper show that the proposed approach can solve a DAE system
f large dimensions efficiently. It is observed that there is a trade-
ff between the ranges of inconsistent initial conditions and the
omputational time for simulation using this approach. The initial-
zation approach developed and described in this paper was  found
o be efficient for explicit DAEs of index-1.
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