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Abstract

Modeling of secondary lithium batteries is reviewed in this paper. The models available to simulate the
electrochemical and thermal behavior of secondary lithium batteries are discussed considering not only their
electrochemical representation (transport phenomena and thermodynamics of the system), but also the mathematical
techniques that have been used for solving the equations. A brief review of the governing equations for porous
electrodes, and methods for solving these equations is also given. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mathematical modeling of batteries requires specifi-
cation of the dependent variables of interest (e.g. con-
centration of electrolyte), the governing equations for
these variables, the initial and boundary conditions for
these variables, and a method of solution of the result-
ing system of equations. We present here a brief review
of the governing equations for porous electrodes, meth-
ods for solving these equations, and some of the math-
ematical models that have been presented for secondary
lithium batteries.

Mathematical modeling of electrochemical systems
that include porous electrodes is based on governing
equations for the dependent variables of interest. Bird
et al. [1] present a through review of many equations
similar to those needed for porous electrodes. Newman
[2] presents many of these equations as applied to
electrochemical systems. Newman and Tiedemann [3]
present governing equations for porous electrodes. The
details associated with the derivation of these porous
electrode equations are given by Dunning [4] and

Trainham [5]. De Vidts and White [6] also present
equations for porous electrodes which they derived by
using a volume-averaging technique. Some of the equa-
tions derived by De Vidts and White [6] include terms
not included in the equations derived by others [3–5];
however, their [6] equations simplify to those presented
by Newman and Tiedemann [3] under specific assump-
tions [6]. Similar equations to those presented by De
Vidts and White [6] where presented by earlier Prins-
Jansen et al. [7]. Wang et al. [8] developed a micro-
macroscopic coupled model, that incorporates
solid-state physics of electrode materials, interface mor-
phology and chemistry for advance batteries and fuel
cells using the volume-averaging technique.

Bernardi et al. [9] present a general energy balance
for battery systems. Rao and Newman [10] extended
the same equation to account for the energy balance in
insertion battery systems. Botte et al. [11] extended Rao
and Newman’s energy balance [10] to incorporate the
effect of side reactions in the thermal behavior of a cell.
Botte et al. [11] presented details of transforming the
general energy equation (Eq. (3) of Ref. [11]) to the
applied form of the equation (Eq. (7) of Ref. [11]).

Once the governing equations have been determined
for the dependent variables of interest, one should
simplify these equations as needed to provide as simple
a model as possible to answer to questions posed.
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However, one should check carefully all of the assump-
tions made. Sometimes, assumptions are made implic-
itly and, consequently, the final results do not make
physical sense. For example, the final mass of elec-
trolyte should not be larger than the initial mass of
electrolyte after simulating a discharge. This type of
result can occur when volume changes occur in the
system due to chemical reactions. Jain and Weidner [12]
present examples of these problems and show how to
modify the material balance of a one-dimensional
porous electrode to account for volume changes and to
account for an inflow of electrolyte from the header of
the battery into the active pores of the electrode. The
authors [12] show how the assumption of volume con-
servation is often inadvertently incorporated into mod-
els. This problem can be avoided by going carefully
from general equations to simplified ones.

Once the governing equations have been simplified,
they have to be solved. The first thing to do is to look
for an analytical solution [13,14]. Unfortunately, ana-
lytical solutions are not available for most of cases of
interest. Nevertheless, they are the best if available or
can be obtained. The reason for this is that analytical
solutions are continuous in the independent variables,
and show explicitly how the parameters of the system
are involved. Also, analytical solutions give much in-
sight into a system, which is one of the primary objec-
tives of modeling.

Classical analytical techniques are: Laplace transfor-
mation, separation of variables, conformal mapping,
method of images, Green’s function, perturbation, etc.
However, analytical techniques are specific to the sys-
tem, geometry and boundary conditions. Often times,
analytical solutions involve integrals, eigenvalues, etc.
which must be evaluated or obtained numerically.

Usually, complicated models must be solved using
numerical techniques. Numerical techniques are very
general, and valid for most models. The speed and
accuracy of the technique depends upon the technique,
system, complexity of boundary conditions, etc. The
most common numerical techniques for modeling elec-
trochemical systems are: the finite difference method
(FDM), the control volume formulation (CVF), and
the finite element method (FEM).

The FDM has been used extensively [15–34] due to
its simplicity and accuracy. However, it has been
pointed out that mass is conserved in the FDM only in
the limit when the grid spacing size goes to zero [35,36].
To avoid this discrepancy, some authors [35–43] have
used the control volume formulation (CVF) also known
as finite volume method. Botte et al. [44] have shown
that the CVF performs better than the FDM only for a
boundary value problem (BVP) in which the two
boundary conditions are given as fluxes. In all other
cases, the FDM is more accurate than the CVF for a
small number of nodes especially when interface

boundary conditions are presented in the system [44].
Botte and White [45] have shown that the false
boundary method (FBM) can be used to obtain mass
conservation in boundary value problems in which the
two boundary conditions are given as fluxes; however,
when only one of the boundary conditions is given as a
flux, the FDM is more accurate for one flux boundary
condition than the FBM for a small number of nodes.

The finite element method (FEM) provides an alter-
native to model systems with irregular geometry, un-
usual boundary conditions, or heterogeneous
composition [46]. However, the FEM is more difficult
to program than the FDM, CVF, and/or FBM.

The programming code/language should be chosen
according to the degree of difficulty of the models.
Analytical solutions once found in the literature or
derived for a new system can be programmed in a
symbolic language like Maple, Mathcad, Mathematica
or in FORTRAN or C+ + .

Analytical solutions are usually restricted to linear
equations. Often times, even analytical solutions for
linear equations with linear boundary conditions in-
volve eigenvalues, which are to be found by solving
non-linear equations. For non-linear equations, one
might attempt to get series solutions using perturbation
[47] or other symbolic techniques [48] which enable one
to solve non-linear equations symbolically with the
parameters in the final solution as in analytical solu-
tions. A semi-analytical (or analytical method of lines)
technique [19–22,49,50], which is analytical in one of
the independent variables and numerical in the other is
found to be more efficient than both analytical and
completely numerical techniques for many problems.
The use of the exponential matrix for solving partial
differential equations (PDEs) was mentioned by Smith
et al. [49] in 1970 and used in 1987 by De Vidts and
White [19] to solve the diffusion equations. Haran and
White [20], extended the same technique to non-linear
PDEs by using Maple. Subramanian and White [21,22]
extended the same technique to the Laplace equation
for solving current density and potential distributions
in electrochemical systems. Other programs to solve
PDEs have been developed by the authors using Maple
[50]. As mentioned earlier, there are other software
available for programming mathematical applications
such as Mathcad [51] and Mathematica [52]. All of this
software (Maple, Mathcad and Mathematica) allows
numerical, symbolic and graphical mathematical
computations.

Many numerical techniques have been developed for
solving non-linear equations. The simplest and still
most commonly used technique is based on finite differ-
ences. Newman’s BAND subroutine [2] has been used
for electrochemical systems for more than three
decades. Software like Maple and Mathematica can be
used for determining the Jacobians and the associated
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FORTRAN code for use with the BAND subroutine.
White [23] provided a derivation of the BAND subrou-
tine and extended the same for linearizing non-linear
finite difference expressions. Van Zee et al. [24], ex-
tended Newman’s BAND subroutine to solve coupled,
non-linear partial differential equations by using the
implicit alternating direction technique (IAD). Nguyen
and White [25] presented a finite difference procedure
for solving coupled, nonlinear elliptic partial differen-
tial equations. They showed how their method was
faster than the IAD scheme suggested by Van Zee et al.
[24] Fedkiw [26] used a collocation-finite difference
procedure for solving elliptic PDEs. Curtis et al. [27]
compared Newman’s technique with deBoor’s al-
gorithm [53]. They showed that Newman’s BAND sub-
routine in some cases returns incorrectly a message
‘determinant equals zero’. They discussed how this
‘zero determinant problem’ can be avoided. Preisig and
White [28] provided an alternate simple solver for non-
linear two-point BVPs where they used an algebraic
manipulator (MATLAB) for generating the Jacobians.
Matlosz and Newman [29] solved one-dimensional
BVPs using BandAid. Van Zee et al. [30] presented a
pentadiagonal BAND subroutine for solving BVPs,
which is accurate to the order (Dx)4. Kimble and White
[31] presented an implicit five-point finite difference
method for solving parabolic partial differential equa-
tions. Their method is accurate to the order (Dt)4+
(Dx)4. They obtained high accuracy with only six nodal
points in each dimension. Fan and White [32], modified
Newman’s BAND subroutine to multi-region systems
containing interior boundaries, they called the new
subroutine MBAND. They showed that their technique
is faster than the pentadiagonal BAND developed by
Van Zee et al. [30] Their technique is capable of han-
dling multiple regions with discontinuity in the inter-
faces. Fan and White [33] optimized a pentadiagonal
version of BAND. Mao and White [34] presented a
finite difference method for pseudo-two-dimensional
BVPs and showed that their method was superior to the
previously existing techniques. Subramanian and White
have developed a Maple program for generating Jaco-
bians for any order of accuracy.

The trend in numerical solution of mathematical
models in electrochemical systems is to the use of
commercially available software such as PDE2D [54],
FLUENT CFD [55], DASSL [56–60], etc. PDE2D [54]
is a numerical PDE solver based on finite elements
using Hermite cubic basis functions. The main advan-
tage of PDE2D is that one can integrate the dependent
variables over a region as well as along a boundary. It
can also handle curved domains. PDE2D can be used
to solve three-dimensional BVPs of any kind and ge-
ometry. FLUENT CFD [55] is a computational fluid
dynamics software package that allows solving momen-
tum, mass and energy balances using the control vol-

ume technique. The software is user friendly and allows
automatic generation of the mesh. DASSL [56–60] is a
robust package for solving equations and one needs not
to calculate the Jacobians as required with BAND [2].
DASSL finds the Jacobians itself and uses an optimum
step size in time for integration and is adaptive in time.
There are other differential equation solvers available
in the market that can be used in modeling of electro-
chemical systems (e.g. Diffpack [61]). FWEB [62] has
also been used for literate programming [56]. FWEB
enables one to build a documented program that can be
easily understood. In addition, FWEB can be used with
several of the more important compiled languages: C,
C+ + , FORTRAN (both F77 and F90), RATFOR,
and TeX [62]. The fact that this software is able to
recognize the syntax of different languages is an impor-
tant feature because some languages are much easier to
use than others (also some subroutines are already time
tested in different languages). Therefore, FWEB may
play an important role by enabling on the ability to mix
different languages in the same program, which may
reduce the time of programming.

The last step but not the least important in modeling
a system is to measure, search, or estimate the proper-
ties and parameters to use in the model. The model will
only be as good as the data used. The measurement of
transport properties, kinetics parameters, and physical
properties is not an easy job, especially for properties in
the solid phase (electrodes). For this purpose, molecular
simulations are very important because they allow to
understand the details of the process and to provide
physical properties that can be used in the macroscopic
model.

Some readers may want to review the work being
done by Professor Compton’s research group [63]. They
work on computational electrochemistry (especially
electrode/electrolyte interfaces) and on modeling and
designing the experimental techniques to understand
the electrochemical reactions taking place at the elec-
trode surfaces. Also, one may want to review the work
of Bieniasz [64] who also works on modeling of electro-
chemical systems.

In the next section we describe the topics discussed
above applied to secondary lithium batteries as an
example of modeling electrochemical systems. Below is
presented a discussion in the techniques used for the
estimation of properties and parameters used in the
modeling of these batteries.

Transport properties, kinetics parameters, and physi-
cal properties for lithium batteries have been reported
for several authors [65–72]; however, there is still a lot
of work to do in this area. Doyle [73] gives a summary
of open circuit potential data for different electrode
materials use in secondary lithium batteries. Hong et al.
[74] have used calorimetric techniques and the potentio-
metric method to measure the entropy of reaction term
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during the discharge of a Sony-type US 18650 cell. This
entropy of reaction term is required for the thermal
modeling of the cell. Maleki et al. [75] measured ther-
mal property data for the Sony US-18650 lithium-ion
battery and its components. They found that the heat
capacity of the battery depends on its state of charge
and they associated this behavior with the structural
changes that take place in the anode and cathode
during their lithiation and delithiation [75]. The authors
[75] also measured the thermal conductivities of this
system: cross-plane thermal conductivity and in-plane
thermal conductivity. They found differences in the
values of the cross-plane and in-plane thermal conduc-
tivities and they attributed those to the orientation of
particles during the formation of thin electrode layers
and to the presence of metallic current collectors. These
differences in the cross-plane and in-plane thermal con-
ductivities may be important for modeling the thermal
behavior of the battery in more than one dimension.

Some authors [76–81] have used first principles,
molecular simulations and computational chemistry to
have a better understanding of the lithium batteries
(e.g. lithiation of the electrodes) and to calculate physi-
cal properties (mobility of lithium in different solvents,
diffusion coefficients of lithium in different solvents,
etc.). Reimers [82] described how first principle calcula-
tions can aid in the design of lithium ion batteries. He
states that first principles can be used to calculate
voltage curves of electrode materials in lithium-ion
cells. First principles calculations can help understand-
ing physical situations such as the state of charge
dependence of the heat capacity of the cell described by
Maleki [75]. Marquez et al. [79] used first principles
calculations to model graphite in the presence of te-
trahydrofuran solvent (THF). They addressed the struc-
tural changes that are produced in the graphite by the
presence of lithium and solvent. The trend is to com-
bine first principle calculations and molecular simula-
tions with experimental work to understand the basis of
the materials (physical and transport properties) used in
secondary lithium batteries. It is worth mentioning that
experiments would not be substituted by first principles
calculations and molecular modeling but the number of
them would be reduced with the aid of these
calculations.

2. Secondary lithium batteries

Mathematical modeling of secondary lithium batter-
ies begins by drawing a schematic of the cell. Fig. 1a
presents a schematic representation of a lithium-ion cell
sandwich (according to Hossain’s classification [83]).
The negative and the positive electrodes are composite
materials, and they are represented as spherical parti-
cles in Fig. 1a. During a discharge process the lithium

ions de-intercalate from the negative electrode, diffuse
through the separator/electrolyte and intercalate into
the positive electrode. The opposite process takes place
during charge. Fig. 1b presents a schematic representa-
tion of a liquid organic electrolyte cell with a solid
lithium foil serving as the negative electrode (according
to Hossain’s classification [83]). The insertion and de-
insertion process in the particles used to make the
porous electrodes shown in Fig. 1a and b can be
described by [84]

Li++e−+us X Li−us (1)

Several models [11,56,72,84–109] have been pre-
sented for studying the behavior of secondary lithium
cells. These models can be divided in two types: (1)
General models [56,72,84–101] that cover modeling of
the electrochemical performance of the cells, and (2)
Thermal models [11,102–109] that cover the thermal
performance of the cell.

2.1. General models

Some models for secondary lithium batteries [85–89]
have been developed using simplified equations for
different limiting cases that allow obtaining analytical
solutions for the system. A one-dimensional cell sand-
wich is typically used (as shown in Fig. 1(a) [89] and (b)
[85–88]), where the transport properties are assumed to
be independent of the concentration and dilute solution
theory for a binary electrolyte is used. Atlung et al. [85]
developed analytical solutions for a solid-diffusion
phase limitation in a liquid–organic electrolyte cell
(Li/LiClO4�PC/TiS2). Their expressions [85] allow eval-
uating different shapes of particles (plane sheet, cylin-
ders, and spheres), and their assumptions are similar to
those used by Doyle and Newman [86]. Atlung et al.
[85] defined some dimensionless parameters that to-
gether with the shape of the particle fully describe the
behavior of the cathode under a constant current load.

Doyle and Newman [86] developed analytical solu-
tions for three different limiting cases: solution-phase
diffusion limitations, solid-phase diffusion limitations,
and ohmically dominated reaction zone model. They
modeled a polymer electrolyte cell (Li/solid polymer
electrolyte/LiyMn2O4). In the solution-phase limitation
case it was assumed that the kinetic resistance domi-
nates the ohmic resistance, therefore, a uniform current
distribution can be expected [2]. They used separation
of variables to obtain the solution of the system of
equations. It is worth mentioning that a steady state
solution cannot be obtained for their Eqs. (9)–(15), in
the way suggested in their paper [86]. That is, a steady
state solution for two flux boundary conditions cannot
be obtained directly using the method described by
them. The way to obtain this kind of solution is by
solving the unsteady state problem and making the two
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fluxes at the boundary conditions the same (steady
state condition: flux in equal to flux out). These kind
of differential equations can be solved by using
the technique proposed by Subramanian and White
[110].

If the discharge rate is high, it is possible to have
solid-diffusion limitations, a measure of the importance
of solid-phase diffusion limitations can be found from
[84,86,90]

Ss=
R s

2 I

DsF(1−o)ct Le

(2)

If SsBB1, diffusion in the solid phase is fast. This
criterion is very useful because it provides a means for
estimating the solid diffusion effect of different
materials.

If the transference number is close to one, the con-
centration gradients can be neglected in a cell and an
ohmically-dominated reaction zone model applies

[86,87]. Atlung et al. [88] obtained an approximate
solution for this limiting case; however, they considered
a fixed position for the boundary conditions, while
Doyle and Newman [86,87] incorporated the effect of a
moving zone boundary condition to account for the
displacement of the reaction zone. The work by Atlung
et al. [88] is valid during the initial transient period,
that is, until the capacity at the front of the electrode is
exhausted, while the work by Doyle and Newman
[86,87] is valid for long times and for small values of
the slope of the open circuit potential (assumed to be a
linear function of the lithium intercalation fraction).
More details about the applicability of the reaction-
zone model (moving zone boundary condition) can be
obtained by analyzing Eq. (22) of Ref. [87].

Darling and Newman [89] developed approximate
solutions for the short time behavior of a one dimen-
sional lithium-ion cell. Their approximate analytical
solutions are useful for evaluating the reaction-rate

Fig. 1. Schematic cell sandwich representation of a secondary lithium battery. (a) Lithium ion cell and (b) liquid orgainc electrolyte
cell (solid lithium foil serving as the negative electrode). The active material is represented as spherical particles.
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distribution in composite electrodes like those shown in
Fig. 1. The Laplace transform method was used to
develop the analytical solutions. They used numerical
techniques [111,112] for inverting the variables in the
Laplace transform domain. Despite the simplicity of
these models [85–89], they have some features that are
worth mentioning: they provide an approximate re-
sponse of the battery under certain limiting cases, they
use a small number of parameters (more complete
models require a large number of parameters), they
provide dimensionless terms that allow obtaining ex-
pressions to identify limiting cases, they can be used to
estimate transport and kinetics properties and for a
preliminary design of the system, etc.

The intercalation of lithium in the electrode has been
modeled as a solid diffusion process by many authors
[56,84–99]. This approach consists of solving the diffu-
sion equation in a spherical particle

(cs

(t
= Ds

� 1
r2

(

(r
�

r2(cs

(r
�n

(3)

where cs is the concentration of lithium inside a spheri-
cal electrode particle. The diffusion coefficient Ds is
assumed to be constant. The boundary conditions are

(cs

(r
(0, t) = 0 (4)

and

Ds

(cs

(r
(Rs,t) = − jn (5)

where jn is the pore wall flux of Li+ at the surface of
the electrode particle and Rs is the radius of the parti-
cle. The battery is usually fully charged initially

cs(r, 0) = c s
0 (6)

where c s
0 is the initial concentration of Li+ in the

particle.
Eq. (5) is used as the boundary condition at the

surface of the particle for many models [56,84–90,93–
99]; others use an equilibrium condition at the electrode
surface (i.e. no kinetics resistance for charge transfer at
the particle surface) [91,92,97]:

f1−f2= (f1−f2)u

+
RT

F
�

ln
�ct−c s*

c s*
�

+ ln
�c+

c0

�
− f(c s*/ct)−0.5

n
(7)

instead of Eq. (5). Where (f1−f2)uand f are character-
istic constants of the electrode material. Applying Eq.
(7) implies that the insertion process is equivalent to an
adsorption process with a linear interaction term
(Frumkin isotherm) [91].

Verbrugge and Koch [100] extended the above treat-
ment of diffusion of lithium ions in a solid by using the
gradient of the chemical potential as the driving force,
instead of the gradient of the concentration; conse-
quently, their governing equation for the insertion pro-
cess assuming a constant diffusion coefficient is given
by

(uI

(t
=DI9 ·

��
1+

d ln gI

d ln uI

�
9uI

n
(8)

where uI represents the fraction of sites occupied by
lithium ions in the electrode particle. To obtain the
dependence of the activity coefficient (gI) on the occu-
pancy fraction (uI), they expressed the excess free en-
ergy (GE) as a series expansion of the occupancy
fraction (uI), as was initially proposed by Wohl [113]

GE= %
N

k=2

Vku I
k (9)

and used open circuit potential data for a single particle
as a function of the intercalation fraction to obtain the
interaction parameters (Vk) by using a least square
method. Once the Vk are known, activity coefficients
can be calculated and Eq. (8) can be solved with similar
boundary conditions and initial conditions as those
given by Eqs. (4) to (6). In their case the boundary
condition at the surface of the particle includes the
effect of the activity coefficients (see their Eq. (12)).
They used partially graphitic carbon fibers for their
experiments and found the quantity (1+d ln gI/d lnuI)
to be a strong function of concentration. Their theoret-
ical calculations show good agreement with seven dif-
ferent experimental data sets. These results are
significant and indicate that using a concentration gra-
dient as the driving force for this material is not
appropriate, because the activity coefficients are far
from ideal values. Experiments like those done by
Verbrugge and Koch [100] should be done with other
materials that are used to make anodes and cathodes in
lithium batteries to determine the importance of the
interactions. If the interactions for these materials are
found to be significant, the diffusion model would not
be a realistic representation for the intercalation process
in the electrodes. Uchida et al. [114] have used micro-
voltammetric techniques to investigate the solid-state
electrochemistry of LiCoO2 and spinel-related man-
ganese oxides.

Recently, Verbrugge and Koch [72] extended their
approach of using the chemical potential driving force
given in Eq. (8) (but DI was not assumed to be con-
stant), to measure the variation of the diffusion coeffi-
cient in the solid phase with the intercalation fraction in
a porous electrode containing poly(acrylonitrile) fibers.
They worked in the range where the diffusion in the
solid phase is the limiting process (that is, Ss\\1, see
Eq. (2) and obtain an analytical solution for short times
using perturbation techniques.
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West et al. [91] modeled a liquid organic electrolyte
cell (Li/LiClO4�PC/TiS2) using dilute solution theory
[2] for the transport in the electrolyte phase (including
diffusion and migration). They [91] treated the trans-
port in the electrolyte as a one-dimensional problem.
Their model includes lithium foil as the negative elec-
trode and TiS2 as the positive electrode. Their equa-
tions can be summarized by

(c+

(t
=D−

�(2c+

(x2

−
F

RT
�(c+(x)
(x

(f2(x)
(x

+c+(x)
(2f2(x)
(2x

�n
(10)

(c+

(t
=D+

�(2c+

(x2

−
F

RT
�(c+(x)
(x

(f2(x)
(x

+c+(x)
(2f2(x)
(2x

�n
+

i2(x) g

F
(11)

for the anions and cations, respectively in the elec-
trolyte phase. With the boundary conditions (based on
Fig. 1b):

(c+

(x
)
x=0=0,

(f2

(x
�x=0=0 at x

=0 (at the separator electrode interface)
(12)

c+ =c+ ,2 and f2=f* at x=L2 (13)

For the solid phase, they solved Eqs. (3), (4) and (7).
The current transfer from the solid phase to the elec-
trolyte was calculated from [91]

i2(x)= −F Ds

(cs

(r
�r=R s

(14)

The authors assumed that the electrode and the
electrolyte are initially in equilibrium, and used this
assumption to calculate initial concentrations in both
phases based on an equilibrium correlation. This is a
pseudo two-dimensional model (r and x directions).
They used finite difference methods to solve the equa-
tions described above numerically. Their model does
not include the effect of the separator in the cell and
uses a fixed boundary condition at x=L2, when it
would have been more appropriate to use the general
flux boundary condition as Mao and White used [92].
West et al. [91] concluded that the electrolyte depletion
is the principal limiting factor in the capacity obtained
during the discharge of their system.

Mao and White [92] developed a mathematical model
for a liquid organic electrolyte cell (Li/LiClO4/TiS2).
Their schematic of the cell is similar to the one given in
Fig. 1b, except that they did not include the tabs. They
used dilute solution theory for their model. For the

electrolyte phase in the electrode they used Eq. (11),
they also used Eq. (11) for the electrolyte in the separa-
tor but without the term i2(x). Their boundary condi-
tion for x=0 is given by Eq. (12). Mao and White [92]
used a flux boundary condition at the interface between
the separator and the positive electrode (Eq. (9) Ref.
[92]). At the lithium-foil electrode they equated the flux
of Li+ to the dissolution rate of Li (Eq. 14 Ref. [92]).
Mao and White [92] solve a pseudo two-dimensional
system (r, x) using a finite difference method. They
used a three point approximation for the dimensional
variables (x, r) and the Crank Nicolson approximation
for the temporal variable to obtain accuracy on the
order of (Dx)2and (Dt)2. Their system of equations was
solved using the algorithm developed by Mao and
White [115]. The authors concluded that a porous TiS2

electrode in a cell with thin separator would deliver
much more capacity than the electrode would in a large
volume of electrolyte, and that the utilization of the
TiS2 electrode increases with a decrease in the separator
thickness [92]. Their analysis demonstrated the impor-
tance of including the separator in a battery model.

Doyle et al. [93] developed a mathematical model for
a one-dimensional polymer electrolyte cell (Li/
PEO8�LiCF3SO3/TiS2) using concentrated solution the-
ory, where the driving force is the gradient of the
chemical potential [2]. An investigation [116] of the
mechanism of conduction in these electrolytes con-
cluded that ion pairing and ion association interactions
are important in these electrolytes. These kind of inter-
actions can be included by using concentrated solution
theory, while dilute solution theory only includes the
interactions between the solute and the solvent [2].
However, it is important to note that many properties
required by the concentrated solution theory have not
been measured yet for the lithium battery systems (e.g.
activity coefficients), and this is an important point for
making the decision about the complexity of a model.
The mass balance on the salt in the separator is given
by [93]

(c

(t
=9·

�
D(c)

�
1−

d ln (c0)
d ln (c)

�
9c
n

−
i2 · 9t+

0 (c)
z+n+F

(15)

The variation of the potential in the separator is
calculated from [2]

i2= −k(c) 9f2

−
k(c) RT

F
�

1+
( ln f9
( ln c

� � s+

n n+

+
t+

0 (c)
z+ n+

�
9 ln (c) (16)

The Butler–Volmer equation is used for the kinetic
expression [2]. The material balance in the cathode is
given by [93]

o
(c

(t
=9·(oD(c)9c)−

i2 · 9t+
0 (c)

z+ n+ F
+

a jn(1− t+
0 )

n+

(17)
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The pore wall flux ( jn) is related to the divergence of
the current flow in the electrolyte phase through [93]

a jn= −
S+

n F
9·i2 (18)

Eqs. (15)–(17) illustrate the main difference of treat-
ing the system using concentrate solution theory, in-
stead of using dilute solution theory in which Eqs. (10)
and (11) apply [91,92]. Doyle et al. [93] used diffusion
as the mechanism of transport of lithium in the solid
phase as described by Eqs. (3)–(6). Since the equations
describing this process are linear, their solution can be
obtained using Duhamel’s superposition integral for a
step change in the surface concentration (Eqs. (B-1) to
(B-6) Ref. [93]). This approach enabled Doyle et al. [93]
to transform the pseudo two-dimensional problem (r,
x) into a one-dimensional problem (x); therefore, the
solution technique is much faster than the approach
used in Refs. [91] and [92]. The disadvantage of this
approach is that it does not allow including non-linear-
ities in the solid phase such as the effect of the concen-
tration in the solid on the diffusion coefficient in the
solid phase, thus their method way may not be useful
for cases where strong interactions are presented in the
system as shown by Verbrugge and Koch [100].

More details about the equations required for the
modeling of lithium/polymer battery systems can be
found in the review prepared by Doyle and Newman
[94]. Typically, Newman and his coworkers solve these
equations by using the Crank–Nicolson method to
evaluate the time derivatives together with the subrou-
tine BAND [2] to solve the system of equations. At the
interfaces between the separator and the electrodes,
they use the subroutine BAND and the integration
method (also called control volume formulation
method). Botte et al. [44] have shown that the results
obtained using Newman’s technique for the interface
are not as accurate as those obtained by using three
point forward and three point backward approxima-
tions for the derivatives at the interface together with
the subroutine MBAND [32].

Fuller et al. [84] extended the model by Doyle et al.
[93] to simulate a lithium-ion cell. Their equations are
very similar to those by Doyle et al. [93], except that the
negative electrode is treated in the same way as the
positive electrode (a material balance for the negative
electrode is also given by Eq. (17)). The models by
Doyle et al. [93] and Fuller et al. [84] have shown good
agreement with experimental data [90,96,99].

Darling and Newman [97] modeled the behavior of a
porous intercalation electrode with two characteristic
particle sizes. Their equations are the same as those
used by Doyle et al. [93], but they assumed constant
properties and an ideal solution (i.e. the activity coeffi-
cient, f9=1). They wrote material balances for the two
different particles size everywhere in the electrode. They

generated a bimodal particle size distribution with the
same mass of a uniform particle distribution using the
following equation [97]

o1

op

=
Rs,2/Rs,u−1
Rs,2/Rs,1−1

(19)

They observed that the coulombic capacity of the
non-uniform electrodes was less than that of the uni-
form electrode at a given discharge rate during a gal-
vanostatic discharge. This means that the capacity
estimated using a uniform distribution might show
poor agreement with the capacity of a real cell, espe-
cially at high discharge rates. They also observed that
the non-uniform electrodes required more time to equi-
librate than the uniform electrodes during a relaxation
period. The significant effect of the non-uniformity of
the electrode in the behavior of the battery indicates
that non-uniformity of the particle sizes should be
included in the model in order to obtain more realistic
results, especially at high discharge rates. This approach
is interesting, however, it is important to keep in mind
that they assumed a constant mass for the active mate-
rial (the mass of the electrode is the same for an
uniform and non-uniform particle distribution). It may
be also significant to determine the ratio of the particle
sizes required to obtain a given porosity in the active
material that would allow maximizing the capacity of
the cell.

An approach like this was considered by Nagarajan
et al. [56]. They developed a mathematical model to
study the effect of the particle size distribution on the
galvanostatic discharge behavior of a liquid organic
electrolyte cell and/or polymer electrolyte cell. They
used dilute solution theory and the same assumptions
made by Mao and White [92]. Nagarajan et al. [56]
used the linear packing model developed by Yu et al.
[117] to account for the porosity of the electrode as a
function of the mixture of particles of different sizes.
They [56] considered a binary mixture of small and
large particles, where the volume fractions of the small
(xS) and large (xL) particles are known. The specific
volume of the mixture is calculated based on the vol-
ume fraction of the particles and the specific volume for
a random packing of spheres (Vo). The equation for the
specific volume will depend on the array matrix [56]

VL=Vo xL+V. S xS (20)

VS=Vo xS+V. L xL (21)

Eq. (20) applies for a matrix of large particles where
the voids are filled with small particles, while Eq. (21)
applies for a matrix of small particles where the voids
are filled with large particles. The specific volume of the
mixture of particles is given by the maximum between
VS and VL. The maximum was chosen to avoid overlap-
ping of the particles. The other equations used to
complete their model are given as Eqs. (23), (24), (26),
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and (27) of Ref. [56]. The derivatives in the differential
equations were cast in finite difference forms for the
spatial derivatives and were solved using the method of
lines and the DASSL subroutine to solve over time. The
code was written using the program FWEB [62]. They
concluded [56] that a binary mixture can provide a
significantly higher density of active material relative to
an electrode comprised of single-size particles. However,
increasing the packing density increases the liquid-phase
diffusion resistance; therefore, there is an optimum size
ratio for these variables to increase the capacity of the
cell [56]. This analysis is important and should be
combined with the thermal modeling of a cell (there will
probably be a trade off between capacity and safety).

Another important factor to consider during the
modeling of lithium batteries is the fade in capacity.
None of the models that we have mentioned above
incorporate capacity fade mechanisms. Arora et al. [118]
presented a review of capacity fade mechanisms and side
reactions in lithium-ion batteries. Doyle et al. [96]
modified their dual lithium-ion model to include film
resistances on both electrodes, and they determined the
value of these resistances needed to fit experimental data
for a lithium ion battery (LixC6/LiPF6,EC�DMC/
LiyMn2O4). These resistances will affect the values of the
overpotential as shown in Eq. (11) of Ref. [96]. These film
resistances are not capacity fade mechanisms but instead
parameters used to fit experimental data, further work
needs to be done to explain the origin of these film
resistances. Doyle et al. [96] suggested that the resistances
are described satisfactorily by either a film resistance on
the electrode particles or by contact resistances between
the cell layers.

Darling and Newman [98] were the first one to model
a capacity fade mechanism by incorporating electrolyte
decomposition in a Li/LiClO4�PC, p(VdF-HFP)/
LiyMn2O4 cell. Their model enables one to predict the
loss of capacity based on cell discharge. Recently, Arora
et al. [101] developed a model to predict lithium deposi-
tion on the negative electrode under a variety of operat-
ing conditions. They used a LixC6/LiPF6-EC-DMC,
p(VdF-HFP)/LiMn2O4 cell in the simulations. Their
model can be used to establish operational and design
limits within which the lithium deposition overcharge
reaction can be avoided [101].

Capacity fade mechanisms probably depend on the
system, the active materials used, the electrolyte, solvent,
etc. In addition, it is likely that other capacity fade
mechanisms exist and have not yet been identified.
Modeling of the loss of capacity during cycling is an
active area of research.

2.2. Thermal models

The thermal models developed for secondary lithium
batteries are based on idealized conditions of the system.

They [102–107] do not include the details associated with
the cell sandwich shown in Fig. 1. Chen and Evans
[102–104] developed two and three dimensional mathe-
matical models to study the thermal behavior of a
polymer electrolyte [102–104] and lithium ion [105]
prismatic batteries. In their models the energy balance is
given by [103,104]

r Cp

(T

(t
=kx

(2T

(x2 +ky

(2T

(y2 +kz

(2T

(z2 +q (22)

The z dependence (third term on the r.h.s. of Eq. (22))
is neglected for the two-dimensional models (Refs. [102–
104]). They assumed that the heat generation term is
uniform through the cell for the solution of Eq. (22) and
is given by [102–105]

q=

Ncell I
�

Uoc−V−T
d Uoc

d T
�

L
(23)

In this approach the discharge and charge curves (I–V
curves) need to be supplied. These discharge and charge
curves can be measured for the system under consider-
ation and can also be fitted by using Eqs. (9) and (21)
of Ref. [119] during discharge and charge, respectively.
One of the advantages of this approach is that Eq. (22)
and the associated boundary conditions can be solved
easily (the boundary conditions for the system will
depend on the geometry, cooling system used, presence
or lack of insulation, etc.). A disadvantage is that the
study of the system is limited to the conditions under
which the discharge and charge curves are measured. If
the effect of variables such as: porosity of the materials,
particle size, materials, electrolyte concentration, separa-
tor, etc., needs to be evaluated more experimental data
is required (the discharge and charge curves would need
to be measured for all of the changes in these variables).

Chen and Evans [102–105] solved Eq. (22) and its
boundary (internal and external) and initial conditions
(Eqs. (3)–(5) of Ref. [102]) using the finite difference
method. The boundary conditions were treated by using
the implicit alternating-direction technique [120]. Chen
and Evans [102–104] studied the effect of variables such
as: cell thickness, cooling system, and discharge rates in
the thermal behavior of the batteries, and concluded that
thermal management is not a serious problem for lithium
polymer batteries at low discharge rates. The authors
[105] also simulated the effect of thermal runaway in the
battery by assuming a localized heat source similar to the
that used by Evans and White [121]. This approach
allows studying the effect of a localized heat source in
the cell stack, but it does not allow determining the cause
of the heat source. They [105] concluded that during
normal battery operation, the battery does not reach the
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onset temperature for thermal runaway. However, if a
battery is continuously cycled under high rate charge/
discharge rate, significant heat can be generated in the
battery.

Kanari et al. [106] used an approach similar to Chen
and Evans [102–105] but they applied the energy bal-
ance in cylindrical coordinates, assuming temperature
changes only in the radial and axial directions (Eq. (1)
of Ref. [106]). The authors [106] modeled a C/LixCoO2

cell and obtained good agreement with the experimen-
tal data. Neither, Chen and Evans [102–105] nor Ka-
nari et al. [106] incorporated the effect of the
temperature on the thermal properties (conductivity
and specific heat).

Verbrugge [107] modeled the temperature and cur-
rent distribution in a battery module for a lithium/poly-
mer electrolyte/vanadium oxide cell. His model
(three-dimensional) includes the assumption that no
significant concentration gradients exist in the elec-
trolyte, a linear relation exits (current-potential) for the
electrochemical reactions, and only one electrochemical
reaction occurs at the each electrodes. Verbrugge deter-
mined the potential distribution in the module by as-
suming that the potential gradient in the cell can be
expressed as a series of resistances and is given by [107]

(V

(x
=N Uoc−

Ix

sx

(24)

for the x direction and [107]

(V

(y
= −

Iy

sy

and
(V

(z
= −

Iz

sz

(25)

for the y and z directions, respectively. The determined
material charge conductivities are expressed as a series
of resistances [107]

1
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�L1
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+
L2
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+
R T
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io2n F
�
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sy=sz=
L1

L
s1+

L2

L
s2+

Ls

L
ss (27)

Eqs. (24) and (25) were solved simultaneously with
the energy balance in the battery. An energy balance
expressed for an isobaric battery system as given by
Bernardi et al. [9]

Q=Iapp

�
V+

DH

nF
�

+M Cp

dT

dt
(28)

The combination of the energy balance with the
potential distribution is summarized in Eq. (18) of Ref.
[107]. This equation was solved using the finite differ-
ence method. Verbrugge [107] expressed the heat capac-
ities, densities and thermal conductivities of the
materials as a function of the temperature. His ap-
proach (series of resistances) allows a mathematical
representation of the system in three dimensions, how-

ever, effect of variables such as: particle size of the
electrodes, concentration of the electrolyte, high dis-
charge rates, were not included.

Pals and Newman [108] developed a one-dimensional
mathematical model to predict the thermal behavior of
a lithium/polymer cell. In their model they assumed
that the temperature is constant through the cell but
changes with time. They extended Doyle’s one-dimen-
sional model [93] to obtain the temperature of the cell
by solving the energy balance as shown by Bernardi et
al. [9]

I
�

Uoc−V−T
dUoc

dT
�

=hs(T−Ta)+Ma Cp

dT

dt
(29)

Therefore, current and voltage values are obtained
from the solution of the macroscopic mass balance. The
authors [108] analyzed the behavior of the cell for
isothermal conditions, and different values of the heat
transfer coefficient including adiabatic condition (hs=
0).

Pals and Newman [109] developed a cell stack model
to predict the temperature profiles in cell stacks based
on the isothermal results of a one-dimensional cell
obtained in Ref. [108]. They [109] used heat generation
rates from isothermal discharges to estimate the heat
generation rates during non-isothermal discharges. This
approach is an approximation that allows an easier
mathematical solution of the system; however, the exact
solution can only be obtained by solving the mass and
energy balances simultaneously.

Botte et al. [11] studied the influence of some design
variables (current density, porosity of the electrodes,
particle size of the electrodes, thickness of the elec-
trodes, etc.) in the thermal behavior of a lithium ion cell
based on a one dimensional mathematical model. Their
model is based on the one-dimensional model devel-
oped by Fuller et al. [84] The authors [11] modified the
energy balance described by Rao and Newman [10] to
incorporate the effect of the decomposition reaction of
the negative electrode in the thermal behavior of the
cell. The decomposition reaction of the negative elec-
trode is modeled as describe by von Sacken [122]

R=k1a4 c
−

s,1exp
�−EA

RT
�

(30)

A complete derivation of the energy balance for the
system is presented [11] and the final results are summa-
rized by Eq. (8) of Ref. [11]. The authors concluded
that a more accurate estimation of the parameters used
to describe the decomposition reaction of the negative
electrode is necessary to improve the predictions of
their model [11]. This approach is an attempt to study
the effect of side reactions in the thermal behavior of a
lithium ion cell.

All of these workers [11,108,109] assumed that the
transport properties are independent of temperature.
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They solved the mass balance of the system at a
given temperature and evaluated the temperature of
the cell based on the results of the material balance.
None of them solved the mass and energy balance
simultaneously.

3. Conclusions

The insertion (and de-insertion) process in a porous
lithium electrode has mostly been modeled as a diffu-
sion process assuming the concentration gradient as
the driving force with constant solid diffusion coeffi-
cient. Only Verbrugge and Koch [100] proposed to
use the gradient of the chemical potential as the driv-
ing forced for this process in the solid state. It ap-
pears that their procedure is better, but it would be
valuable to determine whether or not it is necessary.
We would also like to suggest that more work is need
to describe quantitatively the thermodynamics of the
solid phase in cathode materials. First principles cal-
culations and molecular dynamics can be very useful
for doing this. The work by Verbrugge and Koch
[100] on this topic for lithium ion intercalation into
carbon should be done for cathode materials. The
modeling of these systems depends critically on the
quantitative representation of the open circuit poten-
tial as a function of the concentration of lithium ion
in the solid state. No one has modeled a complete
secondary lithium cell including material and energy
balance simultaneously in more than one dimension,
due to the complexity of the system. Such a model
would help us understand the lithium battery system
better and may provide insight into the thermal run-
away issue. None of the models has incorporated a
mechanism that is able to predict thermal runaway in
secondary lithium batteries and this is basically be-
cause this phenomenon is not yet understood. The
trend is to incorporate capacity fade mechanisms in
the modeling of secondary lithium batteries and to
predict their cycling behavior. For doing this, the
fade capacity mechanisms need to be understood and
it may take some years of research before these
mechanisms can be quantified and incorporated into
models. Molecular simulations may help understand
these mechanisms.

Appendix A. List of symbols

specific interfacial area of solid-a
phase particles per unit volume of
porous electrode (m2/m3)
ratio of the solid volume of the an-a4

ode insertion material to volume of
cell sandwich (m3/m3)

average surface concentration of Li+c̄s, 1

in solid phase of the anode (mol/m3)
concentration of electrolyte (mol/m3)c
concentration of solvent (mol/m3)c0

concentration of anions in the elec-c−

trolyte (mol/m3)
concentration of Li+ in the elec-c+

trolyte (mol/m3)
c+,2 concentration of Li+ in the elec-

trolyte just outside the pores (mol/
m3)
concentration of Li+ inside an elec-cs

trode particle (mol/m3)
surface concentration of Li+ in anc s*
electrode particle (mol/m3)

ct maximum or saturation concentra-
tion of Li+ in the solid phase (mol/
m3)
constant pressure battery or cell heatCp

capacity, (J/kg per K)
diffusion coefficient of the electrolyteD
(m2/s)

D− diffusion coefficient of anions in the
electrolyte (m2/s)
diffusion coefficient of Li+ in theD+

electrolyte (m2/s)
DI diffusion coefficient of infinitely di-

lute Li+ in the solid electrode (m2/s)
Ds diffusion coefficient of Li+ in the

solid electrode particles (m2/s)
activation energy for the decomposi-EA

tion reaction of the anode (Eq.
(30)), (J/mol)
characteristic constant of the elec-F
trode material (Eq. (7)),
dimensionless

f9 activity coefficient, dimensionless
Faraday’s constant (96487 C/mol)F

G specific surface area per unit volume
(1/m)

GE excess free energy (J/mol)
hs heat transfer coefficient (W/m2 per

K)
I superficial current density (A/m2)

applied current in the cell or batteryIapp

(A)
current density at particle-electrolytei2
interface (A/m2)
exchange current density in the an-io1

ode (A/m2)
io2 exchange current density in the

cathode (A/m2)
pore wall flux of Li+ at the surfacejn
of the electrode particle (mol/m2 per
s)
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k1 anode decomposition reaction rate
constant (1/s)

kx average thermal conductivity in the
x direction (W/m per K)

ky average thermal conductivity in the
y direction (W/m per K)

kz average thermal conductivity in the
z direction (W/m per K)
thickness of cell or cell stack (m)L

L1 thickness of the anode (m)
thickness of the cathode (m)L2

thickness of the current collector (m)Lc

thickness of the electrode (m)Le

Ls thickness of the separator (or the
electrolyte in a polymer cell) (m)
thickness of the tab (m)Lt

M mass of the cell or battery (kg)
Ma mass of the cell or battery per unit

area (kg/m2)
number of electrons transferred inn
the electrode reaction given in Eq.
(1), dimensionless (n=1)
cell number in a stack per unitN
length x (1/m)

Ncell number of cells in a stack
rate of heat generation per unitq
volume of the battery or cell (W/
m3)
rate of heat transfer into the bat-Q
tery from the surroundings (W)

r radial coordinate of electrode par-
ticles (m)
universal gas constant (8.3143 J/R
mol per K)
electrode particle diameter (m)Rs

anode decomposition rate of reac-R

tion per volume of the cell (Eq.
(30)), (mol/m3 per s)
stoichiometric coefficient of cationss+

involved in the general insertion
process given in Eq. (1), dimen-
sionless (s+=1)
ratio of diffusion time to dischargeSs

time, dimensionless
time (s)t
transference number of cations,t+

0

dimensionless
temperature of the cell (K)T
ambient temperature (K)Ta

open circuit potential of the cellUoc

(V)
V battery or cell potential (V)
V(t) time dependent function used in

the Appendix
VL specific volume when large parti-

cles are the controlling component,
dimensionless

specific volume for a packing ofVo

spheres, dimensionless (Eqs. (20)
and (21))
specific volume when small parti-Vs

cles are the controlling component,
dimensionless
partial specific volume of the largeV. L

particles, dimensionless
partial specific volume of the smallV. S

particles, dimensionless
spatial coordinate of cell sandwichx
(m)

xL volume fraction of large compo-
nent, dimensionless

xS volume fraction of small compo-
nent, dimensionless
spatial coordinate of cell sandwichy
(m)
spatial coordinate of cell sandwichz
(m)

z+ charge of cations in the electrode
reaction given in Eq. (1), dimen-
sionless (z+=1)

Greek letters
enthalpy of the reaction (J/mol)DH
porosity of the electrode,o

dimensionless
f1 potential in solid phase (V)

potential in electrolyte phase (V)f2

f* potential in electrolyte phase just
outside the pore (V)
characteristic constant of the elec-(f1−f2)u

trode material (V)
activity coefficient of Li+ in thegI

solid phase, dimensionless
ionic conductivity of the electrolytek

(S/m)
n+ number of cations into which a

mole of electrolyte dissociates, di-
mensionless
self interaction coefficient of orderVk

k (J/mol)
r battery or cell density (kg/m3)

charge conductivity in the anodes1

(S/m)
charge conductivity in the cathodes2

(S/m)
charge conductivity in the separa-ss

tor (or electrolyte in a polymer
cell) (S/m)
charge conductivity in the x direc-sx

tion (S/m)
charge conductivity in the y direc-sy

tion (S/m)
charge conductivity in the z direc-sz

tion (S/m)
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uI fractional occupancy of Li+,
dimensionless

us site in the solid insertion material

Superscripts
initial time condition (t=0)0

1 specie 1 or negative electrode
specie 2 or positive electrode2
uniformu
active material particlesp

Subscripts
k order of the series given in Eq. (9),

dimensionless
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