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Abstract In this article, the method of separation of

variables (SOV), as illustrated by Subramanian and White

(J Power Sources 96:385, 2001), is applied to determine the

concentration variations at any point within a three region

simplified lithium-ion cell sandwich, undergoing constant

current discharge. The primary objective is to obtain an ana-

lytical solution that accounts for transient diffusion inside the

cell sandwich. The present work involves the application of the

SOV method to each region (cathode, separator, and anode) of

the lithium-ion cell. This approach can be used as the basis for

developing analytical solutions for battery models of greater

complexity. This is illustrated here for a case in which non-

linear diffusion is considered, but will be extended to full-order

nonlinear pseudo-2D models in later work. The analytical

expressions are derived in terms of the relevant system

parameters. The system considered for this study has LiCoO2–

LiC6 battery chemistry.

Keywords Battery model � Analytical solution �
Concentration distribution � Separation of variables method

List of symbols

a Specific interfacial area (m2/m3)

B, Brugg Bruggeman coefficient

c0 Concentration at initial time t = 0

ci (x, t) Concentration in region i (mol/m3)

Ci (X, s) Dimensionless concentration in region i

D Diffusion coefficient of lithium ions in the

electrolyte (cm2/s)

Deff,i Effective diffusion coefficient of the Li-ion in

region i (cm2/s)

F Faraday’s constant (C/mol)

iapp Applied current density (A/m2)

ji Flux density of the Li-ions into the electrode in

region i (mol/m2s)

Ji Dimensionless flux density in region i

li Thickness of region i (m)

K Ratio of dimensionless flux densities in the

electrodes

L Total thickness of cell (m)

p Dimensionless position of positive electrode/

separator interface

q Dimensionless position of separator/negative

electrode interface

t Time (s)

tþ Transference number

x Position (m)

X Dimensionless position
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an, bn Eigenvalues

ei Porosity in region i

s Dimensionless time

1 Introduction

With the emergence of rechargeable Li-ion batteries in the

consumer electronics, various mathematical models have

been developed in order to focus on the optimization of the

battery design. Isothermal and non-isothermal models were

suggested by Gomadam et al. [1]. Doyle et al. [2–4] devel-

oped cell sandwich models for diffusion limitations and

ohmic losses. Some models have incorporated many aspects

which affect battery performance, such as porosity or mass

transfer limitations when performing simulations [5–13].

Many efforts have explored methodologies to update these

complicated models in order to make them simpler and more

computationally efficient so as to better understand the

behavior of these power systems during charging and dis-

charging [14–20]. For example, computational efficiency is

important in hybrid systems for control and management. In

order to capture the essential features that characterize such

behavior, analytical expressions for the variables in terms of

dimensionless quantities can be found. The obtained

expressions are useful for both design and performance

testing of diffusion-limited lithium-ion batteries, under dif-

ferent operating conditions and scenarios.

The aim of the present work is to obtain analytical

expressions for the concentration profile in a lithium-ion

cell in terms of the relevant system parameters using the

separation of variables (SOV) method. Because of the

nature of the equations, a method developed in a previous

work [21] is useful and efficient in finding the constants of

integrations and coefficients. The solution obtained is val-

idated by comparing the profiles found using this method to

profiles from a numerical finite difference solution.

2 Model

The base unit of a Li-ion battery is a cell sandwich consisting

of a positive and negative electrode with a separator as shown

in Fig. 1. For simplicity, a 1D model is considered with the

positive composite electrode ranging from x = 0 to lp, sepa-

rator ranging from lp to lp ? ls and the negative composite

electrode from lp ? ls to lp ? ls ? ln. The electrolyte phase is

continuous across the cell domain, while the solid phase exists

only in the electrode regions. Thus, the transport can be

described in each of the three regions by a system of three

partial differential equations coupled together at the interfaces

x = lp and at x = lp ? ls. The dependent variables are the

ionic concentration in both electrodes and the separator with

respect to time and the position, x.

The governing equations for this model are based on

Fick’s law and accounts for diffusion in the electrolyte due to

the concentration gradient as well as transfer of the lithium

ions into and out of the electrolyte from the solid electrodes.

For this article, only diffusion limitations in the electrolyte

phase are considered and all other limitations are ignored.

Note that the term K in (3) acts as a source (or sink) repre-

senting the ratio between the rates of transfer of lithium ions

between the solid electrodes and liquid electrolyte during

charging (or discharging). The governing equations for the

positive electrode, separator, and the negative electrode are

given, in dimensionless form, as Eqs. 1–3, respectively.

oC1

os
¼ eBrugg�1

p

o2C1

oX2
� 1 0�X� p; positive electrodeð Þ

ð1Þ

oC2

os
¼ eBrugg�1

s

o2C2

oX2
p�X� q; separatorð Þ ð2Þ

oC3

os
¼ eBrugg�1

n

o2C3

oX2
þ K q�X� 1; negative electrodeð Þ

ð3Þ

While the initial and boundary conditions (BC) are given as

C1 X; sð Þ ¼ C2 X; sð Þ ¼ C3 X; sð Þ ¼ 0 at s ¼ 0 ð4Þ

�D
oC1

oX
¼ 0 at X ¼ 0; �D

oC3

oX
¼ 0 at X ¼ 1 ð5Þ

oC1

oX
¼ eBrugg

s

eBrugg
p

oC2

oX
at X ¼ p;

oC2

oX
¼ eBrugg

n

eBrugg
s

oC3

oX
at X ¼ q

ð6Þ

C1 X; sð Þ ¼ C2 X; sð Þ at X ¼ p;
C2 X; sð Þ ¼ C3 X; sð Þ at X ¼ q

ð7Þ

A detailed derivation of these dimensionless equations is

given in the Appendix.

3 Solution technique

Several methods for obtaining the analytical solutions to

this problem can be found in the literature, such as

Fig. 1 Schematic representation of the three regions in Li-ion cell
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perturbation techniques and Laplace transforms [22, 23].

The method of SOV is used here to determine the con-

centration at any point within the three regions of a Li-ion

battery for constant current conditions at any time. These

governing equations have analytical eigenfunction-value

series solutions, which describe the galvanostatic dis-

charge. The Li-ion cell sandwich is considered with a

uniform current distribution. In order to obtain analytical

solutions to address mass transfer limited situations in the

electrolyte phase (as a worst case scenario), we assume that

the pore wall flux of ions into and out of the electrode is

constant for all time and across the entire electrode [24].

Following Subramanian and White [21], the following

variable transformation is used to separate the transient

solution and the steady state solution in the three regions.

Ci X; sð Þ ¼ Ui X; sð Þ þWi Xð Þ þ Vi sð Þ for i ¼ 1; 2; 3 ð8Þ

Here Wi Xð Þ is the steady state solution which satisfies the

source and sink terms in (1) and (3) representing the pore

wall flux; Vi sð Þ satisfies the non-homogeneity arising when

non-constant BCs are used; and Ui X; sð Þ describes the

transient solution, which satisfies the homogenous BCs and

governing equations, and i denotes the region of interest.

By inserting Eq. 8 into Eqs. 1–3, we arrive at the

following:

oU1

os
þ V 01 sð Þ ¼

eBrugg
p

ep

o2U1

oX2
þW 001 Xð Þ

� �
� 1 ð9Þ

oU2

os
þ V 02 sð Þ ¼ eBrugg

s

es

o2U2

oX2
þW 002 Xð Þ

� �
ð10Þ

oU3

os
þ V 03 sð Þ ¼ eBrugg

n

en

o2U3

oX2
þW 003 Xð Þ

� �
þ K ð11Þ

Since Ui X; sð Þ alone satisfies the homogeneous governing

equations, the variables can be separated to give the

following governing equations for Ui X; sð Þ, which are

analogous across the three regions

oUi

os
¼ eBrugg

e
o2Ui

oX2

� �
for i ¼ 1; 2; 3 ð12Þ

where the porosity, e, in Eq. 12 represents the porosity in

the ith region: i.e., either ep, es, or en, as appropriate.

Similarly, Vi sð Þ and Wi Xð Þ will be related by:

V 01 sð Þ ¼
eBrugg

p

ep

W 001 Xð Þ
� �

� 1 ¼ A ð13Þ

V 02 sð Þ ¼ eBrugg
s

es

W 002 Xð Þ
� �

¼ P ð14Þ

V 03 sð Þ ¼ eBrugg
n

en

W 003 Xð Þ
� �

þ K ¼ Q ð15Þ

Since Vi sð Þ is a function of s only and Wi Xð Þ is a function

of X only, A, P, and Q are constants. The solutions for the

dimensionless equations in each region after SOV and

considering the BCs and initial condition (IC) are can thus

be obtained. Since there are no time-varying BCs or source

terms, ViðsÞ are identically zero:

V1ðsÞ ¼ V2ðsÞ ¼ V3ðsÞ ¼ 0 ð16Þ

This allows the WiðXÞ terms to be determined as (where

B = Brugg):

W1ðXÞ ¼
X

2

2

e1�B
p

� �
þ Z ð17Þ

W2ðXÞ ¼
Xpep

eB
s

� �
þ p2ep

1

2eB
p

� 1

eB
s

 !" #
þ Z ð18Þ

W3ðXÞ ¼ �Ke1�B
n

X2

2
� X � q2

2
þ q

� �
þ

p2e1�B
p

2

" #

þ ðpq� p2Þep

eB
s

� �
þ Z ð19Þ

Expressions (17)–(19) illustrate the steady state solution.

Note that the forms for WiðXÞ as presented above are for

the case that the pore wall flux, Ji, is constant across the

electrode. If the fluxes of lithium are allowed to change

with position only, WiðXÞ would have to be modified.

Furthermore, if these fluxes are allowed to vary with time,

the form of both ViðsÞ and WiðXÞ would be adjusted.

However, if Ji is a function of both time and space, this

analysis may not be valid, if the representation of Ji is not

of an appropriate form.

The steady state solutions given above in Eqs. 17–19

represent the concentration profile when the competing

effects of the Fickian diffusion due to the concentration

gradient, and the ion migration, due to current flow, are in

balance. In this dimensionless form, the rate of discharge is

irrelevant, while the solutions are functions of K, the ratio

of the current densities in the negative and positive elec-

trodes. Increasing K has the effect of increasing the flux of

lithium in the negative electrode relative to the positive

electrode. However, it is not possible to adjust the relative

fluxes independently of other factors. This ratio is given as

K ¼ lpep

lnen

¼ pep

1� qð Þen

: ð20Þ

Thus modifying K can only be achieved by adjusting one or

more of those design parameters which would have other

effects on the behavior of the system. For example, the

diffusion resistance in the electrodes would change.

Furthermore, the transient expressions, U1ðX; sÞ, can be

found from Eq. 12:
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U1ðX; sÞ ¼
X1
n¼1

A1n cos anXe
1�B

2
p

� �h i
exp �a2

ns
� 	� �h i

ð21Þ

U2ðX; sÞ ¼
X1
n¼1

h
A2n cos anXe

1�B
2

s

� �
þ B2n sin anXe

1�B
2

s

� �h i

� exp �a2
ns

� 	i

¼
X1
n¼1

E2n cos anXe
1�B

2
s þ bn

� �h i
exp �a2

ns
� 	h i

ð22Þ

U3ðX; sÞ ¼
X1
n¼1

A3n cos anð1� XÞe
1�B

2
n

� �h i
exp �a2

ns
� 	� �h i

ð23Þ

where Z is a constant of integration, and an and bn are the

eigenvalues, which are determined by satisfying the flux

BCs at the region interfaces. Preserving the continuity at

the interfaces, we solve A1n, A3n, E2n in terms of a single

constant An.

A1n

cos anpe
1�B

2
s þ bn

� �
cos anð1� qÞe

1�B
2

n

� �

¼ E2n

cos anpe
1�B

2
p

� �
cos anð1� qÞe

1�B
2

n

� �

¼ A3n

cos anqe
1�B

2
s þ bn

� �
cos anpe

1�B
2

p

� � ¼ An ð24Þ

We now apply the terms determined in Eqs. 16–24 to the

assumed form in Eq. 8 to complete the full series solution.

C1 X; sð Þ ¼ Jp

X1
n¼1

An cos
anX

eB
p

ep

� �1=2

0
B@

1
CA cos anpe

1�B
2

s þ bn

� �2
64

8><
>:

� cos anð1� qÞe
1�B

2
n

� �
exp �a2

ns
� 	� 	#)

þ JpX2

2
eB

p

ep

� �
0
@

1
A

2
4

3
5þ JpZ þ 1

ð25Þ

C2 X; sð Þ ¼ Jp

X1
n¼1

An cos
anX

eB
s

es

� �1=2
þ bn

0
B@

1
CA

0
B@

1
CA cos anpe

1�B
2

p

� �2
64

8><
>:

� cos anð1� qÞe
1�B

2
n

� �
exp �a2

ns
� 	� 	#)

þ Jpp
eB

s

ep

� �
0
@

1
AX

2
4

3
5þ Jpp2

2eB
p

ep

� �
0
@

1
A� Jpp2

eB
s

ep

� �
0
@

1
A

2
4

3
5

2
4

3
5

þ JpZ þ 1

ð26Þ

C3 X; sð Þ ¼ Jp

X1
n¼1

An cos
an 1� Xð Þ

eB
n

en

� �1=2

0
B@

1
CA

2
64

8><
>:

� cos anqe
1�B

2
s þ bn

� �
cos anpe

1�B
2

p

� �
exp �a2

ns
� 	� 	#)

þ � Jn

eB
n

en

� �
0
@

1
A X2

2
� X � q2

2
þ q


 �2
4

3
5

þ Jpp2

2eB
p

ep

� �
0
@

1
Aþ Jp pq� p2ð Þ

eB
s

ep

� �
0
@

1
A

2
4

3
5

2
4

3
5

þ JpZ þ 1

ð27Þ

There is no variation in the integration constant, Z, the series

coefficients,An, or theeigenvalues,an andbn, once theyare found

for a given set of system parameters and are not affected by the

rate of discharge. In order to obtain the integration constant Z as

well as An, we apply the concept of averaging and orthogonality.

At s = 0, C1 = C2 = C3 = 0. Since there is not a net gain or

loss of lithium ions in the system throughout operation, the

average concentration remains constant at all times

0 ¼ ep

Zp

0

C1dX

0
@

1
Aþ es

Zq

p

C2dX

0
B@

1
CAþ en

Z1

q

C3dX

0
B@

1
CA

ð28Þ

Using Eq. 28 and solving for Z, we obtain the following

expression:

Z ¼

� e2�B
p p3 þ 3ese

1�B
p p3 � 3e1�B

s p3ep þ 6e1�B
s p2epq� 3ese

1�B
p p2q� 3pe1�B

s epq2 þ 6ene
�B
s pq2ep

� 6
e2�B

n pepq2

1� qð Þen

þ 6ene
�B
s p2ep þ 2

e2�B
n pepq3

1� qð Þen

þ 3ene
1�B
p p2q� 6ene

�B
s p2epq

� 2
e2�B

n pep

1� qð Þen

� 6ene
�B
s pqep þ 6

e2�B
n pepq

1� qð Þen

� 3ene
1�B
p p2

0
BBBBBB@

1
CCCCCCA

6 epp� espþ esqþ en � enq
� 	 ð29Þ
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In order to determine the series coefficients, we use the

following weight functions to preserve orthogonality

f1 ¼ cos
anX

eB
p

ep

� �1=2

0
B@

1
CA cos anpe

1�B
2

s þ bn

� �
cos anð1� qÞe

1�B
2

n

� �

ð30Þ

f2 ¼ cos
anX

eB
s

es

� �1=2
þ bn

0
B@

1
CA cos anpe

1�B
2

p

� �
cos anð1� qÞe

1�B
2

n

� �

ð31Þ

f3 ¼ cos
an 1� Xð Þ

eB
n

en

� �1=2

0
B@

1
CA cos anqe

1�B
2

s þ bn

� �
cos anpe

1�B
2

p

� �

ð32Þ

We have, at s = 0:

0 ¼ ep

Zp

0

C1f1dX

0
@

1
Aþ es

Zq

p

C2f2dX

0
B@

1
CA

þ en

Z1

q

C3f3dX

0
B@

1
CA ð33Þ

Using Eqs. 30–33 and solving for An, we get:

The final solutions for concentrations in the respective

regions depend only on the system parameters (i.e., L; p; q; e,
Brugg) and is independent of the applied current (iapp; Jp).

4 Extensions to varying and nonlinear parameters

The solutions presented above only address a simplified model

in which all parameters are constant; this disregards the many

nonlinear phenomena that arise in electrochemical systems.

The solution procedure described above provides the basis of

an approximate solution technique for nonlinear scenarios.

The series form of solution (25–27) is again used; however, the

obtained solution is approximate, unlike the linear case

which gives an exact solution. This then provides a semi-

analytical solution similar to the Galerkin methods that have

been used in other areas of chemical engineering [25, 26].

As an initial proof of concept, the model was modified to

include a nonlinear diffusion coefficient based on the work of

Valøen and Reimers [27] and adjusted for the dimensionless

concentration used. Also, an additional factor was included

so that the value of the diffusivity at the initial concentration

is the same as the constant diffusivity used in the remainder

of the article. The nonlinear diffusion term used is:

Dnonlinear ¼ 311709� 10
�4:65� 54

64�1:230C X;sð Þ�0:0541C X;sð Þ
� �

ð35Þ

With the governing equations modified slightly and given

as

oC1

os
¼ eBrugg�1

p

o

oX
Dnonlinear

oC1

oX

� �
� 1

0�X� p; positive electrodeð Þ
ð36Þ

oC2

os
¼ eBrugg�1

s

o

oX
Dnonlinear

oC2

oX

� �
p�X� q; separatorð Þ

ð37Þ

An ¼

e1=2þ1=2B
s

2 sin anpe1=2�1=2B
s þ bn

� �
cos ane

1=2�1=2B
n 1� qð Þ

� �
cos anpe1=2�1=2B

p

� �

þ 2
sin anqe1=2�1=2B

s þ bn

� �
cos ane

1=2�1=2B
n 1� qð Þ

� �
cos anpe1=2�1=2B

p

� �
epp

en 1� qð Þ

0
BBB@

1
CCCA

a3
n

q� pð Þ cos ane
1=2�1=2B
n 1� qð Þ

� �� �2

cos anpe1=2�1=2B
p

� �� �2

es

þ en cos anpe1=2�1=2B
p

� �� �2

cos anqe1=2�1=2B
s þ bn

� �� �2

ð1� qÞ

þ cos ane
1=2�1=2B
n 1� qð Þ

� �� �2

cos anpe1=2�1=2B
s þ bn

� �� �2

pep

� 	

0
BBBBB@

1
CCCCCA

ð34Þ
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oC3

os
¼ eBrugg�1

n

o

oX
Dnonlinear

oC3

oX

� �
þ K

q�X� 1; negative electrodeð Þ
ð38Þ

In order to solve for the concentration profiles, we begin

using the eigenfunctions determined previously, and the

form of the equations will be the same as given in Eqs. 25–

27. However, for the nonlinear example, the coefficients An

cannot be determined analytically and are time dependent

(due to the changing diffusivity). The integration constant

is the same as in (29).

This form ensures that the BCs are satisfied, as well as

conserving mass. If simple trial functions (e.g., sine, cosine)

were used, at least thrice the number of terms and equations

would be needed, and the BCs would have to be supplied

independently. In order to choose the coefficients of the

eigenfunctions, An, that best approximates the exact solu-

tion, the method of orthogonal collocation can be used.

Collocation methods are well established and thorough

analysis can be found in the literature [20, 28, 29]. Collo-

cation determines the coefficients by requiring that the

governing equations be satisfied at specific points in the

domain. These points can be arbitrarily chosen, but provide

the most accurate numerical solution when the points are

chosen as zeros of a set of orthogonal polynomials called the

Jacobi polynomials [20, 28, 29]. Typically, a greater number

of terms results in better accuracy, but the number of col-

location points used must be equal to the number of terms in

order to have enough equations to determine the coefficients.

For the problem presented here, the domain has been

scaled to range from 0 to 1. This makes choosing the collo-

cation points convenient, as the zeros for the Jacobi polyno-

mials are on the interval 0 to 1. However, the cathode ranges

from 0 to p, the separator from p to q, and the anode from q to

1. This complicates the procedure slightly, as each region is

subject to a different governing equation as well different

eigenfunctions and approximate forms for the concentrations.

Therefore, the region in which each collocation point is

located must be considered. However, it is not necessary that

each region be represented by the same number of points. The

coefficients to be determined are the same for each region, so

including additional points in any region potentially improve

the accuracy in all regions, and fewer terms are required than

if the three regions were treated individually. Alternatively,

all the three regions can be scaled from 0 to 1 as illustrated

elsewhere for ease of coding and to better control in which

region the node points are located [20].

5 Results and discussion

The main advantage of the obtained solutions is that one

can obtain the variations in concentration with respect to

time in terms of system parameters using an algorithmic

procedure. The analytical results obtained are useful to

predict the eigenfunctions for electrolyte concentrations

which could be extended for inclusion into efficient

reformulated models for the entire battery using porous

electrode theory [19] and isothermal models [16] even at

high rates of discharge. The value of An is independent of

iapp, as can be seen in expression (34), and only depends on

system parameters such as p, q, e, and Brugg. This allows

us to study the effect of applied current on concentration

profiles without calculating An every time. A key advantage

of analytical solutions is their ability to provide simple

insights of the effects of varying parameters, without

repeated numerical simulations.

In order to validate the analytical solution developed

here, the predicted concentration profiles were compared to

a numerical solution. The method of lines was used find a

solution to serve as a benchmark since it is well established

in the literature as a method to solve partial differential

equations [30]. Equations 1–3 were discretized in the

spatial coordinate (i.e., in x) using standard finite difference

formulations, using 50 interior node points in the electrodes

and 30 interior node points in the separator. Including the

boundary points, this results in a system of 130 ordinary

differential equations (ODEs). These ODEs can be solved

simultaneously using efficient initial value problem (IVP)

solvers, such as dsolve from Maple [31] or FORTRAN

solvers such as DASKR or DASSL [32]. For a more

complicated problem, the discretized system may be

composed of differential algebraic equations (DAEs),

which requires proper initialization to ensure consistent ICs

of the algebraic variables before dsolve of DASKR could

be applied [33].

An example will be presented using the base parameters

given in Table 1. Importantly, Table 2 shows the conver-

gence of the coefficient terms in the infinite series solution.

Figure 2 shows the variations in the concentration as a

function of distance for different rates of discharge at

different times for these parameters. The rates presented

are for a 1C and 2C rate, which corresponds to a dimen-

sionless current of Jp ¼ 0:25 and Jp ¼ 0:50, respectively,

for this system. Also note that dimensionless concentration

Table 1 Base system parameters

System parameters

p 0.414

q 0.544

B 4

ep 0.385

es 0.724

en 0.485
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determined from the above equations is independent of the

applied current. Therefore, the dimensionless concentration

shown in the figures is Ci ¼ ci=c0ð Þ, rather than the Ci ¼
ci=c0ð Þ � 1ð Þ=Jp used in the calculation, to show the effect

of modifying the applied current on the concentration

profile.

It can be seen that the analytical solution agrees well

with the solution determined using numerical methods.

Furthermore, once the analytical solution is found, deter-

mining the concentration at any point at any time is com-

putationally trivial and can be done without computing

values at points which are not of interest. In contrast,

solving the problem numerically requires a procedure to be

developed that is more computationally expensive. It is

typically not possible to solve for the objective variable at a

specific time and location without doing a step-by-step

procedure that requires the computation of points which

may not be of interest. For this reason, there is limited

meaning when comparing the computational time of the

two different methodologies.

Also we have the concentration as a function of time at

the region interfaces within the battery (Fig. 3). Note that

the concentration increases as we move from the positive

end (cathode) of the battery to the negative end (anode) of

the battery during discharge as lithium is transferred across

the cell. Figure 3 shows that the battery reaches a steady

state profile at which point the competing mass transfer

effects of migration (due to the potential effects) and dif-

fusion due to the concentration gradient are in balance.

The mass transfer limit is reached in case of high-current

rates and the diffusion coefficient falls down for higher

Brugg’s coefficient. This is shown by the predicted con-

centration going to zero in Fig. 4 when a 3C rate is applied.

The parameters given in Table 1 can be adjusted to

match a wide range battery designs. This will affect the

coefficients and eigenvalues used in the model. Table 3

Table 2 Convergence of An for base case

n an bn An

1 0.96209 -1.77089 13.01783

2 1.75123 -1.1996 0.08203

3 2.8153 -2.7633 0.1057

4 3.7329 -2.4712 0.02493

5 4.611 -4.0506 0.01742

6 5.8596 -3.7556 0.04866

7 6.4117 -5.3206 0.006861

8 7.9512 -4.82215 0.009684

9 8.2886 -6.267 0.002264

10 9.836 -5.8522 0.00231
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Fig. 2 Comparison of the concentration profile as determined with

the analytical solution to the profile as determined with numerical

methods at a 1C and b 2C. The solid lines represent the analytical

solution, while the symbols show the numerical solution using finite

difference
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Fig. 3 Comparison of concentration values at X = 0, X = p, X = q,

and X = 1, for 1C (dashed line) and 2C (dotted line) rates of

discharge under base conditions

J Appl Electrochem

123



shows an alternative set of parameters used in which a

symmetrical battery is modeled. That is, when ln = lp and

en ¼ ep. The resulting eigenvalues and coefficients shown

in Table 4 are interesting, in that only the odd terms are

nonzero. The model allows examination of the effect of

modifying the design parameters on the concentration

profile. Figure 5 shows the concentration profile for a 1C

rate using the modified porosity parameters given in

Table 5. A comparison of Figs. 2a and 5 shows that a

decrease in porosity of a region (negative region in our

case) leads to a greater concentration gradient, whereas

increase in porosity (of the positive region) flattens the

concentration profile in that region. Thus, a lower rci will

be obtained by increasing the porosity of both the regions

thereby reducing the mass transfer limitations.

The addition of the nonlinear diffusion coefficient pro-

vides a small but noticeable change from base conditions.

In the analytical solutions, the nonlinearity has the effect of

modifying the exponential decay of the linear transient

solution; the coefficients, An, describe the (non-exponen-

tial) time evolution in the nonlinear case. In the linear case,

the function coefficients implicitly decrease exponentially

to a steady state value of zero. However, there is no

requirement that the coefficients for the nonlinear case

converge to a steady state value of zero, though they will

converge to non-zero values. Table 6 shows the coefficient

values, An, for the constant diffusion case and the nonlinear

diffusion case at the start of simulation and for steady state

conditions. In addition, note that using the analytical

solution is important for spectral methods because a single

coefficient, An, allows the profiles to be tracked in all the

three regions.
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Fig. 4 Concentration profile at X = 0 for at 3C for base conditions

Table 3 Parameters for symmetric design

System parameters

p 0.4

q 0.6

B 4

ep 0.5

es 0.724

en 0.5

Table 4 Case of ep = en and lp = ln where even An’s go to zero

n an bn An

1 1.31278 0.505295 40.67375

2 2.125727 -1.72532 1.43 9 10-15

3 3.913899 -1.60587 1.57 9 10-1

4 4.530191 -3.67687 1.06 9 10-14

5 6.415702 -3.63643 9.93 9 10-3

6 7.096382 -5.75969 -2.25 9 10-14

7 8.676729 -5.47156 8.60 9 10-4

8 9.716541 -4.74472 4.02 9 10-9

9 10.74072 -7.14677 -4.86 9 10-4

10 12.33599 -6.87076 2.76 9 10-14
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Fig. 5 Concentration profile for modified porosity case at 1C

Table 5 Parameters for modified porosity case

System parameters

p 0.414

q 0.544

B 4

ep 0.6

es 0.5

en 0.4
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Figure 6 shows the concentration profile across the cell

sandwich at various times for a 1C rate discharge when a

nonlinear diffusion coefficient is used. This shows the con-

centration as calculated using collocation approach using the

eigenfunctions as determined for the linear case. For com-

parison, a full-order finite difference solution is also pre-

sented. The primary advantage of using collocation on the

eigenfunctions is the increase in computational efficiency.

The finite difference solution used 125 node points requiring

125 nonlinear DAEs to be solved simultaneously. Con-

versely, the collocation approach can arrive at a reasonable

approximation when using as few as seven terms and

achieves better convergence as more terms are included.

Figure 6a shows the concentration profile at different times,

while Fig. 6b shows the residuals relative to the finite dif-

ference case. As the zeros of the Jacobi polynomials are used

to determine the location of the collocation points used, it is

possible that one of the three regions will not be represented

by a single node point. For example, when eight node points

are used, none are located within the separator. Interestingly,

this does not seem to be detrimental to the convergence of the

final solution, as can be seen in Fig. 6b. This is possible

because the same coefficients are utilized in each region,

while the continuity BCs are enforced by the form of the

equations used. Therefore, the improved accuracy gained by

additional node points in the positive and negative electrodes

translates to improved convergence in the separator as well. It

is worth noting that the positive electrode is the most difficult

region to accurately simulate, as can be seen in Fig. 6, which

shows the largest residuals are realized in the cathode.

6 Conclusions and summary

In this article, an analytical solution was obtained for the

transient response of electrolyte concentration in lithium-

ion batteries using the method of SOV. The method was

efficient in obtaining relevant constants independent of

current density. From the different plots, it can be

concluded that the concentration of Li-ion increases as we

move from cathode to the anode during discharge. This

variation is dependent on the design parameters, such as

electrode porosity, as well as the operating applied current.

In the case of higher discharge rates, a rapid depletion

of Li-ion concentration occurs in the positive electrode,

while a corresponding increase is observed in the negative

Table 6 Comparison of coefficients for constant diffusion and non-linear diffusion examples at the beginning of discharge and at steady state

Coefficient Initial values Steady state values

Constant diffusion Nonlinear diffusion Constant diffusion Nonlinear diffusion

A1 13.02 13.02 0 -0.4598

A2 0.08202 0.08154 0 -0.04527

A3 0.1057 0.1046 0 -0.07249

A4 0.02493 0.02240 0 0.01630

A5 0.01742 0.01250 0 9.776 9 10-3

A6 0.04860 0.02268 0 0.03019

A7 6.861 9 10-3 -1.232 9 10-4 0 0.01675
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Fig. 6 a Concentration profile across a battery with nonlinear

diffusion as calculated using a finite difference method and the

collocation method. b The residual of the collocation solutions with

respect to finite difference
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electrode. Collocation was used to simulate the same

model subject to a nonlinear diffusion coefficient, since

such a system cannot be solved analytically. The eigen-

functions that were found for linear problem were then

applied as trial functions in the collocation solutions with

time varying coefficients. This provided a quick and

accurate simulation of a more complicated model.

The SOV technique presented here for the electrolyte

diffusion of lithium-ion batteries can be used to model the

other variables of interest that arise in battery operation, such

as solid phase diffusion and potential fields. Ultimately, it is

possible that the eigenfunctions and eigenvalues developed

in such works could be implemented into a full battery model

to allow for efficient numerical simulation. These eigen-

values would be applied in a manner similar to the non-linear

diffusion coefficient discussed above. Similar attempts with

slightly less optimal polynomial forms (in which each region

was treated independently) have been attempted by our

group in the past [16, 20], which will benefit more using the

expressions developed in this article.

Furthermore, we believe that a similar analytical

approach could be applied to a number of engineering

models to improve computational efficiency. A number of

models, ranging from heat transfer problems to reaction–

diffusion models, are governed by mathematically similar

equations to those presented here. Furthermore, the eigen-

values and eigenfunctions could be applied in a numerical

manner to account for a variety of possible non-linearities in

addition to the non-linear diffusion coefficient explained

here. For example, temperature-dependent parameters could

be incorporated into the model using Arrhenius relations for

non-isothermal systems.

Acknowledgments The authors are thankful for the partial financial

support of this work by the National Science Foundation (CBET-

0828002, CBET-1008692, CBET-1004929), the United States gov-

ernment, McDonnell Academy Global Energy and Environment

Partnership (MAGEEP) at Washington University in St. Louis.

Appendix

The governing equations are given in dimensional form as:

ep

oc1

ot
¼ Deff;p

o2c1

ox2
þ ap 1� tþð Þjp 0� x� lp ð39Þ

es

oc2

ot
¼ Deff;s

o2c2

ox2
lp� x� lsþlp ð40Þ

en

oc3

ot
¼ Deff;n

o2c3

ox2
þ an 1� tþð Þjn

lp þ ls� x� ln þ lpþls

ð41Þ

With BCs determined from continuity of concentration and

mass flux given as:

�Deff;p
oc1

ox
¼ 0 at x ¼ 0; �Deff;n

oc3

ox
¼ 0

at x¼lp þ ls þ ln

ð42Þ

�Deff;p
oc1

ox
¼ �Deff;s

oc2

ox
at x ¼ lp;

� Deff;s
oc2

ox
¼ �Deff;n

oc3

ox
at x ¼ lp þ ls

ð43Þ

c1 x; tð Þ ¼ c2 x; tð Þ at x ¼ lp; c2 x; tð Þ ¼ c3 x; tð Þ
at x ¼ lpþls

ð44Þ

With IC is given as:

c1 x; 0ð Þ ¼ c2 x; 0ð Þ ¼ c3 x; 0ð Þ ¼ c0 xð Þ ð45Þ

For this study, the pore wall flux in the electrode is

assumed to be constant across space and time. In order to

maintain a charge balance, the ionic fluxes in the positive

and negative electrodes are not necessarily identical in

magnitude, but scaled according to the electrode thickness

and specific surface area. This leads to the following

relations for the pore wall flux:

jp ¼ �
iapp

apFlp
ð46Þ

jn ¼ þ
iapp

anFln
ð47Þ

The diffusion coefficients at the respective electrodes are

expressed in terms of the Bruggeman coefficient and

porosity within each electrode.

Deff;i ¼ DeBrugg
i for i ¼ p; s; n ð48Þ

The following dimensionless variables are used in order to

transform the above equations to dimensionless form and

to ensure that the solution is solved in terms of the system

parameters (lp; ls; ln; p; q; ep; es; en):

Ci ¼
ci

c0

� 1


 �
=Jp for i ¼ 1; 2; 3 ð49Þ

p ¼ lp

L
; q ¼ lp þ ls

L
ð50Þ

s ¼ Dt

L2
ð51Þ

X ¼ x

L
ð52Þ

Ji ¼
iapp 1� tþð ÞL2

eiDc0liF
for i ¼ p; n ð53Þ

K ¼ Jn

Jp

ð54Þ

where

L ¼ lp þ ls þ ln ð55Þ
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