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c A more robust method of solving elliptic PDEs is developed and discussed.
c A comparison of the false transient and the proposed method is explained.
c Several engineering/transport examples are considered.
c Linear solutions are described using matrix algebra and matrix exponentials.
c Nonlinear problems are solved, including unstable steady state solutions.
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Elliptic partial differential equations (PDEs) are frequently used to model a variety of engineering

phenomena, such as steady-state heat conduction in a solid, or reaction-diffusion type problems.

However, computing a solution can sometimes be difficult or inefficient using standard solvers.

Techniques have been developed, including the method of lines (Schiesser, 1991), which can solve

parabolic PDEs using well developed numerical solvers, but are not directly applicable to elliptic PDEs.

The method of false transients overcomes this limitation by arbitrarily introducing a pseudo time

derivative to modify the elliptic PDE to a parabolic PDE. However, this technique diverges for certain

problems, such as when the solution is an unstable equilibrium point. A Jacobian-based perturbation

approach is presented as an alternative for situations when the standard false-transient method fails.

Two examples are shown to demonstrate the robustness of the proposed method over the false

transient method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A wide variety of partial differential equations arise when
describing engineering systems. For examples, variations on
Laplace’s equation arise frequently in problems of transport phe-
nomena (Bird et al., 2006). In order to solve such a wide range of
problems, several numerical methods have been developed to
solve partial differential equations. The choice of method is
dependent on the desired accuracy, as well as concerns about the
stability and robustness of the system, while maintaining compu-
tational efficiency. Furthermore, these characteristics are depen-
dent on the form of the partial differential equation to be solved,
i.e. elliptic, parabolic, or hyperbolic. For parabolic equations such as
ll rights reserved.

þ314 935 7211.

bramanian).
the heat equation, several numerical methods exist that can be
used to find a solution (Dehghan, 2006). For example, the method
of lines is one such efficient routine in which the spatial dimen-
sions are discretized using any of a number of techniques, such as
finite difference, finite element, finite volume, or collocation
methods (Berzins et al., 1989; Constantinides and Mostoufi,
1999; Cutlip and Shacham, 1998; Dehghan, 2006; Sadiku and
Obiozor, 2000; Schiesser, 1991, 1994a, 1994b; Schiesser and
Griffiths, 2009; Schiesser and Silebi, 1997; Taylor, 1999). This
converts the partial differential equation (PDE) to an initial value
problem (IVP) system of ordinary differential equations (ODE) or
differential algebraic equations (DAEs). Software packages have
been developed to specifically solve problems using the method of
lines (Berzins et al., 1989). Alternatively, the resulting DAEs can be
solved using standard efficient time integrators (Cash, 2005),
including FORTRAN solvers such as DASKR or DASSL or in a
computer algebra system such as Matlab (MathWorks, 2012)
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(dsolve), Maple (Maplesoft, 2012) (dsolve), Mathematica (Wolfram,
2012) (ndsolve), etc. The versatility and simplicity of the method of
lines has led to its use in a wide range of engineering applications,
including fracture problems (Bao et al., 2001), heat transfer
(Labuzov and Potapov, 1985), solving Navier-Stokes equations
(Ers-ahin et al., 2004) and electromagnetics (Pregla and
Vietzorreck, 1995; Sadiku and Obiozor, 2000). Furthermore, Pregla
and Cietzorreck used the method of lines in conjunction with the
source method to handle inhomogeneous boundary conditions and
discontinuities in microstrip lines and antennas (Pregla and
Vietzorreck, 1995).

The solution of elliptic partial differential equations, such as
Laplace’s equation, is more difficult because there is not a simple
way to convert the equations to an initial value problem to allow
the use of the method of lines. A Newton–Raphson method, or
another approach to solving a system of nonlinear equations, can
be used if the system of algebraic equations resulting from the
discretization is sufficiently well behaved and a reasonable initial
guess is available. A semianalytical method of lines, valid for
linear elliptic PDEs and certain quasilinear elliptic PDEs has been
presented previously (Subramanian and White, 2004). However, a
more popular choice has been the method of false transients,
partially due to its ability to handle some nonlinear problems, and
ease of implementation. In the false transient method the
variables are discretized in the spatial or boundary value
independent variables (x and y), and a pseudo time derivative is
arbitrarily added to the problem statement (Mallinson and de
Vahl Davis, 1973; Schiesser, 1991, 1994a; Schiesser and Griffiths,
2009; Schiesser and Silebi, 1997; White and Subramanian, 2010).
The addition of this fictitious time derivative converts the
elliptic PDE to a parabolic PDE and allows the solution to be
determined by marching in pseudo time to a steady state
condition. By doing this, the efficient IVP/DAE solvers can be
applied in a matter analogous to the method of lines (Schiesser
and Griffiths, 2009).

Like the method of lines, the method of false transients is used
to solve a variety of engineering problems. For example, Xu, et al.,
used the false transient method to describe the concentration and
temperature profiles of catalyst particles (Xu, 1993). This approach
has also been used to numerically solve for three dimensional
velocity profiles by solving the Navier-Stokes equation (Lo et al.,
2005), as well as solving the convective diffusion equation for
axial-diffusion problems in laminar-flow reactors (Nauman and
Nigam, 2004). Other researchers have used the false transient
method for analyzing mass transfer in porous media (Singh et al.,
1999) or laminar film boiling (Srinivasan and Rao, 1984).

However, as shown in this paper, the system of ODE/DAEs
resulting from the use of the false transient method can be
unstable and may not converge to the desired (or any) solution.
This problem can sometimes be rectified by modifying the form of
the equations or boundary conditions using intuition and trial and
error. In other cases, the system cannot be made to converge,
regardless of how the problem is presented. An alternative,
Jacobian-based perturbation approach is proposed in this paper,
which is robust and does not suffer from the same stability issues
which befall the false transient method. A similar approach has
been used as a superior method for the initialization of the
algebraic variables in systems of DAEs (Methekar et al., 2011).
2. Generic formulation of the false transient method and the
perturbation method

Consider a general PDE of the form

D fðxð ÞÞ ¼ 0 ð1Þ
where f(x) is the (continuous) dependent variable of interest, x is
the vector of independent variables, and D is a generic linear
differential operator with the form:

D¼
X

i

X
j

aij
@i

@xi
j

ð2Þ

Eq. (1) can be discretized using any of a number of techniques,
such as finite difference, finite element, finite volume, or
collocation, among others. This results in a system of algebraic
equations of the form

gðUÞ ¼ 0 ð3Þ

where U is the vector of the discretized dependent variables. In
linear systems, Eq. (3) can be solved directly, though this is not
the case in highly nonlinear problems. Both the method of false
transients and the perturbation method introduce a pseudo time
variable, t, such that Eq. (3) is represented as:

g Uðtð ÞÞ ¼ 0 ð4Þ

when using the method of false transients, this is done by
introducing a first order pseudo-time derivative into Eq. (4) such
that it becomes:

g U tð Þð Þ ¼
dU
dt

ð5Þ

This allows the use of efficient time adaptive ODE solvers to be
used. In order for convergence to occur, the right hand side must
go to zero as t goes to infinity:

lim
t-1

dU
dt ¼ 0 ð6Þ

This reduces Eq. (5) to Eq. (3) and ensures that the original
problem is satisfied. However, the method of false transients can
fail if Eq. (6) does not hold, as can occur in an unstable
system. Therefore, an alternative perturbation approach is shown
here. A small perturbation parameter, E, can be applied in time to
Eq. (4) such that

lim
E-0

g U tþEð ÞÞ ¼ 0ð ð7Þ

Eq. (7) can be expanded using a Taylor series to give

g U tð Þð ÞþE dg Uðtð ÞÞ

dt þO E2
� �
¼ 0 ð8Þ

Assuming that E is sufficiently small that the higher order
terms can be neglected, Eq. (8) reduces to

g U tð Þð ÞþE dg Uðtð ÞÞ

dt
¼ 0 ð9Þ

The total derivative in Eq. (9) can be rewritten using the chain
rule with partial derivatives

g U tð Þð ÞþE @g

@U
@U
@t
þ
@g

@t

� �
¼ 0 ð10Þ

Noting that qg/qU¼J, where J is the Jacobian representing the
algebraic system. Also, note that from Eq. (3), g is not a function of
pseudo time directly; only indirectly through the dependent
variables, U, are functions of pseudo time. Therefore, qg/qt¼0
above and Eq. (10), can be rearranged to give

g U tð Þð Þ ¼ �EJ @U
@t ð11Þ

Eq. (11) can be considered as an application of Davidenko’s
Method (Schiesser, 1994a). Note that the choice of E is somewhat
arbitrary, and must be chosen with consideration to the system.
Ideally E must be sufficiently small that the assumption that the
higher order terms in Eq. (8) can be neglected is valid. Here,
E¼ 10�3 is used throughout the remainder of this work. This
choice is somewhat arbitrary as changing E¼ 10�3 by an order of
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magnitude in either direction does not affect the steady state
results. Eq. (11) is similar to Eq. (5) given above for the method of
false transients, and similarly allows for the use of efficient DAE
solvers, although the right hand side consists of a linear combina-
tion of time derivatives of several of the dependent variables, U.
The use of the Jacobian ensures that Eq. (11) is stable and more
robust than Eq. (5). This will be shown for linear models using
matrix algebra and considering the exponential matrix solution
that Eq. (6) is always valid and Eq. (11) converges to Eq. (3) at
infinite times irrespective of the initial conditions. The concepts
can then be extended to nonlinear models by considering the
eigenvalues of the resulting system of equations. In contrast, the
false transient method may or may not converge to Eq. (3)
depending on the eigenvalues of the Jacobian. This will be
explained in more detail in a later section.
. . .N
3. Implementation and comparison of the false transient
method and the perturbation method

Several examples will be shown to compare the performance
of the false transient method with the proposed Jacobian
approach, as well as to note the conditions which cause failure
of the method of false transients. The examples will be explored
in 2-dimensional space in Cartesian coordinates, although exten-
sions to other coordinate systems and to 3-dimensional space are
appropriate and can be applied analogously. In this paper, the
system of ODEs given in Eqs. (5) and (11) were written to a
FORTRAN file and simulated using DASKR for computational
efficiency. Furthermore, all symbolic calculations for the calcula-
tion of the Jacobian when using the perturbation approach were
performed in Maple (Maplesoft, 2012).
3.1. Solving Laplace’s equation

The simplest example to be considered is Laplace’s equation,
which is given in 2 dimensional rectangular coordinates as:

@2f
@x2
þ
@2f
@y2
¼ 0 ð12Þ

Laplace’s equation is used in numerous engineering disciplines
such as steady state heat/mass transfer or when calculating
potential fields. The following boundary conditions are consid-
ered, as shown in Fig. 1.

@fð0,yÞ

@x
¼ 0 ð13Þ

@fðx,0Þ

@y
¼ 0 ð14Þ

fð1,yÞ ¼ 0 ð15Þ
0

1

x

y

0
x

0
y

Fig. 1. Boundary conditions used for solving Example 1.
f x,1ð Þ ¼ 1 ð16Þ

Notice that Eq. (16) is made to be non-homogeneous in order
to avoid the trivial solution. This problem can be solved analyti-
cally using the standard separation of variables technique to
yield:

f¼
X1
n ¼ 0

�1ð Þ
n4 cosðð 2nþ1ð Þ=2ÞpxÞcoshðð 2nþ1ð Þ=2ÞpyÞ

p 2nþ1ð Þcosh 2nþ1ð Þ=2ÞpÞ
�� ð17Þ

Since an analytical solution can be found only for limited cases
(e.g. linear problems), Eq. (17) is used to benchmark the accuracy
of the proposed approach.

A numerical solution can be found by discretizing Eq. (12) into
M interior node points in x and N interior node points in y. This
discretizes the domain into (Nþ2)� (Mþ2) node points when the
surface points are considered. The following finite difference
schemes of order h2 are used:

@2f x,yð Þ

@x2
�

fn
m�1�2fn

mþf
n
mþ1

ðDxÞ2
ð18Þ

@2f x,yð Þ

@y2
�

fn�1
m �2fn

mþf
nþ1
m

ðDyÞ2
ð19Þ

with m as the node index in the x-direction and n as the node
index in the y-direction. When these approximations are applied
to Eq. (12), the following equation is obtained for each interior
node point, (m,n):

fn
m�1�2fn

mþf
n
mþ1

ðDxÞ2
þ
fn�1

m �2fn
mþf

nþ1
m

ðDyÞ2
¼ 0, for m¼ 1. . .M, n¼ 1

ð20Þ

A second order forward finite difference is applied for the
Neumann boundary conditions given in Eqs. (13) and (14):

@f 0,yð Þ

@x
�
�fn

2þ4fn
1�3fn

0

2Dx
¼ 0, for m¼ 0. . .Mþ1 ð21Þ

@fðx,0Þ

@y
�
�f2

mþ4f1
m�3f0

m

2Dy
¼ 0, for m¼ 0. . .Mþ1 ð22Þ

The Dirichlet boundary conditions from Eqs. (15) and (16) can
be expressed simply as

fn
Mþ1 ¼ 0, for n¼ 0. . .Nþ1 ð23Þ

fNþ1
m ¼ 1, for m¼ 0. . .Mþ1 ð24Þ

Eqs. (20)–(24) are a system of linear algebraic equations which
can be solved trivially using a variety of solvers. However, for
nonlinear systems which cannot be solved so simply, other
methods must be utilized to arrive at a solution, and thus this is
used as a verifiable test problem. When the method of false
transients is applied to Eqs. (20)–(24) the following ordinary
differential equations (ODEs) are obtained.

dfm
n

dt ¼
fn

m�1�2fn
mþf

n
mþ1

ðDxÞ2
þ
fn�1

m �2fn
mþf

nþ1
m

ðDyÞ2
, for n¼ 0. . .Nþ1

ð25Þ

dfn
0

dt
¼
�fn

2þ4fn
1�3fn

0

2Dx
, for n¼ 0:::Nþ1 ð26Þ

df0
m

dt ¼
�f2

mþ4f1
m�3f0

m

2Dy
, for m¼ 0. . .Mþ1 ð27Þ

dfn
Mþ1

dt ¼�fn
Mþ1, for n¼ 0. . .Nþ1 ð28Þ
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dfNþ1
m

dt ¼ 1�fNþ1
m , for m¼ 0. . .Mþ1 ð29Þ

Note that the formulation of Eqs. (28) and (29) required a
rearrangement of Eqs. (23) and (24) in order to develop stable
ODEs which converge to the solution. In order to explain why
such a rearrangement is necessary, recall that the following
condition must be satisfied for convergence to occur:

lim
t-1

dfn
m

dt
¼ 0 ð30Þ

Thus, Eqs. (25)–(29) reduce to Eqs. (20)–(24) at long psuedo
times. However, if the method of false transients were applied
directly to Eq. (23) to give:

dfn
Mþ1

dt
¼fn

Mþ1 ð31Þ

The solution to the eigenfunction problem in Eq. (31) is an
exponentially increasing function. Therefore, the resulting system
of ODEs is unstable and Eq. (30) will not be satisfied. In this
relatively simple example, the sign of Eq. (31) could simply be
changed to ensure stability, as it can be determined to be unstable
a priori. However, the instability may not be so obvious for more
complicated problems, or the stability issue may not be fixed by
simply changing the sign.

When the perturbation approach described above in Eq. (11) is
applied to the system given in Eqs. (20)–(24) the following system
of linearly coupled ODEs results

�
E
ðDyÞ2

dfn
m�1

dt �2
dfn

m

dt þ
dfn

mþ1

dt

 !
�

E
ðDxÞ2

dfn�1
m

dt �2
dfn

m

dt þ
dfnþ1

m

dt

 !

¼
1

ðDyÞ2
fn

m�1�2fn
mþf

n
mþ1

� �
þ

1

ðDxÞ2
fn�1

m �2fn
mþf

nþ1
m

� �
ð32Þ

�E
2Dx

�
dfn

2

dt
þ4

dfn
1

dt
�3

dfn
0

dt

� 	
¼
�fn

2þ4fn
1�3fn

0

2Dx
ð33Þ

�E
2Dy

�
df2

m

dt þ4
df1

m

dt �3
df0

m

dt

 !
¼
�f2

mþ4f1
m�3f0

m

2Dy
ð34Þ

�E
fn

Mþ1

dt
¼fn

Mþ1 ð35Þ

�Ef
Nþ1
m

dt ¼fNþ1
m �1 ð36Þ

Eqs. (35) and (36) demonstrate the robustness of the perturba-
tion method. Regardless of whether the boundary conditions are
applied as Eqs. (23)and (24) or in the form required for the false
transient solution, Eqs. (35) and (36) will converge to the
expected solution. Considering Eqs. (32)–(36) in matrix form, as
shown in Eq. (11) above, we have

�EJ dU
dt ¼ JUþb ð37Þ

for a linear system of equations. Eq. (37) can be explicitly solved
for in the time derivatives to yield

dU
dt
¼�E�1IU�E�1J-1b ð38Þ

which is unconditionally stable and will always converge to a
solution.

Fig. 2 shows the converged 2-D numerical solution, as deter-
mined using 50 interior node points in x and y (for a total of 2704
points). Fig. 3 compares the solution found with a perturbation of
E¼ 0:001 with the traditional method of false transients by
showing the value of f at x¼0 and y¼0 as a function of the
pseudo time variable used in both methods. The proposed
approach is superior because (1) steady state is achieved at
shorter values of the dummy variable and (2) the method is
robust, and is inherently stable as shown by Eq. (38).

3.2. Solving the Frank-Kamenetskii equation

The advantage of the proposed perturbation approach arises
from its ability to handle nonlinearities and to solve problems
with multiple steady stats. It is worth noting that this method can
handle nonlinear source terms as well as nonlinearities in the
state additive terms. However for demonstration purposes, only
the Frank-Kamenetskii equation is considered, which has an
exponential source term and exhibits multiple solutions. This is
given by the following non-dimensional equation (Harley and
Momoniat, 2008):

@2f
@x2
þ
@2f
@y2
þd exp fð Þ ¼ 0 ð39Þ
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Fig. 4. Boundary conditions used for solving Example 2 (Frank-Kamenetskii

equation).
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where d is referred to as the Frank-Kamenetskii parameter
(Harley and Momoniat, 2008). This represents the dimensionless
temperature when a zeroth order exothermic reaction occurs,
while implicitly assuming that the reactant is being continuously
fed. Note that the source term in Eq. (39) is derived from zeroth
order Arrhenius kinetics for a reaction with sufficiently large
activation energy such that some terms can be neglected. A more
thorough derivation can be found in the literature (Harley and
Momoniat, 2008). The following boundary conditions are used,
and also shown in Fig. 4.

@fð0,yÞ

@x
¼ 0 ð40Þ

@fðx,0Þ

@y
¼ 0 ð41Þ

fð1,yÞ ¼ 0 ð42Þ

f x,1ð Þ ¼ 0 ð43Þ

Note that it is not necessary to apply non-homogeneous
boundary conditions for this case to analyze a non-trivial solution
due to the nonlinear source term. Still, Eq. (39) cannot be solved
analytically because of the nonlinearity. When the finite differ-
ence scheme used above is applied to this problem, the following
system of non-linear algebraic equations is obtained:

fn
m�1�2fn

mþf
n
mþ1

ðDxÞ2
þ
fn�1

m �2fn
mþf

nþ1
m

ðDyÞ2

þd exp fn
m

� �
¼ 0, for m¼ 1:::M, n¼ 1:::N

ð44Þ

@f 0,yð Þ

@x
�
�fn

2þ4fn
1�3fn

0

2Dx
¼ 0, for n¼ 0. . .Nþ1 ð45Þ

@fðx,0Þ

@y
�
�f2

mþ4f1
m�3f0

m

2Dy
¼ 0, for m¼ 0. . .Mþ1 ð46Þ

fn
Mþ1 ¼ 0, for n¼ 0. . .Nþ1 ð47Þ

fNþ1
m ¼ 0, for m¼ 0. . .Mþ1 ð48Þ

Unlike the first two cases considered, this example results in a
system of non-linear equations and cannot be solved using basic
linear or non-linear solvers, such as Maple’s built-in fsolve
command. Standard numeric based solvers can also have trouble
solving this system. Therefore, the method of false transients or
the perturbation method is a good choice for finding the solution
to this problem. Application of the false transient method gives
the following system of ODEs:

dfm
n

dt ¼
fn

m�1�2fn
mþf

n
mþ1

ðDxÞ2
þ
fn�1

m �2fn
mþf

nþ1
m

ðDyÞ2

þd exp fm
n

� �
, for m¼ 1. . .M, n¼ 1. . .N ð49Þ

with the boundary conditions similar to in the previous cases.
Conversely, the perturbation method gives:

�
E
ðDyÞ2

dfn
m�1

dt �2
dfn

m

dt þ
dfn

mþ1

dt

 !
�

E
ðDxÞ2

dfn�1
m

dt �2
dfn

m

dt þ
dfnþ1

m

dt

 !

�Ed exp fn
m

� �dfn
m

dt ¼
1

ðDyÞ2
fn

m�1�2fn
mþf

n
mþ1

� �

þ
1

ðDxÞ2
fn�1

m �2fn
mþf

nþ1
m

� �
þd exp fn

m

� �
, for m¼ 1. . .M, n¼ 1. . .N ð50Þ

This problem exhibits some interesting behavior. For example,
for d4dcrit, there is no solution, while for dodcrit there exists two
solutions. Fig. 5 shows the solution value(s) of f at the origin for
various values of d as determined using the perturbation approach,
demonstrating the multiple solutions of the problem. Note that the
lower branch solution is a stable equilibrium point, while the
upper branch solution is an unstable equilibrium point. When
using the proposed approach, both stable and unstable solutions
can be found depending upon the initial guesses used. However, it
is not possible to find the upper branch solution using the method
of false transients. If the initial guess provided is less than the
upper branch solution, the false transient method will always
converge to the stable lower branch solution. Conversely, if an
initial guess is provided which is greater than the upper branch
solution, the false transient method will diverge to infinity. This
instability makes it impossible to track the upper branch solution
by continuing from small values of d using standard solving
methods. An arc length approach can be used to trace the solution
given in Fig. 5, by integrating all unknowns and all parameters
across the arc length of the solution curve. However, that cannot be
used to directly determine the solution profile for a given value of
the parameter d, as the parameter is solved as a function of arc
length. Furthermore, such a method requires a two step predictor/
corrector approach due to the nonlinearities, which increases
complexity and computational cost.
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The difficulty observed in the convergence of the false tran-
sient method to the upper branch solution can be predicted by
considering the Jacobian of the problem. For the lower branch
solution, all the eigenvalues of the Jacobian are negative, indicat-
ing a stable equilibrium solution. In other words, the system of
ODEs developed using the method of false transients will con-
verge to the lower branch solution, even if the system is slightly
perturbed from the steady state solution. In contrast, the upper
branch solutions represent an unstable equilibrium point, as
evidenced by the positive eigenvalues observed at those points.
Graphically, this is shown in Fig. 6 which shows the maximum
eigenvalue of the Jacobian for the various equilibrium points.
Even though the upper branch solution does satisfy dU/dt¼0, any
deviation from equilibrium will cause the solution to diverge
from the upper branch. If the deviation is above the upper branch
solution, the instability will cause the solution to diverge to
infinity. However, if the deviation is below the upper branch
solution, the system will converge to the lower branch solution, a
stable equilibrium point.

It is also worth noting the difficulty of finding the solution near
the bifurcation point, when d¼dcrit. At this point, the condition
number of the Jacobian increases significantly at the solution
points, indicating the system is particularly ill-conditioned as the
parameter d approaches its critical value. Interestingly, however,
the Jacobian as computed from the upper branch solution is not
significantly more ill-conditioned than the lower branch solution.
This is shown graphically in Fig. 7. It is worth noting that other
techniques, such as the arc-length tracking method can be used to
better track the bifurcation of multiple steady states.

Fig. 8a shows the surface plot for the lower branch solution for
the case that d¼0.5, while Fig. 8b shows the profile for the upper
branch solution. In order to show the importance of providing an
initial guess as well as to compare convergence, both Fig. 9a and b
shows the value of f0

0 as a function of pseudo-time for the false
transient method and the perturbation approach when d¼0.5.
Fig. 9a uses an initial guess of fm

n ¼ 0 for all m and n, while Fig. 9b
uses the upper branch solution for d¼0.6 as an initial guess for
d¼0.5. This is to show that the perturbation approach and the
method of false transients will not necessarily converge to the
same solution, even when identical initial conditions are applied.
Furthermore, Fig. 9c shows the convergence when an initial guess
of fm

n ¼ 3 for all m and n. In this case, the perturbation approach
converges to the upper branch, while the false transient method
fails after a few pseudo-seconds of simulation. This further
demonstrates the advantages of the purposed approach.

It also must be stated that the perturbation method will also
not converge for certain initial conditions, such as for profiles
significantly above the values in the upper branch solution. This is
due to the presence of the exponential term which becomes
unstable for large values of U. However, the proposed method is
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much more forgiving in that it will converge for a wider range of
initial conditions than the false transient method.
4. Conclusions

A Jacobian-based perturbation approach was presented as an
alternative to the method of false transients when solving elliptic
PDEs. Both methods discretize the spatial variables using stan-
dard finite different schemes and introducing a pseudo time
variable, although other discretization schemes, such as colloca-
tion, could be used. However, the perturbation approach is shown
to converge to a meaningful solution for a wider range of
problems and initial guesses than the method of false transients.
Furthermore, when using the method of false transients, the
equations must be carefully applied in such a way to ensure that
the DAEs are stable and converge to the expected solution if
possible. The proposed perturbation approach is much more
robust and the equations can be applied in any logically consis-
tent manner. Also, in cases where multiple solutions exist, the
Jacobian-based perturbation approach is more capable of finding
the multiple solutions, specifically those which represent
unstable equilibrium points. In contrast, the false transient
method may only converge to a stable solution regardless of the
initial guesses used. It is important to note that there are many
methods to solve elliptic PDEs. The objective of this paper is to
make the false transient method more robust. Comparing other
numerical approaches to solve such problems is beyond the scope
of this paper.

The primary difficulty of the proposed approach arises from
the calculation of the Jacobian of the system of equations. This
requires symbolic calculations that are not trivial and require the
use of a computer algebra system. In contrast, the method of false
transients can be applied relatively easily to any system of
equations. We believe that this has contributed to the popularity
of the method of false transients in the past, despite some of the
shortcomings of the method, some of which have been discussed
above. Additionally, the resulting system of ODEs is not necessa-
rily in an explicit form (one derivative in each ODE), which may
be difficult for standard or library solvers to handle. As DAE
solvers and computer algebra systems like Maple (Maplesoft,
2012) or Mathematica (Wolfram, 2012) are becoming more
common and more efficient, the perturbation approach is a viable
alternative for solving elliptic PDEs in a robust manner. Source
codes for the problems discussed will be posted online in the
corresponding author’s website after the publication of the
article.
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