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Lithium-ion batteries are typically modeled using porous electrode theory coupled with various transport and reaction mechanisms
with an appropriate discretization or approximation for the solid phase diffusion within the electrode particle. One of the major
difficulties in simulating Li-ion battery models is the need for simulating solid-phase diffusion in the second radial dimension r within
the particle. It increases the complexity of the model as well as the computation time/cost to a great extent. This is particularly true for
the inclusion of pressure induced diffusion inside particles experiencing volume change. A computationally efficient representation
for solid-phase diffusion is discussed in this paper. The operating condition has a significant effect on the validity, accuracy, and
efficiency of various approximations for the solid-phase transport governed by pressure induced diffusion. This paper introduces
efficient methods for solid phase reformulation — (1) parabolic profile approach and (2) a mixed order finite difference method for
approximating/representing solid-phase concentration variations within the active materials of porous electrodes for macroscopic

models for lithium-ion batteries.
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Electrochemical power sources are expected to play a vital role in
the future in automobiles, power storage, military, mobile, and space
applications. Lithium-ion chemistry has been identified as a good
candidate for high-power/high-energy secondary batteries. Progress
has been made toward modeling and understanding of lithium-ion
batteries using physics based first principles models which typically
solve electrolyte concentration, electrolyte potential, solid-state po-
tential and solid-state concentration in the porous electrodes'? as well
as electrolyte concentration and electrolyte potential in the separator.
These models are represented by coupled nonlinear partial differential
equations (PDEs) in 1-2 dimensions, include physics such as transport
phenomena, electrochemistry and thermodynamics and are typically
solved numerically which require few minutes to hours to simulate
depending on the solver and schemes used.

Currently, silicon, germanium etc. are being pursued as potential
anode materials for lithium-ion batteries owing to their high gravimet-
ric (mAh/g) and volumetric capacities (mAh/L) compared to graphite,
for high energy and high power applications of the future.® During
intercalation/de-intercalation these materials exhibit significant stress
development as well as volume and density changes.>*® The con-
centration gradient inside the particle is affected due to the stress
generated within the particle and cannot be captured solely by sim-
ple Fickian diffusion. Therefore, pressure induced diffusion must be
included when solving for solid phase diffusion in the pseudo ra-
dial dimension r within the particle.>** One of the major difficul-
ties in the electrochemical engineering models is the inclusion of
solid phase diffusion in a second dimension r which increases the
complexity of the model as well as the computation time/cost to a
great extent. The inclusion of pressure induced solid phase diffusion
physics not only increases the complexity of the model but signifi-
cantly increases the computational cost/time as it increases the num-
ber of equations to be solved in the pseudo r dimension. For every
point in x for the macro-scale, pressure induced solid phase equa-
tions have to be solved in r and the number of equations depends
on the discretization scheme chosen for the r dimension. Traditional
discretization approaches, such as finite difference (FD), when used
in the second pseudo dimension r increase the number of equations
by many folds thereby making simulation of the system slower and
complex.
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This paper presents a method for computationally efficient rep-
resentation of pressure induced diffusion in the solid phase. The pa-
per discusses briefly about the model used for the study of pressure
induced diffusion within the electrode particle and the simulation
procedure adopted. Then, two computationally efficient representa-
tions for pressure induced solid phase diffusion are discussed. At first,
a reformulation method is discussed based on the parabolic profile
approximation for solid phase diffusion’ which approximately cap-
tures the behavior for low rates and long times. Then, a robust solid
phase reformulation technique based on a mixed order finite differ-
ence (MFD) method with optimal node spacing is introduced.® Results
from the parabolic profile approximation are compared with results
from the converged solution with 45 internal node points (referred to
as full order numerical solution in this manuscript). Results from the
MFD technique are also compared with the full-order finite difference
solutions for both galvanostatic charging conditions and for current
varying as a function of time which suggest that reformulation can be
done without compromising on accuracy for a wide range of operating
conditions.

Pressure Induced Diffusion within the Electrode Particle

Model equations and boundary conditions— This paper deals
with a one dimensional (1D) continuum scale model that includes
pressure induced diffusion in a spherical particle and predicts the
stress distribution and volume expansion during charging. This is an
important phenomenon to study especially for high capacity elec-
trode materials because during lithium insertion volume expansion
of the particle results in strain differential between the inner and
outer regions which increases the rate of insertion and therefore de-
velops stress within the particle. This model has been presented in
details in Christensen et al.* The model accounts for lithium trans-
port, solid mechanics, lithium transport-induced stresses, and volume
expansion. Next the model equations and boundary conditions in non-
dimensionalized form are briefly reviewed.*

For the model, the electrode material is treated as a binary system
i.e. a host material occupied with lithium (LiS) and pure host material
(S). Table I presents the dimensionless independent and dependent
variables in the system along with their definitions. The equations
and boundary conditions for the model were non-dimensionalized
accordingly and are presented in Table II. Therefore, there are 8 spatial
and time dependent variables along with the moving boundary, ¥ (t)
(particle radius).
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Table I. List of dimensionless independent and dependent
variables for the model.

Independent Variables Definition

T Dimensionless time

13 Dimensionless radial distance w.r.t. moving
boundary

Dependent Variables Definition

xris (€, 1) Mole fraction of species LiS,

u(g, 1) Lattice displacement

Npis (€, 1) Flux of species LiS

Ns (€, 1) Flux of species S

0(E, 1) Total concentration

or (€, 1) Stress in radial direction

or (§, 1) Stress in tangential direction

T (E, 1) Thermodynamic pressure

w (g, 1) Dummy variable used to simplify the equations

x (v) Particle radius

Numerical discretization and simulation— The system of gov-
erning equations and boundary conditions generates a set of highly
coupled and non-linear equations. A total of 45 internal node points
in the radial direction r were used to achieve a converged solution
consistent with the simulation results reported earlier by Christensen
et al.* An absolute error of 107! was set for the numerical integra-

Table III. Dimensionless parameters used for simulation.

Dimensionless Parameter Value
w, fractional expansivity 0.08

e, elatic modulus 399.5
M}, molar mass ratio 1.09362
Xmax, Maximum mole fraction for lithiation 0.6

D, ratio of diffusive to elastic energy 8.09¢ — 23

tion accuracy in time. The simulations were terminated as the surface
LiS mole fraction reached the maximum value of x.. The set of di-
mensionless parameters used for simulation is given in Table III. The
dimensionless total current / for galvanostatic conditions is calculated
based on the C rate and x,,,,. Simulations for both high and low rates
and time varying currents were performed.

When converted to finite difference form, the number of equations
equals Ny, (N +2) + 1 where Ny, is the number of variables in
the system and N is the number of internal node points in r. The
time dependent moving boundary provides an additional ordinary
differential equation (ODE). For example, when N = 1 internal node
point is used in r, it results in 25 differential algebraic equations
(DAES) of which 4 are of index 2. Higher index DAEs are difficult to
solve compared to pure ODEs and DAE:s of index 1.° Using adaptive

Table II. Model equations and boundary conditions in dimensionless form.

Sr. No £E=0 0<E<l

=1 Comments

o

1 NLis (€, 1) =0
2 Ns(E,1)=0

Niis(E, 0 = x1i5(E, D(NLis(E, 1) + Ns (&, )=~
3 0, 7) O‘ﬁxus &, +
x(0)

. _w My
exLis & D1+ L0 — Seotus@ oM@

— . _ -1
4 Bt 7) = (14 isEn) ! ()

Nmax

5 uE,1v)=0

3= (65, DxLis (€, D) — & (F= X (D) 2O, Dxris(E, V) +

O, D1 — xris(E D) — & (Fx(0) 206, D0 — xpis(E, V) + =

) s

L uE0)-wE -5 L 1@

& (8*Nis(en)
X

Mass balance for
species LiS and S
7 (82Ns(m)

x(0g2

Stefan-Maxwell
equation for flux
of LiS. The
surface current
flux condition is
used at § = 1.

) X (02 (Niis (6, D=0 (&, D xpis (6, 1) Ly () =—1

Total
concentration of
species as a
function of of
mole fractions and
stresses

Npis(E.D+Ns(ED
(&, 1) -

w(E.v?
2

6 o D=wE 19—

w(g,1?
2

7 oED=wE -

8 %n(%,r):O

9 w(E, =

10

I-w(E, 1)

07 (5.0 = (1= v) (w(E, ©) — 1/20w(E, D)) +2v (453

o€, =v(wE v— 1/2wE, D)) +

% (or &, 1) —7(E, 1)+ 27""(2’”;”(2‘” =0

Ly = ZuE.

The relationship
between the total
flux of the species
and radial
displacement

NLis€O+Ns(ED _ 3
Lis 0(E.1) 5 - H”(Es T)

Hooke’s Law for
radial and
tangential stresses.
At center, both are
equal.

-1/2 (u(E,v)? )

£2(x(0)?

u®,n

_ (e, 1)
0o ~ /2

§2(x(1)?

Momentum
balance. Existence
of free surface at

£=1

Dummy variable

o6, D—7n(E D=0

U
x(©

Moving boundary
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solvers in time gives an advantage in numerical simulation in terms
of efficiency, but also requires additional robustness on the choice of
DAE solvers. Discussion of the difficulty of index-2 DAEs is beyond
the scope of the paper. A future publication will address the optimal
way of solving pressure induced diffusion in intercalation electrodes
depending on the physics included.

Reformulation of Pressure Induced Solid Phase Diffusion:
Parabolic Profile Approximation

A first attempt to approximate the model is to assume a parabolic
polynomial profile for spatially dependent variables. In the past,”'°
this method has shown reasonable accuracy and has been used in
the macroscopic P2D battery model.! This approximation method for
pressure induced solid phase diffusion is based on assuming profiles
inside the particle as parabolic in nature and generating volume aver-
aged equations. This method has been discussed for a radial Fickian
diffusion equation previously by other authors.!%"!2 The following sec-
tion describes the step by step derivation of the approximate profiles
and volume averaged equations based on this method. For demonstra-
tion purposes, we choose a representative variable from the model e.g.
the flux of species Li S. Therefore, assuming parabolic profile we can
write,

Npis (€, 1) = alo(v) + al (Vg + aly(v)E’ [1]

All the other spatial variables of the system can be expressed with
similar profiles. For the simulation of such a system, we need to solve
the time dependent coefficients which appear in the assumed profiles.
As a first step, to eliminate one of the coefficients, a volume averaged
quantity is introduced into the system. For the demonstration case
considered here, N ;5 () is the volume averaged flux of species Li$§
which can be represented by

1

Niis(v) = / 38% (Npis(E, 1)dE [2]
0

Replacing Eq. 1 in Eq. 2 and performing the integration, the time
dependent coefficient a1,(t) can be removed in terms of the volume
averaged quantity and other coefficients as

5 (= 3
aly(v) = 3 (Nus (V) — zali( - alo(T)) (3]

Replacing this value in Eq. 1, the parabolic profile equation for
Niis(§, ©) becomes

5 (= 3
Npis(§, 0 = alo(T)+Ell|(T)§+§ (Nus (0— Zall(T) - alo(T)) g
(4]

Now there are 2 time dependent coefficients along with the volume
averaged quantity. The boundary conditions are to be used for elimi-
nating the time dependent coefficients. Using the boundary condition
for Np;s(E, 1) at £ = 0, the coefficient aly(t) can be eliminated and
the parabolic profile can be rewritten as

5 [(— 3
Npis (€, 1) = al(v)§ + 3 (Nus () — Zall(t)) 22 [5]

The remaining time dependent coefficient is eliminated by using
the boundary condition at & = 1. It has to be noted that due to
the non-linearity and implicit nature of the system, the application of
boundary condition at § = 1 does not generate explicit expressions for
the coefficients to be directly incorporated into the parabolic profiles.
Therefore, these boundary conditions were solved as a coupled set
of equations within the final system. Finally, the volume averaged
quantity was evaluated by volume averaging the entire governing
equation. In general, this step can be mathematically represented as

1

/ 38> (GE(E, 1))dE =0 [6]

0
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Figure 1. Comparison of parabolic profile method with finite difference nu-
merical solution with 45 and 1 equally spaced internal node points for charging
rate of C/3.

where G E (&, 1) is any governing equation of the system. Direct an-
alytical integration was performed in & for most of the governing
equations except for some (Sr. No. 3, 4 & 5 from Table II). Nu-
merical integration in § was performed for these particular equations
using Simpson’s rule. Simulations were performed with an increasing
number of integration points to verify the convergence of the solu-
tion. These mathematical steps are performed for all spatially varying
quantities to generate the reformulated parabolic profile model for the
simulation of pressure induced diffusion within the electrode particle.

The advantage of this method of reformulation is that it reduces the
number of state variables thereby reducing number of equations which
facilitates faster simulation. This method is accurate for low rates and
long times. After the reformulation technique is applied, the equations
are only functions of dimensionless time t and can be solved using
time adaptive solvers”'>-'> with proper initialization. Only certain
solvers like Maple’s DSOLVE, MEBDFI can handle index 2 DAE
systems directly but for commonly used solvers like DASKR,IDA it
must be converted to an index 1 system before numerical simulation.

The model for pressure induced diffusion has 8 dependent variables
varying spatially and in time (Table I). The moving radius is tracked
by x (t) which is a time dependent variable. Therefore, if discretized
with N = 1 internal node point (FD method), the total number of
states is equal to (8*3) + 1 = 25. For the parabolic profile, the general
representation of a dependent variable is given by

[ (&0 = flo()+ fLi(VE + fla(VE (71

Therefore, there are three time dependent coefficients per variable
which generates (8*3) = 24 states for the model discussed in this
paper. Taking the moving boundary variable into account, the refor-
mulated parabolic profile pressure induced diffusion model generates
25 state variables before mathematical manipulation which is exactly
similar to the case when the original model is discretized with N = 1
internal node point. Therefore, it is logical to compare the parabolic
profile approximation results with full-order numerical solution of the
model discretized using FD method for N = 1 internal node point. The
dimensional surface concentration cy,,s(x, t) is the quantity of inter-
est because it is required by the macro-homogeneous battery model
to keep track of the local current density as a function of time. There-
fore, results for surface concentration are compared in Fig. 1 from the
full-order solution and the reformulated model for a C/3 rate. Note
that a low rate was chosen for this case as the parabolic profile ap-
proximation is likely to be valid only for low rates. The converged
numerical solution with N = 45 internal node points was chosen as
the benchmark for the comparison of the results.

The results of Fig. 1 clearly show that at short times i.e. at
the start of lithiation of electrode particle, the parabolic profile
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Reformulated Model
for Coupling with
Macro-homogenous

Battery Model Figure 2. Schematic of steps involved in mixed FD
method for optimized node spacing and hence re-
Yes formulation of pressure induced diffusion in solid-
phase. Ypredicted and Yexpected are the values of the
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full order numerical solution and MFD simulation

respectively.
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approximation predicts erroneous results compared to the numeri-
cal solution with N = 45 internal nodes. But the parabolic profile
predictions become reasonable at longer times. This behavior is ob-
served because the model fails to capture the effect of the moving
front depicted by steep concentration gradients at short times when
lithiation initiates.* As time increases and lithiation continues, the ef-
fect of pressure induced diffusion decreases and the parabolic profile
predicts surface concentration cy,.f(x, t) with reasonable accuracy.
As expected, the FD simulation with N = 1 node point gives erro-
neous results for both short and long times. Therefore, if we are only
concerned about the accuracy of surface concentration at long times
and very low rates, then the parabolic profile approximation is a good
choice as it has significantly less number of states compared to the FD
simulation with 45 internal node points (25 states compared to 477
states) which facilitates a reduction in the computational cost/time. In
the next section, the mixed finite difference method with optimal node
spacing is introduced which is robust and accurate for both short and
long times. Note that volume averaging provides good enough results
and conserves mass and charge at long times.

Reformulation of Pressure Induced Solid Phase Diffusion:
Mixed Finite Difference Approach with Unequal Node Spacing

Finite difference method is one of the most widely used numerical
techniques to solve ordinary and partial differential equations. Use
of finite difference method has been the first choice for solving first
principles based lithium-ion battery models. However, for macro-
micro scale coupled battery models, when dealing with a second radial
dimension r for discretization, the number of equations increases
by many folds, thereby increasing the computational cost.®!%!® As
mentioned previously, over 40 internal node points in r are needed to
obtain a converged solution for simulation of the model. Use of such a
large number of node points in the r direction will increase the number
of equations by a great deal and hence, we used a mixed order finite
difference approach, wherein we use less number of node points with
unequal node spacing. It is to be noted that, the macroscopic battery
model requires only the lithium concentration at the surface of the
particle, cg,.f(x, 1), as a function of local reaction current density, j(t).
For this reformulation method, the node points are chosen optimally.
Derivation of finite difference notations for different approximation
for the derivatives is given in the following section.3!?

Taylor series expansions at x = x+h;,; and x — h; are written as

X + ]’l = X))+ | — h + *1 72 f(x h 2
f( i+l) f( ) ( 7 f(X)) i+1 2 ( 7.2 ( )) i+1

hi) = )(i >h-+1 d—z( h? 9]
fo—h)=f@)—|—f))h 2<dx2fx)),

where /; is the unequal node spacing between i and (i-1)" nodes in
the domain. Truncating the series expansion with the required amount
of accuracy and solving for the first and second order derivatives,
we can obtain central finite difference formulas for the first and sec-
ond order derivatives. We use an order of 4’ accuracy for all of our
approximations.

(dc> = _Ci+1h,'2 +aih + h"+120i71 — hi+126‘i
Ax / contrai hiyi (hi + hig1) by

[10]

(ch) _ 2Ci+1hi —cihi +hiyicioy — higic (1]
dX2 central hi+1 (hl + hH—l)hi

Similarly forward and backward finite differences relations for the
derivatives can be obtained, and used for boundary conditions.

()
dx forward

2 2 2 2
_ Cigphigt” —higi"cip1 —2hig1higacivi +2Rhig1higaci —higa cip1 HhigaTc

B hiva (hiz1+hiva) hin

()
dx backward

_ ciohi® —hi*c; 1 —2hihi e +2hihi i —hi Yoo +hio e
B hi—1 (hi+hi_y) h;

[12]

[13]

Fig. 2 presents a general methodology for obtaining efficient refor-
mulation/representation of the pressure induced solid-phase diffusion
equations in the pseudo radial  dimension within the particle.

First, a Mixed-FD representation is written with N = 5 internal
node points. For the optimization scheme, using 0.001 < /; <0.999
as the constraint, the error between expected full-order numerical
solution and the mixed-FD method is minimized to a set tolerance.
At first, the optimal node spacing for a lower rate of charge was
found (by setting equal node spacing as initial guess). This is done
because at low rates only geometry dictates the optimal node spacing
(similar to primary current distribution in electrochemical systems).
The optimal node spacing from low rates was used as initial guess
to predict optimal node spacing for higher rates during which severe
mass transfer limitations occur. The optimal node spacing obtained
for higher rates was then used as initial guess to predict the best node
spacing distribution for time dependent current which is reflective of
spatially distributed and highly transient pore wall flux for macro-
homogenous battery models. Mathematically, it can be represented
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as:

min £

hl

subject to:

dy _ [14]
dt —f(y,u,h,.)

g(y,u,h)=0
0.001<h, <0.999

Here E is RMS error between full order numerical solution and the
reformulated MFD solution, while y and u represent the differential
and algebraic states in the model respectively. Numerous methods are
available for solving constrained dynamic optimization problems, in-
cluding (i) variational calculus, (ii) Pontryagin’s maximum principle,
(iii) control vector iteration, (iv) control vector parameterization, and
(v) simultaneous nonlinear programming.'®!° The control vector pa-
rameterization (CVP)!? is a widely applied method employed in this
study, due to its ease of implementation. Typically, Jacobian based
methods are sufficient for convergence.? For difficult/severe nonlin-
earities, global optimization techniques including genetic algorithms
might be required for convergence and robustness’'>? though they
are likely to be very slow. For performing the multivariable optimiza-
tion scheme discussed above, the inbuilt gradient based optimization
algorithms in Maple’s GlobalSolve function (Global Optimization
Toolbox) were used. Typically computational times for the simulation
of optimization schemes range from minutes to hours.

One of the advantages of the MFD method is that, the radial con-
centration gradient is more significant near the surface compared to
the center and hence, strategically placing more node points near the
surface and less node points at the center can capture that behavior
without increasing the fineness of the mesh everywhere. However, ra-
dial stress is maximum at the center of the particle and an optimization
scheme is needed to allow for accurate prediction at the center of the
particle (as opposed to arbitrarily using a finer mesh near the surface).
Lesser node points in 7 leads to less state variables and equations and
hence faster simulation for the whole battery model. The placement of
these node points is important and in order to find the exact position of
these node points we ran an optimization algorithm to find the best /;,
hy, hz, etc. and minimize N and the CPU time for efficient coupling
with macro-homogenous models. This method is very accurate for
short times/high rates/pulses; and is applicable for a wide range of
operating conditions. Therefore this approach is very robust.

The model was then simulated with the optimally spaced node
points using similar operating conditions and parameters which
were used for full order numerical simulation using a DAE solver
(DSOLVE/IDA)'? with consistent initial values. We applied a mixed
finite difference optimal node spacing approach for higher rates of
galvanostatic charge and also for a time varying current case. For the
mixed FD method we used 5 optimally placed internal node points in
the pseudo dimension  within the particle and compared the results
(dimensional surface concentration ¢y, s (x, ¢)) with full order numer-
ical solution with 45 internal node points in . To show the efficiency
and accuracy of the optimally spaced node point method, we also
compared surface concentration results for simulations with 5 equally
spaced internal node points in 7. We chose high rates of charge, ranging
from 2 to 10 C as the concentration gradient within the particle is more
prominent for these cases. This makes it difficult to predict the surface
concentration accurately with a small number of node points when not
placed optimally. Figs. 3 to 6 show the comparisons between the above
mentioned cases for 2, 3 5 and 10 C rates respectively. It is to be noted
that for all the plots, we compared c;,,r(x, t) for the first 2 to 3 sec-
onds at the start of lithiation. This is because stress reaches maximum
value within the first few seconds of lithiation and then decreases and
finally equilibrates with time. The effect of pressure induced diffusion
is thus most significant at short times.* This effect alters the concen-
tration gradient within the particle significantly. Therefore, it is best
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Figure 3. Comparison of mixed finite difference method with 5 optimally

placed internal node points with finite difference numerical solution with 45
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Figure 5. Comparison of mixed finite difference method with 5 optimally
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Figure 6. Comparison of mixed finite difference method with 5 optimally
placed internal node points with finite difference numerical solution with 45
and 5 equally spaced internal node points for charging rate of 10C.

to compare the results within that time frame because the efficiency
and accuracy of the mixed FD model will be more visible compared
to equally spaced node point simulation cases. However, the reformu-
lated model is valid for the entire lithiation regime. From the plots
it is clear that the MFD reformulated model agrees accurately with
the full-order numerical solution. The results from the equal node
spacing case for low number of node points are clearly erroneous
showing the importance and strategic benefits of placing the points
optimally. Table IV presents the values of optimized node spacing
obtained in this case for different values of dimensionless current. As
expected, the density of optimally placed node points increases along
the radial direction r from the center to the surface following the di-
rection of increment of concentration gradient within the particle. The
simulation times from the MFD method are compared with the times
from full-order numerical solution with 45 internal node points in r
in Table V. The simulation times reported here are with respect to a
cut-off of maximum lithiation mole fraction of 0.6 at the surface of the
particle. The MFD method shows increased computational efficiency
compared to full-order numerical solution as shown by the simulation
times presented. Although Maple’s solver directly solves the index 2
system, the computational times depend on the total time of simula-
tion (robust solvers are expected to be independent of the total time of
simulation). Therefore, we see the decrease in simulation times with
increase in rates from Table V. The CPU times reported are based on
simulations run on a computer using a 3.33 GHz Intel 12 core proces-
sor with 24 GB RAM. The compiled version of Maple is 10-20 times
faster than the non-compiled version. For larger number of equations,
the compiled version of Maple is slower than a typical IDA!? call for
the same number of equations as Maple does not use sparse storage
methods for its DAE solvers. As mentioned earlier, the stress model
is an index 2 DAE system. As IDA cannot solve index 2 DAE systems
directly, the system was converted to a index 1 system to simulate with
IDA and compare simulation times with Maple’s DSOLVE. For 2 C
rate, use of the IDA solver reduced the computation time to around
10 seconds for a full-order numerical solution with 45 internal node

Table IV. Optimized node spacing for different C rates for mixed
finite difference reformulation method.

C rate Optimized node spacing ( /;)

<2 [0.4764,0.1361,0.1699,0.1403,0.0525,0.0264]
3 [0.4762,0.1385,0.1675,0.1427,0.0505,0.0263]
5 [0.4780,0.1405,0.1629,0.1450,0.0491,0.0262]
10 [0.4779,0.1443,0.1582,0.1474,0.0478,0.0262]
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Table V. Simulation times for different C rates for mixed finite
difference reformulation method and full-order numerical solution
with 45 equally spaced internal node points.

Simulation time for Simulation time

full-order numerical for MFD
C rate solution (s) reformulation (s)
<2 1229.272 186.951
3 810.269 130.697
5 451.373 78.920
10 245.593 38.142

points and around 2 seconds for the reformulated FD model with 5
optimally spaced node points. Nevertheless, it is clear that 1-2 orders
of magnitude difference in CPU time is observed for the MFD refor-
mulated model compared to the full-order model for the solid phase
diffusion. Therefore, one can conclude that the reformulated MFD
approach decreases the computational cost, and will play a key role in
simulation efficiency when coupled with macroscopic battery models.

Fig. 7 shows the comparison of the mixed FD method, with the
traditional finite difference numerical solution with 45 and 5 equally
spaced internal node points in r for dimensionless total current /
varying with dimensionless time. The current applied is chosen as
I = 1+ sin(100*t). When the flux at the surface varies with time,
then it is a real challenge to predict concentration profile accurately
with less node points which is evident from the results obtained with 5
equally spaced internal nodes in r. The simulation was stopped when
the surface mole fraction of LiS reached xp,c. From this figure it is
clear that results obtained with the full-order numerical solution (45
equally spaced internal node points in r) can be efficiently obtained
at reduced computational time with no compromise in accuracy with
the mixed FD reformulated model. The optimal node spacing for the
MEFD simulation was [0.5937,0.1542,0.1058,0.0982,0.0256,0.0224].
The simulation time taken is 18.8 seconds which is significantly less
than that for the full-order numerical solution (547.41 seconds). This
result shows the robustness of the MFD reformulation approach which
can be confidently used for a large set of operating conditions.

For optimizing the node spacing /; in the radial direction r, the
error for the surface concentration c,.f(x, t) of species LiS between
the expected full-order numerical solution and the mixed-FD method
was minimized to a set tolerance. But this approach compromises on
the concentration profile at the center of the particle and therefore
affects the radial stress profile at center.” As radial stress is maxi-
mum (tensile stress) at the center during charging, correct prediction
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0
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Figure 7. Comparison of mixed finite difference method with 5 optimally
placed internal node points with finite difference numerical solution with 45
and 5 equally spaced internal node points for current I varying as a function of
time.
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Figure 8. Comparison of surface LiS concentration from the MFD refor-
mulated models and full-order numerical simulation with 45 equally spaced
internal node points for charging rate of 2C.

of this quantity is important because the magnitude plays a critical
role in determining the conditions for the fracture of the particle dur-
ing lithium insertion. Moreover, for development of micro-macroscale
electrochemical- mechanical coupled models for lithium ion batteries,
the prediction of maximum radial stress becomes important. There-
fore to achieve reasonable predictions for the maximum stresses, the
MFD method was modified such that the errors from both the center
and surface LiS concentrations between expected full-order numerical
solution and the mixed-FD method were minimized for optimization
of node spacing. It is to be noted that unequal weights were applied
to each of the individual errors and the sum of the weighted errors
was assigned as the objective function to minimize with similar con-
straints used earlier for the optimization protocol. 5 internal node
points were found to be sufficient for the model chosen. In our opin-
ion, minimizing the error for center concentration can facilitate more
accurate predictions for the maximum radial stress. Zhang et al.?
showed with a slightly different and simpler stress strain modeling
approach (strain splitting or thermal analogy modeling) that without
consideration of moving boundary and assuming constant density,
both the radial and tangential stresses can be explicitly expressed as
a function of average concentration and concentration at center and
surface of particle. For our system, this relationship is not explicit but
as both average (Faraday’s law for charge conservation) and surface
concentration are accurately predicted by MFD method, maximum
tangential stress is always predicted accurately in the MFD approach
irrespective of whether both center and surface concentrations or only
surface concentration is considered for minimization of error. The
maximum radial stress is more difficult to predict with approximate
methods as the concentration moves toward the center. This drives
our attempt to introduce the new weighted MFD method where er-
rors for both the center and surface concentrations are minimized
simultaneously.

Fig. 8 compares the results from the two MFD methods discussed
and the full-order numerical solution with 45 internal node points in
r for the surface concentration cy,,s(x, t) for 2C rate of charge. It is
clear from the plot, that the weighted error minimization MFD tech-
nique compromises on the surface concentration predictions slightly,
especially at short times where the concentration profile has a steep
gradient. The maximum radial stress profiles at the center of the
particle for the MFD techniques are compared with the full-order nu-
merical solution in Fig. 9 for 2C rate. Simulation from the weighted
error MFD method predicts the stress values with reasonable accu-
racy. But simulation results from the MFD method minimizing error
for only the surface concentration, shows significant error compared
to the full-order numerical solution. Fig. 10 shows the comparison of
the maximum tangential stress profiles obtained from the two MFD
methods with the full order numerical solution for 2C rate. As dis-
cussed earlier, both the MFD methods predict the maximum tangen-
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Figure 9. Comparison of maximum radial stress from the MFD reformulated
models and full-order numerical simulation with 45 equally spaced internal
node points for charging rate of 2C.

tial stress at the surface with reasonable accuracy. The optimal node
spacing obtained for the weighted error MFD method simulation was
[0.4052,0.0348,0.2825,0.1372,0.1024,0.0391].

Therefore, minimizing errors for both the center and surface con-
centrations simultaneously to optimize node spacing, leads to errors
in the prediction of surface variables as seen from the results. It is to be
noted that the weighted error MFD method is a case of multi-objective
optimization and minimizing both errors with as low as 5 node points
is difficult. This is the reason for which a small compromise in the
surface concentration predictions is observed. In our opinion, using
higher order finite difference discretization schemes (third or fourth
order) or larger number of node points, this error can be remedied,
but higher order approximations can induce instability in numerical
simulation. As our final aim is to reduce computational cost, obtaining
reasonably accurate predictions with minimum number of node points
is our priority.

Generality of the Proposed Mixed Finite Difference Approach

The results discussed from both the MFD approaches in the previ-
ous section were derived for isotropic graphite as the electrode particle
material. At present, for high energy/power applications, novel mate-
rials like silicon are emerging as the suitable candidates for state-of-art
electrodes. An attempt was made to verify the generality of the MFD
approach by using the optimal node spacing obtained for graphite to
predict the surface concentration and stress profiles for silicon. Sim-
ulations were performed for a spherical particle of silicon of 50 nm
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Figure 10. Comparison of maximum tangential stress from the MFD refor-
mulated models and full-order numerical simulation with 45 equally spaced
internal node points for charging rate of 2C.
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Figure 11. Comparison of maximum radial stress from the weighted MFD
reformulated model and full-order numerical simulation with 45 equally spaced
internal node points for charging rate of 1C for silicon using optimal node
spacing derived for graphite.

radius for a 1 C rate of charge. The optimal node spacing obtained
from the weighted MFD method discussed earlier was used to pre-
dict the silicon profiles. Fig. 11 and 12 show the comparison of the
maximum radial and tangential stress profiles predicted by the
weighted MFD approach with the full order numerical solution. It
is evident from the plots that the MFD simulation using optimal
node spacing corresponding to graphite predicts the stress profiles
with reasonable accuracy for silicon. Although it is advisable to de-
rive a separate set of optimal node spacing for a specific material,
this study proves the generality and robustness of the proposed MFD
approach.

Conclusions

A detailed continuum scale model for pressure induced diffusion
during lithiation of an electrode particle was reviewed* and the char-
acteristics of the system of equations representing the model and its
simulation were discussed. Two efficient reformulation techniques
were introduced. The parabolic profile reformulation method was de-
veloped based on assuming parabolic profiles for dependent variables
in the radial dimension r within the particle and generating volume av-
eraged equations. The mixed finite difference reformulation approach
is based on using lesser number of optimally spaced node points in
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Figure 12. Comparison of maximum tangential stress from the weighted
MEFD reformulated model and full-order numerical simulation with 45 equally
spaced internal node points for charging rate of 1C for silicon using optimal
node spacing derived for graphite.
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radial dimension r within the particle. Both of the methods reduce
the number of states compared to full-order numerical solution us-
ing large number of node points and therefore reduce computational
cost/time. The parabolic profile reformulation method is accurate for
low rates and long times. The mixed finite difference approach is
an accurate and robust method for low/high rates, short/long times
and can be used with confidence for a wide range of operating con-
ditions. Moreover, the generality of the MFD approach was shown
when the node spacing obtained for graphite was used for predicting
silicon stress profiles with reasonable accuracy. The effect of reformu-
lated models will be most significant when they are coupled with the
macroscopic battery models. Future work is aimed at coupling the effi-
cient solid phase diffusion model with P2D model' and reformulated
models?*?* to enable fast and computationally efficient simulation
with accuracy for real time control and optimization applications> 2’
for batteries. Real-time simulation of local stress and strain mea-
surement will enable and provide for the use of novel sensors to be
included in real-time control and Battery Management System for
vehicles.
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List of Symbols
r dimensional radial distance within the particle (m)
t dimensional time (secs)
3 dimensionless radial distance within the particle
T dimensionless time
xpis (E, )  dimensionless mole fraction of species LiS
u(g, 1) dimensionless lattice displacement
Npis(E,1) dimensionless flux of species LiS
Ng (&, 1) dimensionless flux of species S
0,1 dimensionless total concentration of binary species
o, (&, 1) dimensionless radial stress
o, (&, 1) dimensionless tangential stress
(€, 1) dimensionless pressure
x (v) dimensionless time varying particle radius
® fractional expansivity
M, dimensionless molar mass ratio of binary species = M#;*
M; molar mass of species i, i = LiS, S
Xmax maximum mole fraction for lithiation
e dimensionless elastic modulus = m
E Young’s modulus
v Poisson’s ratio
R universal gas constant
T temperature
p? density of pure unlithiated host
D dimensionless ratio of diffusive to elastic energy
__ Dris.sos°(14v)(1-2v)
- Ry2E
Dyiss binary diffusion coefficient
Ry initial particle radius
1 dimensionless current = m
I, applied current
F Faraday constant
N number of internal node points
Nyar number of variables in system
Niis (€, 1) dimensionless volume averaged flux of LiS
Courp (x, 1)  dimensional surface concentration of LiS (mol/m?)
j@® dimensional local reaction current density (A/m?)
h; optimal node spacing in radial direction
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host material occupied with lithium
pure host material
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