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Core-shell composite structures are potential candidates for Li-ion battery electrodes as they can take advantage of materials with
higher energy density and materials with higher cyclability. This paper derives an analytical solution for isotropic 1-dimensional
diffusion with galvanostatic boundary condition in composite slab, cylinder and sphere using separation of variables method. A
general interfacial condition has been used to represent the dynamics at the interface of the composite material rendering the solution
useful for wide variety of battery materials. Using the derived analytical solution for diffusion, intercalation induced stresses were
estimated for spherical core-shell materials.
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Lithium-ion chemistries are attractive for many applications due
to high cell voltage, high volumetric and gravimetric energy density
(100 Wh/kg), high power density (300 W/kg), good temperature range,
low memory effect, and relatively long battery life.1–3 Capacity fade,
underutilization, and thermal runaway are the main issues that need
to be addressed in order to use a lithium-ion battery efficiently and
safely for a long life.

In order to meet energy demands and address environmental con-
cerns, researchers are actively working on novel energy storage mate-
rials of which a significant fraction is dedicated to developing insertion
materials for lithium ion batteries.4–6 One way to achieve higher en-
ergy densities in lithium ion batteries is by replacing currently used
graphite (theoretical storage capacity of 372 mAh/g) based anode with
materials like silicon (theoretical storage capacity of 4200 mAh/g).
While materials such as silicon and tin have high energy density
compared to graphite, they suffer from high volumetric expansion
(∼400%) during intercalation/deintercalation which results into pul-
verization and electrical isolation of the electrode materials. A change
in volume of such magnitude causes delamination of the solid elec-
trolyte interface (SEI) from the active material. Delamination and
formation of new SEI layer at the exposed surface continuously con-
sumes active materials resulting in faster capacity fade.7 One way
to take advantage of higher energy density materials is to develop
core –shell composite materials where the shell materials have more
favorable mechanical properties than the core. To our knowledge,
intercalation in core-shell materials has not been modeled and re-
ported in the literature. Previous efforts by Subramanian and White8

only included analysis of composite materials with two different dif-
fusivities. However, if two different materials are used in core-shell
configuration, interfacial dynamics cannot be ignored.

Subramanian and White8 derived analytical solution under gal-
vanostatic conditions for composite materials having concentration
and flux continuity at the interface. This paper extends the method
adopted by Subramanian and White8 for a general treatment at the
interface of composite materials in order to make it useful for a wide
variety of materials and configurations (e.g. core-shell configuration
with flexibility of electrochemically active and inert core, hollow ma-
terials, etc.). We derive and present an analytical solution for isotropic
diffusion in 1-dimension for rectangular, cylindrical and spherical
core-shell particles. The results reported here can be used for core-
shell or hollow materials with low volumetric expansion. Materials
with large volume changes cannot be addressed directly using the ana-
lytical solution reported in this paper. However, the interfacial bound-
ary condition introduced in this paper is valid for any core-shell type
electrode material. Moving boundary formulation should be consid-
ered to simulate diffusion in high volume expansion materials which
will require numerical treatment.
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Section 2 gives a brief introduction to the diffusion problem in com-
posite materials and intercalation induced stresses. Section 3 presents
the solution methodology using the separation of variables approach
for planar geometry and lists solutions for cylinder and sphere. Interca-
lation dynamics for several sets of transport parameters are presented
in section 4. Section 5 illustrates the use of analytical solution for
diffusion in quantifying intercalation induced stresses for spherical
composite particle followed by code dissemination section. Section 7
presents conclusion and future directions.

Background

Diffusion in heterogeneous media is an extensively studied prob-
lem in many branches of engineering. Heat conduction through het-
erogeneous media is typically studied where temperature is continu-
ous across interfaces.9 Models for heat and mass transfer in biolog-
ical tissues result in similar problems with discontinuous interface
conditions.10,11 Subramanian and White8 presented analytical solu-
tion for composite material for galvanostatic boundary conditions
with continuous concentration and flux at the interface. To our knowl-
edge, none of the previous work considers the problem of diffusion in
heterogeneous media with inhomogeneous boundary condition (con-
stant flux arising from galvanostatic boundary condition at the surface
where the electrochemical reaction occurs) and discontinuous inter-
facial concentration with associated kinetics, which is of the practical
importance for novel composite battery materials. We consider the
problem of diffusion in heterogeneous media composed of two differ-
ent materials with different transport properties (diffusion coefficients,
Di ) and associated interfacial dynamics (Figure 1).

Diffusion in composites with two materials can be classified into 4
possible scenarios depending on the ratio of diffusivity and equi-
librium concentration (Figure 2). Cases A (D2/D1 > 1) and B
(D2/D1 < 1) in Figure 2 with c∗

1/c∗
2 < 1, are very similar to the

diffusion in sphere with single domain where the concentration in the
inner core will always be smaller compared to the outer shell during

Figure 1. Composite geometries under consideration.
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Figure 2. 4 possible diffusion dynamics in 2-region composite geometry.

intercalation. Interesting diffusion dynamics are observed in cases C
(D2/D1 > 1) and D (D2/D1 < 1) with c∗

1/c∗
2 > 1 which may cause

the inner core of the particle to become more concentrated than the
other shell.

In order to quantify the intercalation induced stresses for the four
cases above, even the very basic treatment of stress will require three
additional material properties: Young’s modulus, Poisson’s ratio and
partial molar volume. Using a thermal analogy model for intercalation
induced stresses assuming concentration independent material proper-
ties and ignoring volume expansion, decoupling of concentration and
stress is possible.12–16 Having all the parameters (diffusivity, equilib-
rium concentration, thickness, Young’s modulus, Poisson’s ratio, and
partial molar volume) in a unified analytical framework to quantify
stress will help guide the design of next generation energy storage
materials.

Model and Solution Methodology

Considering unsteady state diffusion, a material balance yields the
following equation for concentration.

∂ci

∂t
= −∇.Ni [1]

Here i = 1 and 2 for region 1 and region 2, ci is the concentration
(mol/m3), t is time (s) and Ni is molar flux (mol/s/m2) which can be
treated according to Fick’s laws as

Ni = −Di∇Ci [2]

where Di is diffusion coefficient (m2/s). For simplicity, the model
and method are illustrated for planar geometry. Assuming constant
diffusivity and considering 1-dimensional diffusion of lithium for
planar geometry, Eq. 1 can be written as

∂ci

∂t
= Di

∂2ci

∂r 2
[3]

where r is axial distance (m). Transient diffusion in composite planar
sheet consisting of two regions of different thicknesses and different
diffusion coefficients (as described in Figure 1) can be described using
the following equations

∂

∂t
c1 (r, t) = D1

∂2

∂r 2
c1 (r, t) , 0 < r < R1 [4]

∂

∂t
c2 (r, t) = D2

∂2

∂r 2
c2 (r, t) , R1 < r < R2 [5]

where R1 is the thickness of first region and R2 − R1 is the thickness
of second region, D1 and D2 are the diffusion coefficients of the two
regions. Initially both the regions are considered empty, i.e. species
concentration is zero.

c1 (r, 0) = 0, c2 (r, 0) = 0 for all r [6]

Symmetry boundary condition (zero flux) can be used at the center

− D1
∂

∂r
c1 (0, t) = 0, t > 0 [7]

and galvanostatic boundary condition is considered at the surface
(r = R2) where electrochemical intercalation and de-intercalation of
lithium occurs.

− D2
∂

∂r
c2 (R2, t) = Is

nF
, t > 0 [8]

Here, Is is the current density (A/m2) which is a constant in case of
galvanostatic charge/discharge condition, F is the Faraday’s constant
and n is the charge associated with the single ion of guest molecule (1
in case of lithium ion). At the interface (r = R1) between two regions,
flux continuity condition is used.

− D1
∂

∂r
c1 (R1, t) = −D2

∂

∂r
c2 (R1, t) , t > 0 [9]

For the other boundary condition at the interface, Subramanian and
White8 considered continuity in concentration. This paper considers
a more general boundary condition which is relevant for core-shell
composite materials having different capacities for lithium ions. Dif-
ference in interfacial concentration (c1 − κc2) is related to the local
flux,10,11 where κ is the ratio of equilibrium concentration (c∗

1/c∗
2).

D1
∂

∂r
c1 (R1, t) = � [c1 (R1, t) − κc2 (R1, t)] , t > 0 [10]

where � represents interfacial dynamics (m/s). Introducing dimen-
sionless variables

x1 = c1

c0
; x2 = c2

c0
; X = r

R2
; τ = t

/(
R2

2

D2

)
[11]

and the dimensionless parameters

β2 = D2

D1
; α = R1

R2
; γ = �R2

D1
; δ = Is R2

D2nFc0
[12]

The equations governing transport of lithium can be represented
in the following nondimensional forms

∂

∂τ
x1(X, τ) = 1

β2

∂2

∂ X 2
x1(X, τ), 0 < X < α [13]

∂

∂τ
x2(X, τ) = ∂2

∂ X 2
x2(X, τ), α < X < 1 [14]

with initial and boundary conditions

x1 (X, 0) = x2 (X, 0) = 0 for all X [15]

∂

∂ X
x1 (0, τ) = 0, τ > 0 [16]

∂

∂ X
x2 (1, τ) = −δ, τ > 0 [17]

∂

∂ X
x1(α, τ) = γ (x1(α, τ) − κx2(α, τ)) , τ > 0 [18]

∂

∂ X
x1(α, τ) = β2 ∂

∂ X
x2(α, τ), τ > 0 [19]

Extending the methodology adopted by Subramanian and White,8

the following solution is proposed for this problem:

x1(X, τ) = g1(X, τ) + w1(X ) + v1(τ) [20]

x2(X, τ) = g2(X, τ) + w2(X ) + v2(τ) [21]

Let g1 and g2 satisfy the homogeneous boundary conditions and
remaining terms satisfy the nonhomogeneous boundary conditions.
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Boundary conditions (Eqs. 16, 17, 18, and 19) in terms of vi , wi and
gi can be written as

∂

∂ X
g1 (0, τ) = 0, and

∂

∂ X
w1 (0) = 0, τ > 0 [22]

∂

∂ X
g2 (1, τ) = 0 and

∂

∂ X
w2(1) = −δ, τ > 0 [23]

∂

∂ X
g1(α, τ) = γ (g1(α, τ) − κg2(α, τ)) , and

[24]
∂

∂ X
w1(α) = γ (w1(α) + v1(τ) − κ(w2(α) + v2(τ))) τ > 0

∂

∂ X
g1(α, τ)=β2 ∂

∂ X
g2(α, τ), and

∂

∂ X
w1(α)=β2 ∂

∂ X
w2(α), τ > 0

[25]
Substituting Eq. 20 into Eq. 13, the following equation is obtained.

∂

∂τ
g1(X, τ) + d

dτ
v1(τ) = 1

β2

∂2

∂ X 2
g1(X, τ) + 1

β2

d2

d X 2
w1(X ) [26]

As g1 satisfies the homogeneous part and, v1 and w1 satisfy non-
homogeneous parts, the following equations can be extracted from
Eq. 26.

d

dτ
v1(τ) = 1

β2

d2

d X 2
w1(X ) = k1 [27]

∂

∂τ
g1(X, τ) = 1

β2

∂2

∂ X 2
g1(X, τ) = −λ2

1 [28]

Here, k1 and λ1 are arbitrary constants. Solving Eq. 27 and 28 with
boundary condition given by Eq. 22 gives the following solution

v1(τ) + w1(X ) = 1

2
β2k1 X 2 + k1τ + a1 [29]

g1(X, τ) = B 1 cos (λ1βX ) e−λ2
1τ [30]

where a1 and B1 are integration constants. Similar equations can
be derived for concentration in region 2 using Eq. 23 as boundary
condition (using two arbitrary constants, λ2 and k2) as.

v2(τ) + w2(X ) = 1

2
k2 X 2 − (δ + k2) X + k2τ + a2 [31]

g2(X, τ) = B2
cos [λ2(X − 1)]

sin (λ2)
e−λ2

2τ [32]

where a2 and B2 are integration constants. Eqs. 29, 30, 31, and 32 have
eight constants (a1, a2, k1, k2, λ1, λ2, B1 and B2) to be determined
using the initial condition and remaining boundary conditions at the
interface (X = α). Using expressions for w1, w2, v1, v2, g1, and g2

(Eqs. 29, 30, 31, and 32) to solve for the interfacial boundary condition
given by Eq. 24, gives rise to the following relations

λ1 = λ2 = λ [33]

k1 = κk2 [34]

− 1

2
γκk2α

2 + γκαδ + γκαk2 − γκa2 + 1

2
β2γk1α

2 + γa1 − k1α = 0

[35]

B1

cos (αλ − λ) γβκ
= B2

sin (λ) (βγ cos (λβα) + λ sin (λβα))
= A

[36]
constant A is introduced to simplify the expressions. Second boundary
condition at the interface (Eq. 25) can be used to obtain the following
relation

k1 =
(

1 − 1

α

)
k2 − δ

α
[37]

and the equation for obtaining eigenvalues (λn)

−κ

tan φn
+ β

tan θn
+ λn

γ
= 0 [38]

where θn = αλnβ, φn = λn(α − 1). The solution takes the form of
infinite series

x1(X, τ) =
∞∑

n=1

Anγβκ cos φn cos (λnβX ) e−λ2
nτ + 1

2
β2k1 X 2 +k1τ+a1

[39]

x2(X, τ) =
∞∑

n=1

An (βγ cos θn + λn sin θn) cos [λn(X − 1)] e−λ2
nτ

+ 1

2
k2 X 2 − (δ + k2) X + k2τ + a2 [40]

In order to get one more equation for constants a1 and a2, initial
conditions are used in integral form as

α∫
0

x1 (X, 0) d X +
1∫

α

x2 (X, 0) d X = 0 [41]

which gives rise to the following equation.

(1 − α)a2 + a1α + 1

6
(β2κ − 1)k2α

3 + 1

2
(k2 + δ)α2 − 1

2
δ − 1

3
k2 = 0

[42]
Eqs. 37 and 34 can be used to solve for k1 and k2, while Eqs. 35

and 42 can be used to solve for a1 and a2.

a1= [(α3β2+3α3−6α2+3α)(κ−1)+2α3(1−β2)−3α2(1−β2)+1]κδ

6[α(κ−1)+1]2

+ 1

γ

(α − 1)ακδ

[α(κ − 1) + 1]2
[43]

a2 = [6α3(κ−1)2−(2α3β2−6α3−3α)(κ−1)+2α3(1−β2)+1]δ

6[α(κ−1)+1]2

+ 1

γ

α2κδ

[α(κ−1)+1]2
[44]

k1 = κk2 = − κδ

α(κ − 1) + 1
[45]

For Sturm-Liouville problem of this type where the eigenfunctions
are quasi-orthogonal, a constant is required to be multiplied in order
to make the resultant system orthogonal. In this case κ serves the
purpose.17 The quasi-orthogonal eigenfunctions for this problem are
as follows.

f1 (X ) = γβκ cos φn cos (λnβX ) [46]

f2 (X ) = (βγ cos θn + λn sin θn) cos [λn(X − 1)] [47]

Initial conditions can be used to find the coefficients An using κ to
make the eigenfunctions orthogonal.

α∫
0

x1 (X, 0) f1 (X ) d X + κ

⎛⎝ α∫
0

x2 (X, 0) f2 (X ) d X

⎞⎠ = 0 [48]

The expression for An can be expressed as

An = 2βκδ cos θn cos φn

χ
p
1 λn

(
χ

p
2 βκ cos2 φn − 1

γ2 χ
p
3

(
χ

p
4

)2
) [49]
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using the following relations

χ
p
1 = κγ cos φn − λn sin φn [50]

χ
p
2 = cos θn sin θn + θn [51]

χ
p
3 = cos φn sin φn + φn [52]

χ
p
4 = βγ cos θn + λn sin θn [53]

Eqs. 39 and 40 are the analytical solution for diffusion in planar
electrode where the constituents are given by Eqs. 38, 43, 44, 45, 49,
50, 51, 52, and 53.

Cylindrical geometry.— The governing equations for composites
in non-dimensional form in cylindrical coordinates are

∂

∂τ
x1(X, τ) = 1

β2

1

X

∂

∂ X

(
X

∂

∂ X
x1(X, τ)

)
, 0 < X < α [54]

∂

∂τ
x2(X, τ) = 1

X

∂

∂ X

(
X

∂

∂ X
x1(X, τ)

)
, α < X < 1 [55]

The initial and boundary conditions in this case can be ex-
pressed using Eqs. 6, 7, 8, 9, and 10. Using similar approach, the
solution for cylindrical coordinate system can be represented as:

x1(X, τ) =
∞∑

n=1

Anχ
c
2 J0 (βλn X ) e−λ2

nτ + 1

4
k1β

2 X 2 + k1τ + a1 0 ≤ X < α [56]

x2(X, τ) =
∞∑

n=1

Anχ
c
1λn [J1 (λn) Y0 (λn X ) − Y1 (λn) J0 (λn X )]e−λ2

n t + k2 X 2

4
−

(
δ + k2

2

)
ln(X ) + k2τ + a2, α < X ≤ 1 [57]

Here Jα(.) and Yα(.) are the Bessel functions of first and second kind respectively. The eigenvalues are the positive roots of following equation

β2χc
2 J0 (θn) + χc

1

(
β2κλn [Y1 (λn) J0 (λnα) − J1 (λn) Y0 (λnα)] + βλχ2

γ

)
= 0 [58]

where θn = αλnβ. The summation coefficient is given as

An = 2 J1 (θn) δκ

λ2
nπ

(
(χc

1)
2
α2

2

[
J 2

0 (θn) + J 2
1 (θn)

] + J 2
1 (θn) λ2

nκ
[
χc

2Y 2
1 (λn) + χc

4 J1 (λn) Y1 (λn) + χc
3 J 2

1 (λn)
] ) [59]

where

χc
1 = βλn [Y1 (λnα) J1 (λn) − J1 (λnα) Y1 (λn)] [60]

χc
2 = 1

2

[
J 2

0 (λn) − α2
(
J 2

1 (λnα) + J 2
0 (λnα)

)]
[61]

χc
3 = 1

2

[
Y 2

0 (λn) − α2
(
Y 2

1 (λnα) + Y 2
0 (λnα)

)]
[62]

χc
4 = α2 [Y0 (λnα) J0 (λnα) + J1 (λnα) Y1 (λnα)] − Y0 (λn) J0 (λn) [63]

and the constants are given as

k1 = κk2 = −2κδ

α2(κ − 1) + 1
[64]

a1 =
[
4α2 (1 − κ) ln(α) − (

β2 (2 − κ) + 1 − 2κ
)
α4 + (

β2 − κ
)

2α2 + 1
]
δκ

4
(
α2(κ − 1) + 1

)2 +
(
α2 − 1

)
αδκ(

α2(κ − 1) + 1
)2

γ
[65]

a2 = a1

κ
+ δα

2

[
2

γ
(
α2(κ − 1) + 1

) +
[
(κ − 1) 2α ln(α) + α

(
1 − β2

)](
α2(κ − 1) + 1

) ]
[66]

Spherical geometry.— As described in detail for the rectangular
core-shell, one can derive the solution for isotropic radial diffusion
for spherical composite particle. For spherical system the governing
equations are

∂

∂τ
x1(X, τ) = 1

β2

1

X 2

∂

∂ X

(
X 2 ∂

∂ X
x1(X, τ)

)
, 0 < X < α [67]

∂

∂τ
x2(X, τ) = 1

X 2

∂

∂ X

(
X 2 ∂

∂ X
x1(X, τ)

)
, α < X < 1 [68]

The initial and boundary conditions can be expressed using Eqs 6,
7, 8, 9, and 10. The solution for spherical geometry can be derived as

x1(X, τ) =
∞∑

n=1

−An
χs

2β
2

λn

(
sin (λnβX )

X

)
e−λ2

nτ

+1

6
k1β

2 X 2 + k1τ + a1, 0 ≤ X < α [69]

x2(X, τ) =
∞∑

n=1

−An
χs

1

λn

(
λn cos[λn(X − 1)] + sin[λn(X − 1)]

X

)

× e−λ2
nτ + 1

6
k2 X 2 + 1

X

(
δ + 1

3
k2

)
+k2τ + a2, α < X ≤ 1 [70]
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where eigenvalues are the roots of following equation (using θn

= αλnβ, and φn = λn(α − 1)).(
θ2

n − θ2
n

λn tan φn

)
+

(
α + αλn

tan φn

) (
β2 − κ + θn κ

tan θn

)
+ 1

γ

(
1 − θn

tan θn

) (
αλ2

n + 1 − φn

tan φn

)
= 0 [71]

The summation coefficients are given as follows:

An = 2χs
1δκλn[

β3
(
χs

2

)2
χs

3 − χs
4

(
χs

1

)2
κ
] [72]

where the constituents are given as

χs
1 = θn cos θn − sin θn [73]

χs
2 = φn cos φn − (

αλ2
n + 1

)
sin φn [74]

χs
3 = cos θn sin θn − θn [75]

χs
4 = (

1 − λ2
n

)
cos φn sin φn + 2λn cos2 φn − φnλ

2
n − (α + 1) λn

[76]
and values of constants (a1, a2, k1, and k2) in this case turn out to

be

k1 = κk2 = −3κδ

α3(κ − 1) + 1
[77]

a1 =
[((−3β2 − 5

)
α5 + 15α3 − 10α2

)
(1 − κ) + (

1 − β2
) (

2α3 + 5
)
α2 + 3

]
δκ

10
[
α3(κ − 1) + 1

]2 +
(
α3 − 1

)
αδκ[

α3(κ − 1) + 1
]2

γ
[78]

a2 = −
[
10α5 (1 − κ)2 + ((−2β2 + 10

)
α5 − 15α3

)
(1 − κ) − (

1 − β2
)

2α5 − 3
]
δ

10
[
α3(κ − 1) + 1

]2 + κα4δ[
α3(κ − 1) + 1

]2
γ

[79]

Results

This section presents transient concentration profiles for spherical
core-shell particle. Though the solution is general enough to describe
slower interfacial dynamics, for illustration purposes, only cases with
very fast interfacial kinetics (γ � 1) are discussed. Three different
sets of parameter values are chosen to visualize the diffusion dynamics
that resemble to cases B, C and D in Figure 2.

Figure 3 presents concentration profiles for β >1 and κ >1 (equiv-
alent to case C in Figure 2). For κ = 2, the interfacial concentration
in the core will be twice compared to the interfacial concentration in
the shell. Moreover two orders of magnitude difference in diffusivity
(β2 = D2/D1 = 100) will create steep concentration gradients in the
core which will lead to significant stress development in the particle.
The initial concentration at t = 0 (Gibb’s Phenomena), is also shown
in following Figs. 3–8.

Figure 4 describes the concentration profiles for β = 1 and κ >1
(close to case D in Figure 2). The choice of above parameters leads to
interesting situation of having the inner core more concentrated than
the shell. This situation can never occur in single domain spherical
charging with nonnegative current. One interesting difference in the
current case versus the previous case is that despite having κ greater
than one, the average concentration in inner core is smaller than the
shell for the previous case. This phenomenon will alter the stress
dynamics discussed in the following section.

Figure 5 describes the concentration profiles for β <1 and κ <1
(equivalent to case B in Figure 2). As the inner core has higher dif-
fusion coefficient than the outer shell, a flat concentration profile is
expected in the inner core.

Cases with κ < 1 are similar to diffusion in a sphere with single
domain as the inner core will always have lower concnetration than
the outer core. But interesting stress profiles can be seen in these
cases depending on the values of partial molar volume (�). For exam-
ple, three cases can be visualized for �core/�shell < κ, �core/�shell

= κ, �core/�shell > κ that will generate different stress profiles.
Next, we demonstrate the use of derived solution to describe dif-

fusion in special cases. For example, choice of κ � 1 can mimic the
transport of lithium in hollow spherical particle or particle with inert
core, Figure 6 shows the concentration profiles in a hollow sphere
using κ = 10−10, and β = 10−4.

Similarly, using κ = 2, β = 1, γ � 1, the solution derived by
Subramanian and White8 can be constructed (Figure 7) suggesting the
validity and flexibility of the model developed. Lastly, using κ = 1, β
= 1, and γ � 1, solution for diffusion in a sphere with single domain
can be obtained (Figure 8). The model developed shows that while
very little changes may be observed in the charge discharge curves
(qualitatively), situation deep inside the core shell material can be
very different from the spherical particle case with the same material.

Application in Stress Estimation in Core-Shell
Composite Particles

One of the reasons for designing core-shell type composite
electrode materials is to circumvent the pulverization of high energy
materials with high volumetric expansion. Intercalation induced
stress generation is one of the main reasons for capacity fade. Mod-
els to quantify intercalation-induced stress can be divided into two

categories: strain splitting12,14–16 and stress splitting.18,19 The theory
of the strain splitting approach has been developed by Timoshenko20

where thermal stresses have been modeled using strain splitting,
with these models being called thermal analogy models. Here,
the intercalation-induced stresses are treated in similar way as
the temperature-induced stresses. A very detailed model that used
stress splitting was developed by Christensen et al.,18,19 which was
shown to be equivalent to the former approach (strain splitting) by
Timoshenko.20 In both categories, different models can be obtained
depending upon the inclusion of pressure-induced diffusion. Inclusion
of pressure induced diffusion results in nonlinear partial differential
equations (PDEs). It is very difficult to apply analytical treatment to
such PDEs, hence this paper focuses on stress calculation ignoring
pressure induced diffusion and using strain splitting method. De-
tailed description of strain-splitting method to model intercalation
induced stresses in spherical geometry with isotropic radial diffusion
can be found in literature.12,14–16 Deshpande et al.14 presented ana-
lytical expressions for the intercalation-induced stresses developed in
a spherical particle with moving phase boundary assuming lithium
concentration independent material properties (Young’s modulus (E),
partial molar volume (�), Poisson’s ratio (ν)) and neglecting volume
expansion. These assumptions may not give accurate description for
systems with high volume expansion (e.g. Silicon), but they allow
analytical treatment of the problem and decouple concentration and
stresses. Expressions are listed in dimensionless form for radial (σr )
and tangential stresses (σt ) in both regions of the isotropic spherical
particle with only radial diffusion, derivation of these equations can
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Figure 3. (Left) concentration at t = 0, (Right) concentration profiles during intercalation.
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Figure 4. (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time.
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Figure 5. (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time.
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Figure 6. (Left) concentration profiles at t = 0, (Right) concentration profiles during intercalation at different time in a hollow sphere (inert core).
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Figure 7. (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time in sphere with continuous concentration at the interface.

be found in Deshpande et al.14 Defining following expressions

Q1(X ) =
X∫

0

ξ2x1 (ξ) dξ [80]

Q2(X ) =
X∫

α

ξ2x2 (ξ) dξ [81]

where ξ is a dummy integration variable, xi = ci/c0 and introducing
the dimensionless variables

σ̂ri = σri∑ ; σ̂ti = σti∑ [82]

where
∑ = c0�2 E2 and dimensionless parameters

� = E1

E2
; � = �1

�2
[83]

the dimensionless radial and tangential stress can be expressed as

σ̂r1 (X )= 2

3

��

(1−ν1)

(
�2

α3�1
Q1(α)− 1

X 3
Q1(X )− 3(1−ν1)

�1�
Q2(1)

)
,

0 < X < α [84]

σ̂t1 (X ) = 2

3

��

(1 − ν1)

⎛⎝ �2

α3�1
Q1(α) − 3(1 − ν1)

��1
Q2(1)

+ 1

2

Q1(X )

X 3
− 1

2
x1(X )

⎞⎠, 0 < X < α [85]

σ̂r2 (X ) = 2

3 (1 − ν2)

⎛⎝3��
(
1 − X 3

)
(1 − ν2)

�1 X 3
Q1(α)

+
(

2α3�3

�1 X 3
− �4

�1

)
Q2(1) − Q2(X )

X 3

⎞⎠, α < X < 1

[86]

σ̂t2 (X ) = 1

(1 − ν2)

⎛⎝ Q2(X )

3X 3
− x2(X )

3
− �� (1 − ν2)

�1

(
2 + 1

X 3

)

× Q1(α) −
(

�4 + �3α
3

X 3

)
2Q2(1)

3�1

⎞⎠, α < X < 1 [87]
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Figure 8. (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time with core and shell having exact same material
properties.
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Figure 9. Radial and tangential stresses during galvanostatic intercalation in spherical particle of single domain.

where

�0 = [2(2ν2−1)α3−(1+ν2)]�, �1 = �0 + 2(1 − α3)(2ν1 − 1),

�2 = �0 + (1 − α3)(1 + ν1), �3 = (2ν2 − 1)� + 1 − 2ν1,

and �4 = (1 + ν2)� + 2(1 − 2ν1) [87]

Three scenarios are discussed using δ = −0.25. First, a core-shell
particle with continuous concentration profiles using κ = 1, and γ � 1
is considered (Figure 7 and Figure 8). Then, stress generation in core-
shell particles with discontinuous concentration (specifically κ >1)
are presented (Figure 3 and Figure 4) followed by hollow sphere
(Figure 6).

Core-shell sphere with continuous concentration at the interface
(κ = 1, γ � 1).— If transport and mechanical properties of both the
regions are taken equal with fast interfacial dynamics (i.e. κ = 1, β
= 1, � = 1, � = 1, and ν1 = ν2), the resultant configuration will
denote diffusion and stress generated in a sphere with single domain.
Figure 8 shows the concentration distribution and Figure 9 shows the
radial and tangential stresses. Simplification of this magnitude gives
rise to the basic understanding of intercalation induced stresses in a
particle. The radial and tangential stresses are mainly dependent on
some representation of the gradient of concentration profiles (differ-
ence between average concentration up to the point of interest and
total average concentration). As the short time dynamics start to fade
out (around τ = 0.2 in Figure 8), the stress profiles start to saturate
reaching a maxima (Figure 9), which is expected as the steepness of
profiles remains constant afterwards. Positive values of stress repre-
sent tensile stress and negative values denote compressive stress. The
concentration profiles make the outer layers expand more compared

to inner layers resulting in tensile radial stress during intercalation at
every point in X. Tangential stresses on the other hand are compressive
at the surface and tensile at the center. The peak compressive stress
occurs at the surface and peak tensile stress at the center of the particle
and the locations for peak stresses do not change during intercalation.

Saturation of stresses to a maximum value is due to uniform partial
molar volume for both materials. If partial molar volume of the inner
core is assumed to be larger than the outer shell (i.e. � > 1) keeping
other parameters same, the stress profiles will change drastically even
though the concentration profiles will remain the same. After the short
time dynamics die out, the inner core will have to face more expansion
due to higher partial molar volume facing resistance from the shell
while expanding, which will result in compressive nature of radial and
tangential stresses at the center. As can be seen from Figure 10, the
peak radial and tangential stresses at the center go through a maxima
and then change from tensile to compressive. Location and nature of
peak stresses for the inner core also changes from the center to the
interface and from tensile to compressive.

Similarly, if the partial molar volume of the core is small compared
to the shell (i.e. � < 1), the radial stress will remain positive (tensile
stress) at every point in X and keep increasing. Tangential stress in the
core will also remain positive but at the interface, it will go through a
maxima and then change from tensile to compressive.

Though having different values of diffusivity in both regions
(β 	=1) will affect the magnitude of stress developed as steepness
of concentration profiles is affected by the values of β (Figure 7), the
shape of underlying profiles remains more or less similar.

Core-shell sphere with discontinuous concentration at the inter-
face (κ 	=1, γ � 1).— The parameters in this section are chosen
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Figure 10. Radial and tangential stresses during galvanostatic intercalation in spherical particle with higher partial molar volume for the core.
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Figure 11. Radial and tangential stresses during galvanostatic intercalation in spherical particle with lower partial molar volume for the core.

to represent a core-shell configuration where the core comprises of
higher capacity material. The diffusion coefficient of the inner core is
assumed to be two orders of magnitude smaller than that of the outer
shell (β2 = D2/D1 = 100) and Young’s modulus of the core is as-
sumed to be one order of magnitude larger than the shell (� = �1/�2

= 10). Values of other parameters, κ and � are taken as 2 and 1.5.
As the inner core has higher magnitudes of stresses compared to the
outer shell, a different kind of scaling (sgn [(·)] |(·)|1/4, here sgn is a
signum function) is done to represent the stresses in Figure 12. This
scaling takes care of both positive and negative values and maintains
continuity of radial stresses (also the reason for the amplification in
the Gibb’s phenomenon). As the diffusivity of the core is very small
compared to the shell, more time is required for transient behavior to
fade out hence stress profiles are plotted up to τ = 1.2.

In this configuration, the radial and tangential stresses at the center
keep rising and remain tensile for all time. This is due to very small
diffusion coefficient in the core compared to the shell which, in effect,
restricts the core to have enough concentration that can swell the core
despite higher partial molar volume and higher interfacial concentra-
tion. Even though the concentration in the core is small compared
to the shell, the interface on the core side will have double the con-
centration and partial molar volume compared to the interface on the
shell side. This causes the core side interface to swell significantly
compared to its nearby region, developing compressive stress at the
interface (τ = 1.2 in Figure 12).

If the ratio of diffusivity (β2) is changed to 1 keeping other pa-
rameters constant, that will make the core more concentrated than
the shell (after the short time transient dies out, Figure 4), in that

case expansion of the core aided with higher partial molar volume
will lead to compressive radial and tangential stresses in the core
(Figure 13).

The magnitude of peak stresses in the particle also depends on
the ratio of core and shell thicknesses (α). As the thickness of the
core (high energy density material) is decreased, stress generated
will be smaller due to flatter concentration profiles in the core (less
diffusion resistance). This situation conflicts with the objective of
having increased energy density compared to graphite particle. On
the other hand, if the value of α is chosen close to 1, the stress
generated will be significantly higher, which may lead to breaking
of the outer shell. Hence a careful selection of material properties
is needed in order to deliver efficient energy storage material. As
seen earlier, changes in one or two parameters can drastically change
the stress behavior which gives an opportunity to carefully tune the
transport parameters for better material properties to address issues
relating to capacity fade. Our future efforts will address optimization
of these design parameters based on the model reported here.

Hollow sphere or sphere with inert core.— As discussed earlier
(Figure 6), solution derived in this paper can be used to mimic the
transport behavior of a hollow spherical particle or a particle with inert
core. Stress profile for the same is plotted in Figure 14. Absence of
the inner core will result in the absence of radial stresses at the inner
surface of the particle. This can equivalently be represented as very
small Young’s modulus for the core (� = 10−10) with equal partial
molar volume (� = 1). Following plots were obtained by choosing α
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Figure 12. Radial and tangential stresses during galvanostatic intercalation in Si/C type core-shell particle; oscillations are amplified due to scaling.
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Figure 13. Radial and tangential stresses during galvanostatic intercalation in Si/C type core-shell particle for equal diffusivities.
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Figure 14. Radial and tangential stresses for hollow sphere.

= 0.3,δ = −0.25, ν1 = 0.3, and ν2 = 0.3. As the radial stress is zero
on both the surfaces, the radial stress in the particle goes through a
maxima for α < X < 1. Moreover, the peak radial stress and tangential
stress saturate to a maximum value for large τ. Figure 14 also shows
that the location of peak radial stress shifts toward the center from
surface under these charging conditions.

Similar stress calculations can be performed for radial isotropic
diffusion in core-shell and hollow cylindrical geometry. The above
analysis does not incorporate volume expansion, pressure induced
diffusion and concentration dependent material properties. As there
can exist a significant stress difference at the interface (Figure 10,
Figure 11, Figure 12, and Figure 13), pressure induced diffusion may
play a significant role and alter the dynamics.

Code Dissemination

In order to facilitate the use of derived solution considering the
complexity of the expressions, final analytical expressions for con-
centration profiles for three geometries in MAPLE and MATLAB
environments will be hosted at the authors’ website.21 In addition, a
code to calculate radial and tangential stresses in spherical core-shell
particle according to model used in the paper will also be hosted on
the website.

Conclusions

Intercalation of lithium in core-shell material is modeled with a
very general treatment at the interface including interfacial dynamics.

The model is solved using a modified separation of variables method
developed earlier. It was shown that diffusion in core-shell particles
can be modeled using 3 important parameters (ratio of diffusivities,
ratio of equilibrium concentrations, and interface dynamics). Cases
studied in this paper assumes very fast interfacial dynamics but slower
interfacial dynamics do play a role in concentration profiles and stress
behavior specially at short times.

In addition, we plan to perform (1) Efficient reformulation22,23 for
particle level dynamics in core-shell model for faster simulation. (1)
Reformulated Pseudo 2D model24 using the core-shell model at the
particle level. (3) Model based design of material properties,25,26 both
at the particle level and sandwich level of lithium ion batteries. (4)
Derivation of optimal charging profiles using reformulated models
to reduce capacity fade.27,28 (5) Identification of transport parameters
using impedance response of core-shell materials from experimental
data.
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List of Symbols

An Coefficients in infinite series
ai , ki Constants used to represent solution
α Fractional coverage of region 1 (R1/R2)
Bi Constants
β2 Ratio of diffusivity (D2/D1)
c∗

i Equilibrium concentration, mol/m3
c∗

i Concentration, mol/m3
χ j

m Eigenvalues dependent constants
Di Diffusion coefficient, m2/s
�i Dimensionless groups to represent stress in compact form
δ Dimensionless current density
E Young’s modulus, Pa
F Faraday’s constant, 96487 C/g equivalent
fi (X ) Eigenfunctions
φn, θn Eigenvalues dependent constants
gi Variable to present Homogeneous solution
γ Dimensionless interfacial kinetics
Is Current density, A/m2

κ Ratio of equilibrium concentration
� Interfacial dynamics, m/s
λi Constant
λn Eigenvalues
Ni Molar flux, mol/s/m2

n Charge associated with the single ion of guest molecule
� Ratio of partial molar volume
� Ratio of Young’s Modulus
r Axial distance/radial distance, m
R1 Thickness of first region, m
R2 Total thickness of the geometry, m
σri Radial stress, Pa
σti Tangential stress, Pa
σ̂ri Dimensionless radial stress
σ̂ti Dimensionless tangential stress
t Time, sec
τ Dimensionless time
ν Poisson’s ratio
wi , vi , Variables to present nonhomogeneous solution
xi Dimensionless concentration
X Dimensionless axial/radial distance
� Partial molar volume, m3/mol

Subscripts Used in List of Symbols

i i = 1 or 2, for region 1 (0 < r < R1) and region 2 (R1

< r < R2)

n n = 1..∞, positive eigenvalues
m Constants used to make the expression compact (used

in χ j
m)

List of Superscript

p, c, s Denote planar, cylinder and sphere respectively (used
in χ j

m)
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