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Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy
to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be
achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization
of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the er-
ror that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the
behavior of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering mod-
els, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent
transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have
a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo
three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high
accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computa-
tionally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has
proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this paper, the
reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.
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There is an increasing societal pressure to utilize alternative en-
ergy sources to supplant the high use of fossil fuels. As energy and
power demand is continually increasing, both in terms of grid usage
and for transportation, there has been more interest in developing re-
newable energy sources. One problem with renewable energy sources
is the intermittent nature and short-term unpredictability of supply of
sources such as wind and solar. Thus, in order to match supply and
demand, some form of energy storage is required, and lithium-ion
battery technologies are one possible solution. Furthermore, electric
vehicles are increasing in popularity as the price of liquid fuels gen-
erally increase. Lithium-ion batteries are a popular choice for electric
vehicles because of their high energy and power density compared to
other battery chemistries.

The performance of lithium-ion batteries is highly dependent on
the conditions at which they are exposed as well as the state of the
internal variables. This has led to the development of several math-
ematical models to simulate battery behavior, ranging from simple
empirical-based models or circuit based models1,2 to computationally
expensive molecular dynamics simulators (which cannot be practi-
cally used to simulate a full cell). Much of the research on battery sim-
ulation has focused on continuum-scale models that exist between the
two extremes, most notably the single particle model (SPM) and the
pseudo two-dimensional (P2D) porous electrode model.3–7 The SPM
neglects variation across the thickness of the electrode and ignores the
effects of the electrolyte phase, which enables fast computation.8–11

In contrast, the P2D model tracks the lithium concentration in the
active material and electrolyte as well as the potential in the elec-
trolyte and the active material.3,12 Furthermore, the P2D model de-
veloped by Doyle et al.3 has proven to be robust enough to allow
for the inclusion of additional physical phenomena as understanding
improves,6,10,12–21 for example, by considering solid electrolyte in-
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terface (SEI) layer growth8,19,22 or the stress development in active
particles during lithium intercalation.23–29

Performance, safety, and life behavior are directly impacted by the
temperature which a cell experiences during cycling.30 For instance,
low temperatures compromise the amount of power that a battery
can provide by increasing the resistance to lithium diffusion in the
cell. This makes operating battery powered devices difficult in cold
weather. Conversely, a battery operated at a high temperature can be
physically damaged or experience higher levels of capacity fade.30 An
overheated or overcharged cell may ultimately undergo thermal run-
away, a potentially explosive situation. Although thermal runaway is
a severe, acute event, high operating temperatures can also have other
deleterious effects.30 Side reactions which contribute to capacity fade
may be more favorable under high temperatures.31 Stresses caused by
thermal expansion can contribute to mechanical failures. Vaporization
of the electrolyte can cause pressure buildup which can lead to rupture
and expose the (highly reactive) battery internals to the atmosphere.
Predicting and maintaining temperature rises in a lithium ion cell is
critical to ensure safety and life, especially in high power applications
which can see rather large temperature rises. Thus, considering the
thermal effects in lithium-ion batteries has been a popular subject in
the literature when designing and operating batteries.32–36

The P2D model is popular among researchers due to its good pre-
dictive capability, but also has higher computational costs compared
to the single particle or circuit based models. The P2D model is often
solved using the method of lines (MOL) by discretizing the spatial di-
mensions (x and r) using numerical techniques (often finite difference)
to convert the system of PDEs to a system of 1st order differential al-
gebraic equations (DAEs).37–40 The MOL allows for computationally
efficient time stepping algorithms, such as DASSL and DASKR,41

to be used to simulate the model. This is an initial value problem,
which requires initial conditions to be provided that must be consis-
tent with the algebraic equations, leading many DAE solvers to fail
when applied to battery models if consistent initial conditions are not
provided.5,42
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Table I. Governing equations of the porous electrode model in
higher dimensions.

Governing Equations

εi
∂c

∂t
= ∇ · Def f,i ∇c + ap (1 − t+) ji

−∇·[σe f f ∇�1]−∇·[κeff∇�2]+∇·
[

2κeff RT

F
(1−t+)∇ ln c

]
=0

σe f f,i ∇2�1 = ai F ji

∂cs
p

∂t
= 1

r2

∂

∂r

[
r2 Ds

p

∂cs
p

∂r

]

ρi C p,i
dTp

dt
= ∇ · λi ∇T + Q

The high computational cost of P2D simulation has motivated
researchers to develop mathematical techniques to improve simula-
tion efficiency. Several researchers have used different discretization
schemes to eliminate the radial dependence and reduce the dimension-
ality by one.3,39,43–46 Attempts to simplify the primary dimension have
also been done to reduce the computational cost. For example, proper
orthogonal decomposition (POD) can reduce the total number of states
simulated, but the system must be recreated if parameters or operating
conditions are changed.47 Quasi-linearization combined with a Padé
approximation has also been used to simplify the model.48 Reformu-
lation work based on Galerkin’s method has been used but was unable
to handle non-linear parameters.38 However, a model reformulation
based on orthogonal collocation has proven to be accurate, fast, and
robust for simulating battery performance.40 Reformulation based on
orthogonal collocation has enabled the P2D model to be used for
parameter estimation49 optimization,50 and real-time control.51

The standard porous electrode P2D model is a one dimensional
model (the pseudo dimension refers to the radial direction in the
solid phase particles). However, in large format cells, such as those
which are used in electric vehicles, grid storage, or in satellites, a 1D
model may not be adequate as the variation in the direction parallel
can become significant. This is especially important when temperature
effects are considered. For example, a large cell can experience a large
temperature rise in the center of the electrode relative to the surface,
which directly affects the local current density, diffusion rates, and
other phenomena. For clarity and to convey the variation in the y-
direction, in this paper, we will call this model a Pseudo-3D (P3D)
model. The porous electrode model generalized to higher dimensions
is given in the Table I.

The highly detailed nature of the standard P2D model makes the
computation rather difficult, while simulating a P3D model greatly in-
creases the computational expense. A finite difference approach with
50 node points in each electrode and 35 node points in the separa-
tor in the x-direction and 25 node points in the y-direction results
in a system of nearly 15,000 DAEs that must be solved for a sin-
gle cell, if the parabolic profile is used in the solid phase. If a more
detailed discretization is used for the solid-phase diffusion, the num-
ber of equations will be even greater. Thus, much of the work done
by researchers modeling thermal behavior in batteries have used a
1D model30 or decoupled the thermal profile from the electrochem-
ical reactions.4,35,36,48,52,53 For example, Evans et al.52 modeled heat
generation in cylindrical cells using local current density which was
decoupled from the overall thermal effects. Kim et al.54 simulated a
large format lithium-ion polymer battery using parameters from small
cells, but maintained a one-way coupling between the thermal and
electrochemical effects (i.e. the electrochemical reactions and current
flow contributed to the thermal calculation, but the temperature did
not affect electrochemical behavior). They extended this model for
electric vehicle applications using constant power charge/discharge
protocols.55 Inui et al.56 studied heat generation in prismatic and
cylindrical cells using a finite element analysis with resistive heat-
ing in each element. Kim et al.57 developed a Multi-Scale Multi-
Dimensional (MSMD) model to study large format lithium-ion bat-

teries. This MSMD model simulated the electrochemical behavior at
the particle, electrode, and cell domains, with appropriate coupling
between the scales. This allowed multiple cell designs to be tested,
while only using a 1D model for the electrode domain (analogous to
cell sandwich level), but being able to model the temperature in 3D.57

Gerver and Meyers58 performed 3D thermal simulation of lithium
batteries in planar configurations by arranging several 1D porous elec-
trode models in series and a grid configuration. Thus, all current flow in
the cell sandwich was in the direction perpendicular to the electrode,
and lithium-ion transport in the direction parallel to the electrodes
was neglected. The different 1D nodes were coupled at the current
collectors, which were modeled as a system of temperature vary-
ing resistors.58 This improves the computational efficiency as solving
several 1D models is simpler than solving a full 2- or 3-dimensional
model, while allowing for some effects of a temperature profile to be
analyzed. McCleary et al.59 extended the work of Gerver and Mey-
ers by applying a similar approach of using a series of 1D porous
electrode models to spirally and prismatically wound cells, which are
standard configurations for commercially made lithium-ion cells, by
accounting for the effects of curvature and increasing electrode sur-
face areas in the outer layers. They were able to model the effect of
the number and positions of tabs on heat generation but again ne-
glected ion transport and current density in the direction parallel to
the electrodes.59 Christensen et al.60 coupled the 1D dualfoil model34

in a Fluent environment,61 allowing a fine mesh grid to be used for
the temperature simulation while using a coarser mesh for the electro-
chemical reactions. At each time step, the local temperature was used
to determine the behavior of each electrochemical element by using a
Newton-Raphson approach to solve for the voltage to achieve the total
specified current (with voltage and temperature being the only variable
to couple the 1D electrochemical elements). Once the electrochem-
ical elements reached a converged solution, the heat generation was
calculated from the current density and fed into the thermal mesh.60

This approach allowed parallelization of a multi-core processor per-
formed to solve the system improving the computational speed of
the entire system.60 Tourani et al.62 coupled a series of 1D porous
electrode models while simulating a 2D thermal model, with heat
generation occurring due to the electrochemical reaction and electri-
cal resistances and experimentally verified their results for a lithium
polymer cell, and a lithium iron phosphate cell. Xu et al.63 performed
a two-dimensional modeling using COMSOL64 which accounted for
mass and charge conservation in both dimensions and examined the
effect that tab position had on the temperature profiles.

Reformulation and Simulation

In this work, a fully coupled thermal-electrochemical battery
model is developed which accounts for a two dimensional variation
of all dependent variables. As noted previously, such a model can be
prohibitively expensive to directly simulate. Wu et al.67 showed the
importance of understanding the physics of the problem and the ef-
fect of the extent of coupling of the potential equations on simulation
times using a similar battery model. They developed an algorithm
based on the Newton linearization scheme and solved the resulting
algebraic equations using an iterative GMRES solver rather than the
usual Gauss elimination and were able to show an increase in the
convergence speed. In addition, they showed that Jacobian estimation
need not be exact, but representative of the problem with the most
significant physics involved captured in the Jacobian estimation. Note
that their paper uses finite volume method which conserves mass,
momentum and in our opinion, this helps avoid the need for accu-
rate Jacobian estimation. Jacobian estimation accuracy can depend
on the solver and method used in time and also the method used for
discretization.

However, in order to reduce the computational cost even further,
here we use orthogonal collocation in two dimensions in a method
analogous to that used in model reformulations in 1D as reported
earlier.40 This allows the simulation of a porous electrode pseudo 3D
(P3D) model with thermal effects to be performed in a reasonable
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time. Table I shows how including additional dimensions make sim-
ulation more complicated. Specifically, the charge balance must be
represented as a 2nd order PDE in the 2D formulation. When only a
single dimension is considered, the charge balance equation can be
simply integrated to give the total current flowing through the cell,
resulting in a 1st order PDE often used in the one-dimensional formu-
lation of the porous electrode model.

As mentioned previously in Northrop et al.,40 the original model
equations are defined in three regions sequentially, namely cathode,
separator and anode. For example, the positive electrode equations are
defined in the region [0, l p] whereas the negative electrode equations
are defined in the region [l p + ls, l p + ls + ln]. In order to keep the
computations simple, each of the coordinates in both x and y directions
are transformed to the interval [0, 1]. A list of transformed equations
is shown in Table II for each of the three regions.

Orthogonal collocation is used here to discretize the spatial direc-
tion to develop a system of differential algebraic equations (DAEs),
which can be solved using efficient and well-established integrators
with variable time steps. The application of orthogonal collocation to
higher dimensions is a logical extension of the one-dimensional case,
which can be found in Ref. 40, and is described in detail in Villad-
sen and Michelsen.65 However, rather than estimating each dependent
variable as a series solution with a single summation, the series ap-
proximation must consist of a double summation of trial functions
which can generally be given as

uapprox (x, y, t) =
N+2∑
j=0

N+2∑
k=0

Bj,k(t)Z j (y)Zk(x) [1]

Where Z j (y) and Zk(x) are pre-chosen trial functions. The first N + 1
coefficients, Bj,k(t) ( j, k = 0 to N), are determined by using the
method of weighted residuals (MWR) which aims to find the coeffi-
cients which minimize the error.52 The coefficients corresponding to
j, k = N + 1 and N + 2 are calculated using the boundary conditions
and will be discussed shortly. First, consider a general differential
equation of the form (for example, the governing equations given in
Table II):

D[u(x, y, t)] = 0 [2]

Define the residual of an approximate solution as

R(x, y, Bj,k(t)) = D[uapprox (x, y, t)] [3]

which describes how much the approximate solution does not exactly
satisfy the system of differential equations. If the residual, R(x, y), is
identically zero for all x and y, the approximate solution is the exact
solution, but this is not generally the case in numerical solutions.
The MWR aims to minimize the residual across the domain in some
average way: ∫∫

R
(
x, y, Bj,k(t)

)
W j,k(x, y)dxdy = 0 [4]

Where enough weight functions, W j,k(x), are used to generate enough
equations to solve for the unknown coefficients, Bj,k(t). In the case
of highly non-linear governing equations, as those found in battery
models, the integration in Equation 4 must be done numerically with
significant computational cost. For collocation, the Dirac delta func-
tion is used as the weight function, W j,k(x) = δ(x − x j )δ(y − yk), to
eliminate the need to perform the integration and the system reduces to

R
(
Bj,k(t), x = x j , y = yk

) = 0 [5]

Equation 5 is a system of DAEs in which the x and y dependence has
been eliminated, and can be used to solve for the Bj,k(t) coefficients.

Importantly, the error is minimized when the collocation points
are chosen specifically as zeros of orthogonal polynomials. This is
referred to as orthogonal collocation.53 In this work, the trial func-
tions used are Chebyshev polynomials shifted to the domain [0,1]
(rather than [−1,1] as Chebyshev polynomials are traditionally de-
fined). Thus, the trial functions are given as:

Z j (X ) = Tj (2X − 1) [6]

The collocation points used are the Chebyshev-Gauss-Lobatto (CGL)
points, of which the kth zero is given by

Xk,N = −1

2
cos

⎛
⎝

(
k + 1/

2

)
π

N + 1

⎞
⎠ + 1

2
[7]

When N trial functions are used. Note that equations 6 and 7 apply to
the y-direction as well.

Determining the coefficients, Bj,k(t) corresponding to j, k = N + 1
and N + 2 can be done in a similar manner as described above. How-
ever, as the boundaries are one dimensional, it is somewhat simpler.
Consider the general boundary condition at x = 0 (with the under-
standing that the same procedure applies to the other boundary):

DBC [u(x = 0, y, t)] = 0 [8]

Again, the residual is used

RBC (y, Bj,k(t)) = DBC

[
uapprox (x = 0, y, t)

]
[9]

Rather than the double integral used in Equation 4, only a single
integral is required as the x dependence is eliminated at the boundary.∫

RBC

(
y, Bj,k(t)

)
Wk(y)dy = 0 [10]

Again, Dirac delta functions are used to eliminate the need to compute
the integration, Wk(x) = δ(y − yk). Thus the discretized system of
equations arising from the boundary conditions becomes

RBC

(
Bj,k(t), y = yk

) = 0 [11]

Unlike Equation 5, Equation 11 is a system of algebraic equations
with the spatial dependence eliminated. Furthermore, if the boundary
conditions are linear (as they are in the battery model), Equation 11 can
be used to solve some of the Bj,k(t) coefficients prior to implementing
the main DAE solver. This reduces the overall computation cost of
the simulation.

By applying the approximation given in Equation 1 to the govern-
ing equations in Table I, a system of DAEs is developed with time
as the only independent variable. As the series solution is infinitely
differentiable, all the derivative and gradient terms can be analytically
determined and eliminated. This system can be solved using efficient
time-adaptive solvers, and a converged solution can be achieved while
using fewer terms than a finite difference discretization.

Two-dimensional stack with simplified boundary conditions.—
One challenge of the two dimensional modeling of lithium ion bat-
teries is the determination and application of appropriate boundary
conditions of the solid phase potential, �1, at the current collector/
electrode interface. Note that the current flowing out of the cell is
calculated from the derivative of �1, in a manner analogous to heat
transfer. In a one dimensional model, the flux of �1 can thus be spec-
ified at the boundary. However, in a multidimensional model, such an
approach neglects the possible variation parallel to the electrodes. For
example, more current may flow out of the top of the cell than out of
the bottom. In this section we assume that the current density across
the height of the cell is constant as a first approximation.

In this subsection, we consider the boundary conditions as given in
Figure 1, with the realization that the solid phase boundary conditions
neglects the possible variation of current in the y-direction, but is
used as initial approximation of a 2D model. Relaxations of this
assumption are discussed later. Note that the continuity boundary
conditions are applied at the electrode/separator interfaces. For all
simulations performed in this work, the supplemental equations given
in Table III are used to calculate heat generation and kinetics, as well
as thermal dependence. Similarly, Table IV gives the parameter values
used in these models.

Note also that the boundary conditions for temperature are not
identical at the top and bottom of the cell, with the bottom being at a
specified cold plate temperature while the top is insulated. This breaks
the symmetry in the y-direction and forces variations to exist in y. The
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Table II. Transformed Governing Equations for Li-ion batteries.

Governing Equation Boundary Conditions

Positive Electrode

εp
∂cp
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Table II. (Continued.)

Governing Equation Boundary Conditions

Negative Electrode
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simulated discharge curve for a 1C discharge rate with a cold plate
boundary is given in Figure 2, as well as fully insulated conditions,
and applied temperature boundary conditions for comparison.

There is a clear difference in the performance between the three
simulations due to the temperature profiles. Furthermore, the cold
plate model predicts a discharge curve largely between the two ex-
tremes, as would be expected. The temperature profiles arising from

Figure 1. Boundary conditions used as an initial approximation of the 2D
model.

the cold plate boundary condition are given in Figure 3 at increasing
levels of depth of discharge across the height of the cell. Note that
although a true 2D model is used, the temperature variation across the
cell thickness is negligible, so a 1D plot is shown here. In general,
there is a significant temperature gradient near the cold plate, while
the temperature is rather flat in roughly half the cell. Additionally,
the temperature profile given in Figure 3 can induce a variation in
y-direction of the other variables, which effects the discharge curves
shown in Figure 2.

Figure 4 shows the contour plots of the pore wall flux in the cathode
at four points during the discharge. This shows that a variation in the
y-direction can occur in the other variables. The higher temperatures
affect the diffusion of lithium, as well as the rates of reaction, leading
to variation in the local pore wall flux. This is important as this can
lead to local variation in capacity fade due to increased SEI growth
and mechanical stress, which could not be captured in a 1D model.

Two-dimensional thermal lithium-ion cell with y-variation of cur-
rent density.— The 2D model presented in Figure 1 does not consider
the possible variation in the y-direction for current density, instead
specifying a constant value at the current collector. Under most con-
ditions the variation is likely to be minor, but under certain circum-
stances, specifically those which result in a thermal gradient across
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Table III. Additional Equations.
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Table IV. Parameter values.

Positive Negative
Symbol Parameter Electrode Separator Electrode Units

σi Solid phase conductivity 100 100 S/m
ε f,i Filler fraction 0.025 0.0326
εi Porosity 0.385 0.724 0.485
Brugg Bruggman Coefficient 4
D Electrolyte diffusivity 7.5 × 10−10 7.5 × 10−10 7.5 × 10−10 m2/s
Ds

i Solid Phase Diffusivity 1.0 × 10−14 3.9 × 10−14 m2/s
ki Reaction Rate constant 2.334 × 10−11 5.031 × 10−11 mol/(s m2)/(mol/m3)1+αa,i

cs
i,max Maximum solid phase concentration 51554 30555 mol/m3

cs
i,0 Initial solid phase concentration 25751 26128 mol/m3

c0 Initial electrolyte concentration 1000 mol/m3

Rp,i Particle Radius 2.0×10−6 2.0×10−6 M
ai Particle Surface Area to Volume 885000 723600 m2/m3

li Region thickness 80×10−6 25×10−6 88×10−6 M
t+ Transference number 0.364
F Faraday’s Constant 96487 C/mol
R Gas Constant 8.314 J/(mol K)
Tre f Temperature 298.15 K
ρ Density 2500 1100 2500 kg/m3

Cp Specific Heat 700 700 700 J/(kg K)
λ Thermal Conductivity 2.1 0.16 1.7 J/(m K)

E
Ds

i
a Activation Energy for Temperature Dependent Solid Phase Diffusion 5000 5000 J/mol

Eki
a Activation Energy for Temperature Dependent Reaction Constant 5000 5000 J/mol
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Figure 2. Discharge curve using the P3D model with cold plate boundary
conditions (solid line) compared to fully insulated 2D model (long dash line)
and a 2D model with fixed temperature boundary conditions on all sides (short
dash line).

the height of the battery, the current density may not be constant,
which can occur in large format cells. As an initial approach at relax-
ing the constant current density assumption, a constant current charge
(or discharge) is simulated by requiring that the integral of the cur-
rent density across the current collector is a constant, as demonstrated

Figure 3. Temperature across cell height at 0% DOD (black ‘∗’), 33% DOD
(blue ‘o’), 67% DOD (red ‘�’), and 100% DOD (green ‘+’).

in Figure 5.

ly∫
0

σ
∂�1

∂x
dy = −Iapp [12]

Thus, although the current density may vary at different points in y, the
total current flowing through the cell is constant. However, the bound-
ary condition given in Equation 2 is not adequate to fully characterize
the system, as an infinite number of profiles can satisfy the condition.
Therefore, the assumption is made that the solid phase potential at the

Figure 4. Contour plots of the pore wall flux in the cathode at 0% DOD (a), 33% DOD (b), 67% DOD (c), and 100% DOD (d). Note that the contour lines are in
units of μmol

m2s
. x = 0 corresponds to the cathode-current collector interface and y = 5 corresponds to the fixed temperature boundary condition.
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Figure 5. Alternate boundary conditions for the 2D battery model.

current collector interface does not vary across the height of the cell,
although it is allowed to vary with time. Mathematically this can be
expressed as:

�1 (x = 0, y, t) = f (t) [13]

This assumption is considered valid as the high electric conductivities
of the current collectors (typically constructed of aluminum and cop-
per) ensure that any variation in voltage potentials is minimal. Thus,
the assumption of a constant potential (in y) is a better assumption to
use than a constant current density assumption in most applications.

The boundary conditions given in Equations 12 and 13 have been
used to solve for the 2D battery model using reformulation techniques.
This approach is robust and allows for implementation of porous
electrode models for application in which variation across the height of
the cell is expected to play a major role in battery life and performance.

The benchmarking of the reformulated model is done by compar-
ing with the results obtained by solving the model equations using
COMSOL Multiphysics.64 Both external (voltage-time curve) and in-
ternal variables (liquid phase concentration, temperature, etc.) are
expected to exactly match for all discharge rates. We define an aspect
ratio as the ratio of the length of cell to the height of cell. Figure 6
shows the comparison of the discharge curves for 1C, 2C and 5C
discharge rates for an aspect ratio close to 3:1. It can be seen that the
results obtained by the reformulated model are in good agreement with
the results predicted by COMSOL Multiphysics using finite element
method. To match the internal profiles, liquid phase concentration at y
= H/2 (middle of the cell) vs position (x) and temperature at x = 0 vs
position (y) are also compared. The comparison of concentration and

Figure 6. Discharge curves for 1C, 2C and 5C discharge rates for aspect
ratio 3:1.

Figure 7. Liquid phase concentration vs position at y = H/2 (mid) for 1C
discharge rate and 3:1 aspect ratio.

Figure 8. Temperature vs position at x = 0 for 1C discharge rate and 3:1
aspect ratio.

temperature profiles is shown in Figure 7 and Figure 8 respectively
for 1C discharge rate and aspect ratio close to 3:1.

To validate the model for other aspect ratios, the discharge curves
are compared by varying the aspect ratio of the cell. Figure 9 and
Figure 10 show the comparison of the discharge curves for an aspect
ratio close to 3:10 and 3:25 respectively for 1C discharge rate. For an

Figure 9. Discharge curve for 1C discharge rate for aspect ratio 3:10.
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Figure 10. Discharge curve for 1C discharge rate for aspect ratio 3:25.

aspect ratio greater than 3:25, the inbuilt battery module of COMSOL
Multiphysics fails to converge with its default solver settings.

Due to the inability of COMSOL to handle large aspect ratios,
which are on the order of 1:1000 in a real battery, COMSOL cannot
be reliably used to validate the reformulated model in such systems.
Therefore, here we compare the RFM results by increasing the number
of collocation points to show convergence.

NC denotes the number of collocation points used in cathode, NS

denotes the number of points used in separator, NA- the number of
points used in anode, Ny- the number of points used in y-direction
and Nr as the number of points used in radial direction. Figure 11 and
Figure 12 show the comparison of the discharge curve obtained for
1C discharge rate for an aspect ratio 1:100 and 1:1000 respectively,
for collocation points in the order NC, NS, NA, Nr and Ny as 2, 1, 2, 4,
2 respectively (that is, using up to a 2nd order Chebyshev polynomial
in the electrodes, 1st order in the separator, and 4th order in the radial
and 2nd order in y-direction) and 3, 2, 3, 4, 4. The voltage time curve
matches exactly when compared with the curve obtained by increasing
the number of collocation points. Table V shows the CPU times for
the reformulated model for various aspect ratios for different number
of collocation points, when IDA66 is used as the solver in Maple.
It can be concluded that the reformulated model gives accurate and
faster results for all aspect ratios and an increase in the number of
collocation points in any direction has no effect on the accuracy of the
results.

The boundary conditions shown in Figure 5 can result in large
temperature increases within a sufficiently large lithium-ion cell, even
when only a 1C discharge is applied. Note, importantly, that the cur-
rent collectors and battery casing, etc. are neglected in this model.
Including those would likely reduce the magnitude of the temperature

Figure 11. Discharge curve for 1C discharge rate for aspect ratio 1:100 for
different number of collocation points.

Figure 12. Discharge curve for 1C discharge rate for aspect ratio 1:1000 for
different number of collocation points.

increase by increasing the thermal mass of the system. Also, the cur-
rent collector, being thermally conductive, would facilitate improved
heat transfer across the height of the cell. The temperature increase is
shown in Figure 13, as is the current density at both electrode-current
collector interfaces, for a cell with a height of 5 cm. The temperature
variation across the thickness of the electrode was negligible, as has
been observed in the 1D model. Here, the temperature profile in y
has a small but noticeable effect on current density for most of the
discharge time. Specifically, areas of the cell which are at a higher
temperature have a slightly higher current density. A higher tempera-
ture facilitates improved diffusion by reducing resistance, and directly
increases the rate of reaction. However, at the end of discharge, the
current density is provided principally near the applied temperature
boundary, and at a much higher rate. This shows that even though
the cell as a whole undergoes only a 1C discharge, the local current
density can reach well over 2C in certain regions of the cell, which
was neglected in the first section of this paper. This relatively rapid
discharge in a small region of the cell can increase the local capacity
fade as well as increasing the local heat generation which in turn can
cause a more complicated thermal profile to arise and possibly cause
hot spots and further damage to the cell. Here, (4, 1, 4, 3) collocation
was used for simulation (that is, using up to a 4th order Chebyshev
polynomial in the electrodes, 1st order in the separator, and 3rd order
in the y-direction).

The changing reaction zone is shown explicitly in Figure 14 which
shows the local pore wall flux as contour plots. At the beginning of
discharge there is no appreciable variation in the y-direction, only
across the thickness of the electrode as expected from the 1D model.
However, as a greater temperature gradient is established, the variation
of the pore wall flux across the height of the cell is more significant
than that across the thickness, as shown in Figure 14b and 14c. By
the end of discharge, only a small fraction of the electrode volume
(near the cold plate and separator) provides the entire current demand.
Note that the variation of the pore wall flux in the y-direction is more
significant in Figure 14 than the case in which the current density
variation was ignored and shown in Figure 4.

Table V. CPU time for various aspect ratios for different number
of collocation points for IDA solver in Maple.

Aspect Ratio Number of Collocation Points CPU Time (Seconds)

1:10 2, 1, 2, 4, 4 2.95
3, 2, 3, 4, 4 20.38

1:100 2, 1, 2, 4, 2 2.72
3, 2, 3, 4, 4 18.63

1:1000 2, 1, 2, 4, 2 2.75
3, 2, 3, 4, 4 17.32
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Figure 13. Temperature (left) and current density at the cathode-(�) and anode-(◦) current collector interfaces (right) for a 1C discharge at 0% DOD (solid line),
33% DOD (long dash), 67% DOD (short dash), and 100% DOD (dash dot).

The spike in local current density at the end of the discharge can
be attributed to the saturation (or depletion, at the anode) of lithium in
the warmer areas of the cell. Thus, regions which would not otherwise
be favored due to the thermal conditions become favorable sites for
reaction for thermodynamic reasons. Figure 15 shows the local degree
of lithiation in the cathode. Figure 15b and 15c show that in the
midst of discharge, the SOC varies significantly in both the x- and y-

directions, and that the variation across the height mirrors the gradient
of temperature seen in Figure 13. Ultimately, Figure 15d shows that
there is a region of the cell adjacent to the current collector and near
the cold plate which is significantly underutilized. In this region, the
diffusion and ohmic resistance is at its highest point in the electrode.
It is both cooler, directly limiting lithium diffusion, and furthest from
the separator, requiring more current to be carried in the electrolyte.

Figure 14. Contour plots of the pore wall flux in the cathode at 0% DOD (a), 33% DOD (b), 67% DOD (c), and 100% DOD (d). Note that the contour lines are
in units of μmol

m2s
. x = 0 corresponds to the cathode-current collector interface and y = 5 corresponds to the fixed temperature boundary condition.
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Figure 15. Contour plots of the local degree of lithiation in the cathode at (a) 0% DOD, (b) 33% DOD, (c) 67% DOD, and (d) 100% DOD. x = 0 corresponds to
the cathode-current collector interface and y = 5 corresponds to the fixed temperature boundary condition.

Conclusions and Future Directions

In this paper, a two dimensional battery model was developed and
demonstrated using Chebyshev-based orthogonal collocation. This
showed that large variations in internal variables can arise, even under
relatively mild conditions. In the example considered in this work,
the temperature boundary conditions were the only factors which
contributed to the asymmetry of the cell performance. However, this
asymmetry leads to a very non-uniform utilization of the electrode
and local pore wall flux. This causes areas of the electrode to have
local current densities to be much higher than expected based on the
total current of the cell. This can lead to premature degradation of

Figure 16. Proposed boundary conditions for the solid phase potential in a
2D model with current collectors included.

regions of electrode and can accelerate the capacity fade. By using
mathematical models, these conditions can be better predicted and
avoided to allow for batteries to be used for longer life.

However, the battery model given in Figure 5 is not fully inclusive
as the variation of potential across the battery height is neglected. A
natural extension would be the inclusion of the current flow through
the current collectors in the model, as shown in Figure 16. Continuity
of the solid phase potential and flux would have to be applied at the
current collector/electrode interfaces. This would allow for variation
of both potential and current density at the current collector-electrode
interface. The current out of the current collector could be approx-
imated as having a constant flux at the tab. This formulation would
neglect the possible variation in current density across the thickness of
the current collector, but that variation is expected to be negligible due
to the high conductivity and small thickness of the current collectors.

List of Symbols

Bj,k(t) Collocation coefficients
c Electrolyte concentration
cs Solid Phase Concentration
D Liquid phase Diffusion coefficient
Def f Effective Diffusion coefficient
Ds Solid phase diffusion coefficient
Ea Activation Energy
F Faraday’s Constant
I Applied Current
j Pore wall flux
k Reaction rate constant
l Length of region
N Number of terms to approximate the solution
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R Particle Radius, or Residual
t+ Transference number
T Temperature
U Open Circuit Potential
W Weight Function
ε Porosity
ε f Filling fraction
θ State of Charge
κ Liquid phase conductivity
σ Solid Phase Conductivity
�1 Solid Phase Potential
�2 Liquid Phase Potential

Subscripts

e f f Effective, as for diffusivity or conductivity
c Related to Electrolyte concentration
cs Related to Solid Phase concentration
n Related to the negative electrode—the anode
p Related to the positive electrode—the cathode
s Related to the separator
�1 Related to the solid phase potential
�2 Related to the liquid phase potential

Superscripts

s Related to Solid Phase
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