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Literature reports show both benefits and negligible impact when including graded electrodes in battery design, depending upon the
exact model and conditions used. In this paper, we use two different optimization approaches for a secondary current distribution
porous electrode model with nonlinear kinetics to confirm that computed solutions are correct. We use these confirmed optimal
solutions to probe several ways that graded porosity can improve electrode performance. Single objective optimization such as
reducing the overall electrode resistance using a graded electrode design provides a modest 4–6% reduction in resistance for typical
lithium-ion battery parameters. Multiple objective optimization—for example, simultaneously considering electrode resistance and
the overpotential variance and eventually the overpotential average as well—shows that multilayer designs open up a much richer
feasible design space for achieving multiple goals. The ultimate answer to the value of graded electrodes will be the techno-economic
analysis that links the benefits of an expanded optimal design space to the detrimental costs associated with manufacturing multilayer
electrodes. An open-access executable code that can give optimal porosity distribution of any specified chemistry and detailed
explanation of the two approaches can be found on the Subramanian group’s website.
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Modeling and mathematical optimization can significantly im-
prove the efficiency of battery design, helping to meet the grow-
ing demands for various applications. The idea of using modeling
for battery design was first introduced by Tiedemann and Newman
in 1975.1 They used an ohmically limited porous electrode model to
maximize the cell’s effective capacity by changing the electrode thick-
ness and porosity. Newman later applied the reaction-zone model to
maximize the specific energy of the system, taking mass into con-
sideration as well.2 For these two models, the objective function can
be directly related to the design variables, thus the optimum can be
obtained by simply observing the plot or from the analytical solution.
They further optimized the thickness and porosity of a lithium iron
phosphate3 electrode, where they maximized the specific energy using
the Ragone plots. Ramadesigan et al.4 went one step further by includ-
ing the linear electrode kinetics to minimize the internal resistance of
the electrode. They used control vector parameterization (CVP) to
minimize the ohmic resistance in the positive electrode by varying
porosity.

With the development of battery modeling, more physical pro-
cesses have been included, and one of the most popular physics based
models is the pseudo-2-Dimensional (P2D) model developed by the
Newman group.5 The P2D model involves a set of nonlinear partial
differential equations (PDEs) that can only be solved numerically.
Therefore, a numerical optimization approach is required to perform
optimization on the system. Du et al. proposed a surrogate-model-
based approach,6 and later developed a sophisticated framework based
on this approach7 with a gradient-based sequential quadratic program-
ming optimization method. They applied the framework to a lithium
manganese oxide electrode and investigated the effect of discharge
rate, electrode thickness, porosity, particle size, and solid-state diffu-
sivity and conductivity on the specific energy and power density of the
battery cell. Golmon et al.8 extended the P2D model by incorporating
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the mechanical stress-strain relationship to account for the degrada-
tion due to cracks on the electrode particles. Thereafter, they devel-
oped a systematic framework to formulate the multi-objective and
multi-design-parameter optimization problem with adjoint sensitivity
analysis to reduce the computational cost.9 Another attempt along the
line of faster optimization was done by De and his coworkers.10 They
used a reformulated model developed by Northrop et al.,11 with greatly
improved the computational efficiency, and performed simultaneous
optimization of multiple design parameters including the thickness
and porosity of the positive and negative electrodes to maximize the
specific energy of the cell. Xue et al. used an alternative way to do the
optimization more efficiently by using an effective optimizer.12 They
applied the gradient-based algorithm framework to optimize the cell
design to maximize the energy density with specific power density re-
quirements for a spinel manganese dioxide cathode and meso-carbon
micro beads anode system.

More recently, Dai and Srinivasan revisited the idea of using graded
electrodes to achieve better performance.13 They used a gradient-free
direct search method to maximize the specific energy under a cer-
tain discharge time by varying the design parameters such as elec-
trode porosities and thicknesses, and compared the cases of uniform
porosity and the graded electrode. They concluded that no signifi-
cant improvement was observed by using the graded electrode de-
sign from their simulation. Later, Du et al. examined the effects of
several design parameters, including graded porosity, on the perfor-
mance of thick electrodes by simulation. They proposed several con-
tinuously changing porosity profiles in opposed to the more prac-
tical layered approach, and confirmed Dai and Srinivasan’s conclu-
sion that graded electrode design can only improve the performance
slightly.14

In general, optimization approaches can be classified as indirect
and direct approaches. The indirect approaches are also known as the
variational approaches, in which the traditional necessary conditions
from Pontryagin’s maximum principle15 will be obtained for optimal-
ity. Since porosity is always bounded, it is difficult to apply indirect
methods for this optimization problem. Alternatively, the direct ap-
proaches discretize the original optimization problem before solving
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it. There are two main subcategories of the direct methods: sequential
and simultaneous approaches.

Most of the aforementioned optimization work used the gradient-
based or gradient-free sequential optimization approach. The sequen-
tial approach takes the differential algebraic equation (DAE) system
describing the physics, applies a certain linear or nonlinear program-
ming (NLP) solver to them, discretizes only the control variables
(partial discretization), and solves the model. Because it discretizes
only the control variable, it is also known as the CVP method. At
every iteration, a solution with a specific set of control variables is
obtained. The optimal solution will be arrived at over multiple itera-
tions. Note that as of today, global optimization cannot be guaranteed
when CVP-type methods are used with P2D-based battery models.

The simultaneous approach, on the other hand, discretizes both the
control variables and the design variables (full discretization) before
solving the problem. When used for optimization, the DAE system
will only be solved once at the optimal point, compared to the re-
peated numerical integration needed for the sequential optimization.
By using higher order discretization scheme on both the state and the
design variables, simultaneous optimization approach results in the
faster determination of the optimum with fewer iterations.16 Further-
more, this approach offers more flexibility over constraints on the state
variables. Since the state variables are also discretized, it is possible to
apply equality/inequality constraints on their internal values directly.

In this paper, an ordinary differential equation (ODE) system (DAE
system without algebraic equations) was involved due to the simplicity
of the model. A general optimization framework based on a boundary
value problem (BVP) with ODEs can be expressed as:17

min
�z(x),�u(x),�p

ϕ

s.t. O DE system
d�z(x)

dx = F(�z(x), �u(x), �p)

[1]

with boundary conditions:

�z(xstart ) = �z0, �z(xend ) = �z1,

subject to bounds:

�zL ≤ �z(x) ≤ �zU , �uL ≤ �u(x) ≤ �uU , �pL ≤ �p ≤ �pU ,

where

φ Objective function
F Differential equation constraints
�z Vector of differential state variables
�u Vector of control variables
�p Space-independent parameters

In this paper, we will exam the performance of simultaneous op-
timization approach in the optimal design of battery electrode using
a secondary current distribution model for the positive electrode. We
will also compare its performance in speed and accuracy with the
commonly used sequential approach.

Choice of the Model: Resistance Model for Battery Electrodes
with Nonlinear Kinetics

While in the past we have used P2D model for design purposes10

and have published on efficient simulation of P2D models,11 in this
paper, we revisited the simple resistance model for battery electrodes
keeping the independent variables to just 1D (x in this case). Use of
P2D models means including at least one more independent variable
(t) and possibly the independent variable for the radial direction (r).
As of today, collocation methods as used in this paper works very
well for ODEs. While there is progress in pseudo-spectral methods
(collocation in x, t, and r), P2D models result in stiff systems of DAEs
in time, which are challenging to deal with. Results of simultane-
ous optimization based on P2D models will be reported later. Note
that just because a numerical method or scheme works well with a

x0 lp

Separator

Current Collector

Figure 1. Schematic of the porous cathode being modeled. x = 0 (X = 0 after
nondimensionalization) represents the boundary between the separator and the
cathode, and x = lp (X = 1) refers to the interface between the cathode and the
current collector.

reasonable accuracy for solving a model, it does not mean that the
same order of accuracy can be obtained for simultaneous discretiza-
tion and optimization. Global Gauss collocation approach works well
for 1D boundary value problems (BVP) problems, but finite difference
methods lose accuracy and stability when used with the simultaneous
discretization framework. P2D models might need more than global
Gauss collocation for accuracy, possibly local collocation on finite
elements in x, r, and t.

For a typical intercalation-based lithium-ion battery cell sandwich,
the positive electrode is usually made of lithium transition metal ox-
ide while the negative electrode is composed of lithiated graphite.
During charging, lithium ions de-intercalate from the positive active
material, travel through the separator, and intercalate into graphite the
electrons travel in the opposite direction through the external circuit.
During discharging, the reverse process takes place. In this paper, the
mass transport process described above is considered to be fast and
the intercalation/de-intercalation process is determined by the elec-
trochemical reaction kinetics.

The positive electrode, as depicted in Fig. 1, is the main focus
in this work. The x-direction is the direction of interest, which is
along the thickness of the positive electrode, with x = 0 being the
interface between the positive electrode and the separator and x = lp

being the electrode-current collector interface. The model used is a
one-dimensional porous electrode model developed by Newman and
Tobias.18 The following assumptions are made:

1) All variables such as potentials, current densities vary only along
the thickness of the electrode, not in other directions (1-D).

2) There are no concentration gradients in the electrode. This as-
sumption holds when charge/discharge process has just started
from the equilibrium state, thus the concentration gradient has not
had enough time to build up. Under this assumption, the model
has no time dependency.

3) The double layer charging/discharging can be ignored.
4) The open-circuit potential of the positive electrode is assumed to

be 0.

As there is no diffusion or convection in the system, all the current
is carried entirely by migration. Therefore, the current density i2,
where the subscript 2 indicates the liquid phase (electrolyte), can be
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directly related to the migration flux: �i2 = F
∑

i
zi

−→
Ni , where

−→
Ni =

−zi ui Fεci∇�2, and zi is the charge number of species i, ui is the
electrochemical potential of species i, F is the Faraday’s constant
(96,487 C/mol), ε is the porosity, ci is the concentration of species i,
and �2 is the potential in the liquid phase. Substituting the expression
of

−→
Ni into that of �i2, we can arrive at the equation for the electrolyte

conductivity

�i2 = −κ∇�2 [2]

where the electrolyte conductivity κ = F2ε
∑

i
z2

i ui ci .

Similarly, for the solid matrix, we have the equation for solid
conductivity (Eq. 3), where the subscript 1 represents the solid phase
and σ is the solid matrix conductivity.

�i1 = −σ∇�1 [3]

The total current density for the whole system is the sum of the current
densities in the solid and liquid phases.

�iapp = �i1 + �i2 [4]

From material balance, the change in concentration of lithium ions in
the electrolyte is equal to the amount of ions transferred through the
solid electrolyte interface:

− ∇ · �Ni + a jin = 0 [5]

where the active surface area (a, defined as surface area per unit
volume) times the normal pore wall flux density of species i averaged
over the surface area (jin) gives the total flux of the species i transferred
from the electrolyte to the solid phase.

From electroneutrality, the divergence of the total current density
is zero, thus ∇ · �i1 + ∇ · �i2 = 0. An average transfer current density
in for the system is defined as in = F

∑
i

zi jm . Substituting it into

Eq. 3 and Eq. 5, we got

∇ · �i2 = −∇ · �i1 = ain [6]

The average transfer current density (in) is determined by reaction
kinetics. Previously, linear kinetics was often used to simplify the
problem:1,4

∇ · �i2 = −∇ · �i1 = ain = ai0
F

RT
(�1 − �2 − U ) [7]

where U stands for the equilibrium potential of the system. In this
work, we have explored the influence of nonlinear kinetics on the
electrode performance and its design, in which the equation above
will be replaced by Eq. 8.

− ∇ · �i1 = ai0

{
exp

[
αanF

RT
(�1 − �2 − U )

]

− exp

[−αcnF

RT
(�1 − �2 − U )

] }
[8]

where n is 1 for lithium ion, αa +αc = 1 for the battery reaction; if we
take U = 0 (assuming it is evaluated with a reference electrode of the
same kind as the working electrode), then the equation for kinetics in
the x-direction becomes

− di1(x)

dx
= a(x)i0

{
exp

[
αa F

RT
(�1(x) − �2(x))

]

− exp

[−αc F

RT
(�1(x) − �2(x))

]}
[9]

The final set of equations for the 1-D porous electrode resistance
model consists of the following four equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1(x) = −σ(x) d�1(x)
dx

i2(x) = −κ(x) d�2(x)
dx

i1(x) + i2(x) = iapp

− di1(x)
dx = a(x)i0

{
exp

{
αa F
RT

[
�1(x) − �2(x)

]}
− exp

{
−αc F

RT

[
�1(x) − �2(x)

]}}
[10]

One of the most important design parameters of the battery electrode
is its porosity ε(x). The electrode porosity comes into effect through its
influence on the material properties, such as the active surface area (for
spherical particles), the solid phase and the electrolyte conductivities:1

⎧⎪⎪⎨
⎪⎪⎩

a(x) = 3(1−ε f +p−ε(x))
Rp

σ(x) = σ0

(
1 − ε f +p − ε(x)

)1.5

κ(x) = κ0ε(x)1.5

[11]

where ε f +p is the volume fraction of the electrode filler and the poly-
mer binder. The boundary conditions are:⎧⎪⎨

⎪⎩
i1(0) = 0 i1(l p) = iapp

i2(0) = iapp i2(l p) = 0

�2(0) = 0

[12]

Optimization Problem Formulation

Before applying the optimization approaches, the original DAE
system has been further simplified to cut down the computational
cost. In this case, the simplified DAE system becomes an ODE system
without algebraic constraints.

The algebraic equation and i2(x) can be eliminated by substituting
i2(x) = iapp − i1(x) into the equation set 10. To facilitate the numeri-
cal simulation, nondimensionalization was conducted on x (X = x

l p
),

so that dimensionless distance X varies from 0 to 1. For the lithium
intercalation/de-intercalation reaction, it is reasonable to assume sym-
metry by taking αa = αc = 0.5. After simplification, the model
became:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d�1(X )
d X = − l p i1(X )

σ0(1−ε f +p−ε(X ))1.5

d�2(X )
d X = − l p (iapp−i1(X ))

κ0ε(X )1.5

− di1(X )
d X = 6i0l p (1−ε f +p−ε(X ))

Rp
sinh

{
0.5F
RT

[
�1(X ) − �2(X )

]}
BCs : i1(0) = 0; i1(1) = iapp;

�2(0) = 0.

[13]
For the resistance model that captures the ohmic resistance in both
solid phase and electrolyte, as well as the charge transfer resistance as-
sociated with the reaction kinetics, one natural optimization objective
would be to minimize the overall resistance of the electrode, which
can be mathematically represented as:

min
i1(X ),�1(X ),�2(X ),ε(X )

ϕ =
∣∣∣∣�1(1) − �2(0)

iapp

∣∣∣∣ [14]

SOCOLL Method

The specific simultaneous approach we will showcase here is the
simultaneous optimization and collocation (SOCOLL) method pro-
posed by Biegler.19 SOCOLL method uses the orthogonal collocation
method to discretize both the control and state variables, before solv-
ing the problem at its optimal point. Collocation methods apply a
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Table I. List of Variables and Parameters in the Optimization Problem.

ϕ Objective function min
i1(X ),�1(X ),�2(X ),ε(X )

ϕ = �1(1)−�2(0)
iapp

F Differential equation constraints

d�1(X )
d X = − l p i1(X )

σ0(1−ε f +p−ε(X ))1.5

d�2(X )
d X = − l p (iapp−i1(X ))

κ0ε(X )1.5

− di1(X )
d X = 6i0l p (1−ε f +p−ε(X ))

Rp
sinh

{
0.5F
RT

[
�1(X ) − �2(X )

]}

BCs : i1(0) = 0; i1(1) = iapp ;
�2(0) = 0.

�z Vector of differential state variables [i1(X ),�1(X ), �2(X )]
�u Vector of control variables ε(X )

�uL , �uU Bounds uL = 0.1, uU = 0.7
�p Space-independent parameters Parameter20 Symbol Parameter values

Electronic conductivity of the solid matrix σ0 3.8 S/m
Ionic conductivity of the electrolyte κ0 0.98 S/m
Particle radius of the active material Rp 8.5 × 10−6 m

Thickness of the electrode lp 144.4 × 10−6 m
Inert material total volume fraction ε f +p 0.214

Faraday’s constant F 96,487 C/mol
Ideal gas constant R 8.314 J/(mol · K)

Temperature T 298.15 K
Applied current density iapp −23.12 A/m2

Exchange current density i0 4.16 A/m2

polynomial approximation to the original differential equation. The
zeros of the polynomials are called collocation points, where the dif-
ferential equations should be satisfied. For a boundary value problem,
the boundary conditions should also be satisfied at the end points.

The discretization of both control and state variables in scalar form
can be expressed as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x) =
k∑

n=0
zn Pn(x),

y(x) =
k∑

n=0
yn Pn(x),

u(x) =
k∑

n=0
un Pn(x)

[15]

where zn, yn, and un are the values of z(x), y(x), and u(x) at the nth

collocation point and Pn is a nth-degree polynomial.
Various kinds of orthogonal polynomials can be used with the

SOCOLL method. In this study, we mainly used the interpolation
polynomials in the Lagrange form, which can be written as:

Pn(x) =
∏

0≤i≤n
i �= j

x − xi

x j − xi
[16]

Use of the Lagrange form facilitates solving only for the dependent
variables at the collocation points as opposed to arbitrary constants
in the polynomial representation. A detailed demonstration of how to
apply the SOCOLL method and the traditional sequential approach to
the electrode resistance model is described in the appendix.

All simulations and optimizations were performed using Maple
18 software classic worksheet in the 64-bit Windows 7 Professional
environment on a Dell Precision T7500 work station with two 3.33
GHz Intel Xeon CPU and 24 GB RAM. The BVP solver used in this
study is the “dsolve” function and the NLP solver is the “NLPSolve”
function built in the Maple program for the sequential approach. Sim-
ilar solvers and optimizers are available in other programs, e.g. the
“bvp4c” and “fmincon” functions in Matlab. For the simultaneous
approach, collocation approach was used.

For clarity, the variables and parameters of the resistance model
(equation set 13) are listed in Table I.20 The +/− sign for the current
density implies its direction. A negative applied current density was

used to represent the charging process. The value of the applied current
density is at 1C to represent a typical one-hour charge.

Results and Discussion

Uniform porosity optimization.—The conventional battery elec-
trode is designed to have a uniform structure without property varia-
tion. The uniform electrode is easier to manufacture, and also easier
to simulate and optimize. To optimize a uniform electrode without
porosity distribution, ε can be treated as a constant variable indepen-
dent of X, instead of the ε(X) in the equation set 13. Since porosity
is now a constant variable, there is no need to discretize ε. The re-
sults from the simultaneous and the sequential approaches are listed in
Table II. The bounds for the design variable ε are 0.1 ≤ ε ≤ 0.7 for
both cases. An initial guess of 0.4 was given to the optimizer.

From Table II, it can be observed that for this problem, the SO-
COLL method converges for k = 5 internal collocation points. Both
approaches returned the optimal porosity of 0.3435 and minimum
resistance of 5.3510 �-cm2. When using k = 5 for the SOCOLL
method, it is 4 times faster than the CVP method. Since BVP method
involves solving the equations at every iteration, it is expected to be
slower compared to the SOCOLL method, where the equations are
solved only once at the optimum.

Due to the relative simplicity of the resistance model and a small
search space, it is straightforward and easy to evaluate the objec-
tive function over the feasible region. The result is shown in Fig. 2.

Table II. Uniform Porosity Optimization Using the Simultaneous
(SOCOLL) and the Sequential (CVP) Approaches.

Approach

Number of
collocation

points
Optimization

time (s)

Objective
function ϕ

(�-cm2 )
Optimal
porosity

Simultaneous
(SOCOLL)

2 0.031 4.6199 0.3052
3 0.046 5.3414 0.3413
4 0.047 5.3503 0.3433
5 0.063 5.3510 0.3435
10 0.109 5.3510 0.3435

Sequential
(CVP)

N.A. 0.250 5.3510 0.3435

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 205.175.118.217Downloaded on 2017-10-25 to IP 

http://ecsdl.org/site/terms_use


A3200 Journal of The Electrochemical Society, 164 (13) A3196-A3207 (2017)

Figure 2. Resistance for the entire cathode as a function of different uniform
porosity values. There is a single minimal resistance value in the feasible region
for porosity varying between 0.1 and 0.7, making the optimization problem
convex. The minimum is consistent with the optimal porosity of 0.3435 from
both the sequential and the simultaneous approaches.

From the plot, it can be seen clearly that over the feasible region
of [0.1, 0.7] for porosity, the objective function resistance is convex,
and the optimal point is consistent with the results from the SOCOLL
and CVP methods. It should also be noted that the curve is relatively
flat near the optimal point from 0.25 to 0.45, which covers most of
the common porosities in commercial cells and in the literature, with
around 8.6% difference in resistance in that porosity range.

Since the Bulter-Volmer expression was used instead of the linear
kinetics, the optimal porosity depends on the operating condition,
the value of iapp in this case. The same optimization was carried out
with iapp = 0.2C and 5C (value of 23.12 A/m2 listed in Table I is at
1C), which covers most of the normal operating range for batteries.
Optimal porosities of 0.3432 and 0.3480 were achieved, with the
minimum resistance of 5.3610 �-cm2 and for 0.2C and 5.1373 �-
cm2 for 5C respectively. Compared with the 1C case of 0.3435 being
the optimal porosity, the difference in porosity is around 1%, below
the controllable error in manufacturing. This is due to the relatively
fast electrochemical reaction rate of the system. For the rest of the
paper, 1C rate was used for optimization since the influence of C rate
is small in this case.

Graded electrode optimization.—The idea of using electrode with
porosity distribution in model-based electrode design for lithium-ion
batteries was first introduced by Ramadesigan et al.4 Golman and her
colleagues9 also examined the effect of the graded electrode with me-
chanical properties considered. Recently, Dai et al.13 carefully looked
at the performance improvement by utilizing a full P2D model and
recommended the manufacturers not to make the graded electrode
due to the additional processes involved and very small improvement
achieved. In this paper, we want to quantify the gain in terms of
electrode resistance with the two optimization approaches. This is a
revisit to Ramadesigan’s optimization problem, with nonlinear reac-
tion kinetics instead of the linear kinetics assumption he made in his
paper.

The simplest case for the graded electrode is a 2-layer porosity
distribution structure. The original cathode can be divided into two
regions of equal thickness and within each region, the porosity is a
constant, as demonstrated in Fig. 3. For the sequential approach, the
original ODE set was doubled with porosity being ε1 and ε2 in layer
1 and layer 2 respectively. The values for all state variables were set
to be continuous across the layers. For the simultaneous approach,
within each layer at each node point, the polynomial expressions for
all the variables were substituted to the original ODE system. A 4.4%

Figure 3. Demonstration of the 2-layer graded electrode optimization using the simultaneous approach vs. the sequential approach. The simultaneous approach
discretizes both the porosity and the state variables �1, �2, i1 for each layer. At every node point, there is a numerical value for each variable, and all these
numerical values will be varied by the optimizer. On the other hand, for the sequential approach, each layer is represented by the whole set of the original ODEs
with porosity substituted by a constant. The continuity point between the two internal layers refers to the continuity of the values of �1, �2, i1.
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Figure 4. Contour plot for the resistance of a 2-layer graded cathode with
different porosity combinations. Layer 1 is for X ∈ (0, 0.5), and layer 2 is
for X ∈ (0.5, 1). The blue dot represents the point of minimum resistance
(5.1164 �-cm2 ) for the 2-layer graded electrode. The diagonal line of ε1 = ε2
is equivalent to Fig. 2 for the uniform case with the intersection point with the
5.3510 �-cm2 contour being the minimum. The hatched area inside the contour
represents the search space for 2-layer graded electrode design with resistance
no bigger than the uniform minimum case. By introducing the second layer
of graded electrode, the feasible region changes from a point to a reasonably
sized area. With the extra freedom in design, more objectives can be considered
without resulting in an electrode with higher resistance.

reduction in resistance can be obtained from using a graded porosity
with 2 layers compared to uniform porosity.

Similar to the uniform case, a contour plot of the electrode resis-
tance over the search space can be made to visualize the optimiza-
tion problem, as shown in Fig. 4. The diagonal line of ε1 = ε2is
equivalent to the uniform electrode case shown in Fig. 2. The area in-
side the contour of 5.3510 �-cm2 in resistance represents the 2-layer
graded electrode designs where resistance is no bigger than the uni-
form optimal case. Compared with a single point (ε = 0.3435) for the

uniform electrode, the design space has been enlarged significantly
(ε1 ∈ (0.31, 0.52) and ε2 ∈ (0.12, 0.36)) for the 2-layer graded elec-
trode, providing greater freedom for other design considerations. It
can be observed that the resistance values get larger for higher porosi-
ties, especially for bigger ε2. The resistance model used only captures
the ohmic resistance in the electrolyte and the solid matrix and the
charge-transfer resistance associated with the Butler-Volmer kinetics.
Since the electronic conductivity in the solid is higher than the ionic
conductivity in the electrolyte (see parameters in Table I), the solid
phase is more favorable compared to the electrolyte, thus the optimal
porosity (porosities) is smaller than 0.5. The boundary condition at
X = 1 forces the solid phase to carry all the current, thus lower poros-
ity near the current collector, where the solid phase current is higher,
is preferred to reduce the ohmic resistance. The optimization results
from the two approaches are listed in Table III. Likewise, optimization
for a graded electrode with more layers can be performed using these
two methods, whose results are also listed in Table III.

All the results are based on the graded electrode of equally thick
sub-layers. Allowing the thickness to vary together with the porosity
can further reduce the resistance, but the improvement is not much
for this problem. For example, for a 2-layer graded electrode, the
minimum resistance with optimal thickness distribution is 5.1019 �-
cm2 (62.37% of the total thickness for layer 1 with a porosity of
0.3972 and 37.63% of the total thickness for layer 2 with a porosity
of 0.1985). Compared with the minimal resistance of 5.1164 �-cm2

for the equally distributed two sub-layers listed in Table III, the im-
provement is only 0.3%. Considering that keeping the thickness to be
equal in each sublayer would be more practical for manufacturing and
to simplify the problem, only the results for equally thick multi-layer
graded electrode are shown in this work.

It can be observed from Table III that the optimization time for the
sequential approach increases dramatically as more layers are used.
This is due to the increased number of ODEs required to be solved
at each of the porosity combinations. In contrast, the time needed
for simultaneous approach did not increase as much, since increasing
the number of algebraic equations in the optimization problem does
not increase the problem complexity as much, particularly for sparse
optimizers. For a graded electrode with more than 2 layers, Maple’s
built-in ODE solver “dsolve” does not work properly, so a customized
Newton-Raphson solver was used with the collocation approach in x
for solving the model.

Comparing the results from the two approaches, the optimal poros-
ity profiles agree very well with each other. As the number of graded
layers increases, the disagreement between the two approaches also
grows slightly. This probably resulted from the fact that the search
space is flat near the optimum, thus there are many combinations

Table III. Graded Electrode Optimization Using the Simultaneous (SOCOLL) and the Sequential (CVP) Approaches.

Optimization time (s) Objective function ϕ (�-cm2 ) Optimal porosities
Number of
graded layers Simultaneous (10 nodes each layer) Sequential Simultaneous Sequential Simultaneous Sequential

1 0.109 0.250 5.3510 5.3510 0.3435 0.3435
2 0.266 5.663 5.1164 5.1164 0.4076; 0.4075;

0.2347 0.2347
3 0.624 53.992 5.0605 5.0605 0.4267; 0.4267;

0.3371; 0.3371;
0.1820 0.1820

4 1.264 243.159 5.0372 5.0372 0.4347; 0.4353;
0.3798; 0.3801;
0.2866; 0.2875;
0.1505 0.1507

5 2.137 690.570 5.0251 5.0251 0.4388; 0.4392;
0.4014; 0.4027;
0.3386; 0.3378;
0.2505; 0.2502;
0.1292 0.1286

∞ - - 5.0034 - - -
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Table IV. Summary of the Key Differences Between the
Simultaneous and the Sequential Approaches.

The simultaneous
approach

The sequential
Approach

Discretized variables Control + State
variables

Only control variables

Requirements on the
discretization scheme

High, needs high
efficiency in choosing

node points

Low, works with most
discretization schemes

Requirements on the
optimizer

High, needs to handle
a large number of
design variables

Low

Speed Fast Slow
Allow direct control
of the state variables

Yes, can be handled as
objectives or
constraints

Partly, can only be
handled

approximately (by
penalty or using

variables evaluated at
arbitrarily selected

points)

of the porosity values that give similar ohmic resistance. The main
differences between the two approaches are listed in Table IV for
clarity.

From the perspective of reducing the resistance of the cathode,
building graded electrode beyond 2 layers does not help much. Com-
pared with the uniform optimal porosity, the reduction in ohmic re-
sistance for 2-layer, 3-layer, 4-layer, and the 5-layer graded electrode
is 4.4%, 5.4%, 5.9%, and 6.1% respectively. The limiting case is a
continuously changing porosity distribution, with 5.0034 �-cm2 in
resistance, a 6.5% improvement compared with the optimal uniform
electrode. Considering the additional processing time and cost for
adding layers of different porosities, it is probably not cost-effective
to manufacture a graded electrode, especially for more than 2 layers. It
is worth pointing out that we did not keep the amount of the active ma-
terial the same for the graded electrodes listed in Table III. However,
the average porosities for 2-layer, 3-layer, 4-layer, and 5-layer graded
electrode were 0.3214, 0.3152, 0.3135, and 0.3119 respectively, not
far from the uniform optimal porosity 0.3435. With the same active
material constraint, the minimal resistances for 2-layer, 3-layer, 4-
layer, and 5-layer graded electrode are 5.1300 �-cm2, 5.0976 �-cm2,
5.0823 �-cm2, and 5.0748 �-cm2, which are slightly larger than the
values in Table III.

If a conclusion was to be made just based on the results so far, it
would confirm the conclusion from Dai et al.13 that graded porosity is
not very useful. However, the next section will show the cases where
graded design in the electrode is needed.

Constraints on the State Variables

Uniform electrode.—Apart from the advantage in computational
speed, which may not be critical for design since we can afford the
time offline, one key advantage of the simultaneous optimization ap-
proach is that it allows control of the state variables directly. Owing
to the fact that all the variables are discretized before applying the
optimizer and that all the discretized numerical values are treated as
“control variables”, it is easier to give bounds and constraints on the
state variables, just as the real control variables. This feature of the
simultaneous approach can be very powerful and useful when internal
state variables are important. For example, by controlling the overpo-
tential at each internal node points, side reactions can be suppressed,
which can be used to improve life performance. In the cases where op-
timization objective does not improve much compared with the base
case (like the graded electrode), we can still use the simultaneous
approach to control the state variables for the design.

For this secondary current distribution resistance model,
a variable of great interest is the activation overpotential

η(X ) = �1(X ) − �2(X ). η(X ) is the measure of the interfacial
voltage difference above the equilibrium potential, which represents
the driving force for lithium intercalation and de-intercalation in the
positive electrode. When η(X ) is larger, the intercalation and the de-
intercalation process will be faster according to the Butler-Volmer
reaction kinetics (Eq. 9), but at the same time, the rate for side re-
actions also increases. The side reactions are one of the main causes
of battery degradation and are strongly dependent on the cell chem-
istry. For a lithium nickel cobalt oxide cathode, the formation of
solid-electrolyte interphase (SEI) layer due to electrolyte oxidation
and LiPF6 decomposition accompanied by the evolution of gaseous
species are the main concerns.21 The SEI layer growth in the carbon
anode is believed to be responsible for capacity fade, while the inter-
facial impedance increase resulted from lithium nickel cobalt oxide
cathode expedites power loss, especially at the high end of charge
voltages when η(X ) is large. Generally, a uniform distribution of low
η(X ) values across the electrode is desired to fully utilize the active
material while reducing side reactions. To measure the uniformity of
η(X ) values, the standard deviation (SD) was used according to the
following equation:

s =

√√√√√ k∑
i=1

(ηi − η)

k − 1
[17]

where η is the mean of all the η(X ) values.
As discussed earlier, to minimize the electrode resistance, an op-

timal porosity of 0.3435 for uniform electrode was determined. For
the optimal uniform electrode, the mean and the standard deviation
of η are 6.6834 mV and 2.0914 mV respectively. Thanks to the si-
multaneous optimization approach, the mean or standard deviation of
η can be controlled directly when carrying out the optimization. An
example to illustrate the ability to control the standard deviation of
the overpotential is given below.

For the uniform electrode, the ohmic resistance of 5.3510 �-cm2

in the optimal case had to increase in order to lower the standard
deviation of the overpotential. An inequality constraint on the ohmic
resistance ∣∣∣∣�1(1) − �2(0)

iapp

∣∣∣∣ ≤ 5.5 �−cm2 [18]

was added to the new optimization formulation to gently relax the
constraint on the resistance. The new objective function is

min
i1(X ),�1(X ),�2(X ),ε(X )

ϕ =

√√√√√ k∑
i=1

(ηi − η)

k − 1
, [19]

where k is the number of internal node points (k = 30 was used to en-
sure convergence). The minimal value of 1.563 mV was achieved
where the porosity was 0.4054 and the resistance was at 5.0823
�-cm2. When the constraint on the resistance was completely re-
moved and the only objective was to minimize the standard deviation
of the overpotential, the minimal standard deviation of 0.7009 mV
could be achieved. In that case, the porosity was 0.5529 and the re-
sistance was 7.4563 �-cm2. The plots for the internal variables of the
aforementioned three cases are shown in Fig. 5. Compared with the
minimal resistance case, to minimize the overpotential variance, the
solid phase current was reduced in absolute value. Since more current
was forced through the electrolyte, higher porosity is favored to lower
the potential increase in the electrolyte. The slope of the solid phase
current was increased in the two cases for overpotential standard devi-
ation minimization. According to the Butler-Volmer equation (Eq. 9),
as the slope −di1(X )

d X increases, the overpotential also increases, which
corresponds to higher curves in Fig. 5d when the standard deviation
is smaller.

With this optimization framework, a desired resistance value
(greater than the minimal resistance) can be guaranteed while op-
timizing for other design considerations.
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Figure 5. The internal profiles of (a) the solid phase current density, (b) the solid phase potential, (c) the electrolyte potential, and (d) the activation overpotential
for three uniform electrode optimizations. In case 1 (red dots), the only objective is to minimize the overall resistance, and the minimal resistance is 5.3510 �-cm2.
In case 2 (blue triangles), the main objective is to minimize the standard deviation of the overpotential, with a constraint that the overall resistance is no larger
than 5.5000 �-cm2. In case 3 (black squares), the only objective is to minimize the standard deviation of the overpotential. The electrode resistance is evaluated
at 7.4563 �-cm2 for this case. These optimizations show the ability to control the profile of the internal state variables by using the simultaneous approach. A
trade-off between the electrode resistance and the overpotential variance seem to exist.

Graded electrode.—From the uniform electrode case, it can be
seen that there is a trade-off between the resistance and the overpo-
tential variance. To lower the overpotential variance, a compromise
on the resistance has to be made. This is where the graded electrode
can come into play. With a greater search space as shown the shaded
area in Fig. 4, it is likely that a smaller overpotential variance can be
achieved without sacrificing the resistance.

The constraint∣∣∣∣�1(1) − �2(0)

iapp

∣∣∣∣ ≤ 5.3510 �cm2 [20]

was added to the graded electrode optimization problem, where 5.3510
�-cm2 is the minimum resistance for the uniform case. This constraint
can ensure that the resistance of the multi-layer graded electrode does
not increase compared to the best uniform case. The optimization re-
sults are listed in Table V. The hypothesis that by employing graded
electrode the overpotential variance can be reduced without incre-
menting the electrode resistance was confirmed. The state variables
for the optimal cases with 2 to 5 sub-layers are plotted in Fig. 6 together
with the optimal uniform case. All 5 cases have the same electrode
resistance of 5.3510 �-cm2. Similarly, the most gain of bringing in

Table V. Optimization of Graded Electrode to Minimize the
Standard Deviation (SD) of the Overpotential while Maintaining
the Same Resistance (5.3510 �-cm2 ).

Number of SD of the Average Optimal
layers Overpotential (mV) overpotential (mV) Porosities

1 2.0914 6.6834 0.3435
2 1.3934 7.5929 0.4643;

0.3480
3 1.2426 7.5983 0.4528;

0.4835;
0.2880

4 1.1738 7.6235 0.4407;
0.5093;
0.4391;
0.2477

5 1.0953 7.7251 0.4331;
0.5100;
0.5060;
0.3963;
0.1997
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Figure 6. The internal profiles of (a) the solid phase current density, (b) the solid phase potential, (c) the electrolyte potential, and (d) the activation overpotential
for multi-layer graded electrode optimizations. The red dotted lines, generated by minimizing the electrode resistance for a uniform electrode, were used as a
baseline. For the 2-layer (purple pentagons), 3-layer (cyan triangles), 4-layer (blue squares), and 5-layer (black stars) graded electrode design, the main objective
is to minimize the standard deviation of the overpotential while maintain the overall resistance to be at 5.50 �-cm2, same as the baseline case (red dot). By
introducing the graded electrode, it is possible to reduce the overpotential non-uniformity without increasing the resistance. Most gain by using the graded structure
can be achieved with 2 layers.

the graded electrode design can be obtained with 2 sub-layers. In the
limiting case of continuously changing porosity (infinite number of
sub-layers), the minimal overpotential deviation with the resistance
of 5.3510 �-cm2 is around 0.9 mV.

From Fig. 6, it can be observed that for multi-layer graded elec-
trode, the curves bend slightly across the boundary between layers.
This is due to the fact that the potentials are plotted in Fig. 6. The cur-
rents, which are equal to the conductivity times the derivative of the
potentials are not continuous across layers. Since the conductivities
in the electrolyte and the solid matrix depend on the porosity (Eq. 11)
and change across layers, the derivative of the potential should also
change across the regions with different porosities.

Multi-Objective Optimization using an Evolutionary Algorithm

As discussed earlier, there is a trade-off between minimizing the
resistance and reducing the overpotential variance. Furthermore, from
Table V, a conflict in minimizing the overpotential variance and the
average overpotential can also be observed. For a complicated elec-

trochemical system like lithium-ion batteries, multiple criteria de-
cision making is often encountered, such as the trade-offs between
resistance, overpotential variance, and average overpotential in this
resistance model.

Similar to Fig. 2, the average overpotential and its standard devi-
ation with respect to a uniform porosity can be plotted, as shown in
Fig. 7. The thermal voltage kB T

e , where kB is the Boltzmann constant
(1.381 × 10−23 m2kgs−2 K −1), T is the temperature in Kelvin, and e
is the elementary charge (1.602 × 10−19 C), is 25.5 mV at room tem-
perature (296.15 K). It should be noted that for the parameter set used
in this problem (see Table I), the average overpotential is in the range
of 5 to 30 mV, comparable with the thermal voltage at room temper-
ature, which suggests that the full Butler-Volmer equation should be
used, not the linearized version (for |η| << kB T

e ) or the Tafel form
(for |η| >> kB T

e ). This is consistent with the discussion earlier that
the applied current is comparable to the exchange current.

From Fig. 7, it is obvious that no porosity can simultaneously
minimize both the average and the standard deviation of the overpo-
tential, thus this is a non-trivial multi-objective optimization problem.
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Figure 7. The change of average overpotential (blue solid) and the standard
deviation of the overpotential (red dashed) as a function of the uniform porosity.
The optimal porosity for the two objectives is 0.1502 and 0.5529 respectively.
There is no single porosity value that can minimize both objectives at the same
time, thus a multi-objective optimization is needed.

For such a problem, instead of a single solution, a number of non-
dominated solutions, known as the Pareto-optimal solutions, exist.
A solution can be called a Pareto-optimal solution when none of
its objective functions can be improved without sacrificing another
objective function. Without further information, the Pareto optimal
solutions are considered to be equally good.

Various optimization algorithms have been proposed to solve
multi-objective optimization problems, including the classical scalar
approach of converting the problem into a single-objective problem
by giving weights to each objective and the evolutionary vector ap-
proach of considering all the objectives simultaneously to find mul-
tiple Pareto-optimal solutions. In the previous section for applying
constraints on the state variables with the simultaneous approach, the
ε-constraint method was used.22 The ε-constraint method is a classical
multi-objective optimization method. It converts the original multi-
objective optimization problem into a single objective optimization
problem with all the other objectives as constraints. In the previous
section, the original optimization problem being minimizing resis-
tance and the overpotential variance at the same time and the problem
after applying the ε-constraint method is minimizing the overpotential
variance while ensuring the resistance is no larger than a certain num-
ber (5.5000 �-cm2 for the uniform electrode and 5.3510 �-cm2 for
2-layer graded electrode). The limitation of the ε-constraint method is
that the user has to prioritize the objectives and provide the values for
the constraints, and only a single solution can be found. Alternatively,
the evolutionary algorithms can be used to keep all the objectives
without prioritizing and search for multiple Pareto-optimal solutions.
Moreover, evolutionary approaches can provide dense Pareto solu-
tions in single optimization run as opposed to multiple runs required
in case of single objective based approaches. Due to the iterative na-
ture of the evolutionary algorithms, they can only be used with the
sequential approach.

Considering its fast speed and proven accuracy, the improved non-
dominated sorting genetic algorithm (NSGA-II), one of the most
widely used multi-objective optimization algorithm was chosen for
this study.23 The objective functions were minimizing the average
and the standard deviation of the overpotential, while the resistance
was reserved as the higher-level information to made the final de-
cision among all the Pareto-optimal solutions. The key parameters
for NSGA-II are listed in Table VI. The 100 nondominated Pareto-
optimal solutions found for the uniform and 2-layer graded electrode

Table VI. Key Parameters for NSGA-II.

Real control variables Porosity

Objective functions Average overpotential
Standard deviation of the overpotential

Constraints Secondary current distribution model
Population size 100

Max number of generations 100
Crossover probability 0.9
Mutation probability 0.1

Distribution index for crossover 10
Distribution index for mutation 20
Bounds for decision variable [0.1, 0.7]

by NSGA-II are plotted in Fig. 8 to form the Pareto front. The area
above the Pareto-front is the feasible region for the two objectives.
It can be seen that by introducing the 2-layer graded electrode, the
Pareto-front has been pushed downwards, resulting in a larger feasi-
ble region for the design. The corresponding porosities of the Pareto
front range from 0.1401 to 0.5529 for the uniform electrode. For the
2-layer graded electrode, the porosity of the layer next to the separa-
tor varies from 0.1000 to 0.7000, while the porosity of the other layer
changes from 0.1120 to 0.5228 for the Pareto-optimal solutions. It is
impossible to tell which solutions are better than others when only
the average and standard deviation of the overpotential are taken into
consideration. Fortunately, in this case, there is a third criterion, re-
sistance, to help with the final decision-making. The ohmic resistance
values for the 100 solutions for the uniform and 2-layer graded elec-
trode were computed respectively and are plotted against the average
and the standard deviation of the overpotential, shown in Fig. 9. The
projection of the curves in Fig. 9 onto the xy-plane is the same as
Fig. 8. Among the 100 Pareto-optimal solutions, the resistances vary
from 5.3345 �-cm2 to 7.6832 �-cm2 for the uniform electrode and
5.2200 �-cm2 to 9.4046 �-cm2 for the 2-layer graded electrode. The
solution with the minimum resistance is considered the best among
the Pareto-optimal solutions for the balance between the internal re-
sistance, the average and the standard deviation of the overpotential.
For the uniform electrode, the optimal porosity obtained is 0.3460,

Figure 8. The Pareto front plot for minimizing the standard deviation and
the mean of the overpotential. The space above the Pareto front represents the
feasible region of this problem. Each dot in the plot is a Pareto-optimal solution
from the NSGA-II optimizer.
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Figure 9. The corresponding resistance values for the Pareto-optimal solu-
tions from minimizing both the average and the standard deviation of the
overpotential. The resistance is used to help pick the best solution among the
Pareto-optimal solutions, which are considered equally good for minimizing
both the average and the standard deviation of the overpotential.

with an average overpotential of 6.6693 mV and a standard deviation
of the overpotential of 2.1013 mV. For the 2-layer graded electrode,
the optimal porosities are 0.3416 in the layer near the separator and
0.2821 in the layer near the separator. The average overpotential for
the 2-layer optimal electrode is 6.074 mV and the standard deviation
of the overpotential is 2.046 mV. Compared with the uniform optimal
case, all three objectives are smaller for the 2-layer optimal graded
electrode due to the extra search space available.

Conclusions

In this study, a secondary current distribution model for the battery
electrode with Butler-Volmer nonlinear kinetics was used with both
the simultaneous and sequential optimization approaches. The design
of a thick positive electrode with a uniform porosity and a graded elec-
trode with porosity distribution were explored. An optimal uniform
porosity of 0.3435 was predicted consistently by both approaches.
For graded electrodes, most of the gain in resistance reduction can
be achieved with 2 sub-layers (4.4% reduction in resistance), with
the optimal porosity distribution being a higher porosity near the sep-
arator and a lower porosity near the current collector. Apart from
changing the design variables to optimize the objective function, the
simultaneous approach offers the possibility to vary design variables
to control the state variables, which cannot be realized directly with
the traditional sequential optimization approach. When only one ob-
jective function is considered, the advantage of employing graded
electrodes is not impressive. However, when more than one objec-
tives are desired, the additional search space introduced by adding the
porosity distribution becomes a useful design tool to meet multiple
design requirements at the same time. In fact, most of the practical
optimization problems in battery design are determined by various
design considerations coupled together. A more uniform overpoten-
tial distribution can be achieved with the same internal resistance as
the optimal uniform electrode using a 2-layer graded structure using
the ε-constraint method with the simultaneous approach. Thereafter,
a multi-objective optimization using the NSGA-II method with the
sequential approach was introduced to find the best balance between
minimizing the ohmic resistance, the average overpotential, and the
standard deviation of the overpotential.

Two open-access free to use executable programs based on the si-
multaneous approach using the interior point optimizer (IPOPT)24 are
provided as a design tool for users to easily adapt for their electrode
design problems. The particle size, exchange current density, filler
fraction, operation temperature, ionic conductivity, electronic con-
ductivity, electrode thickness, and applied current density can all be
customized. They are ready to use with no software installation or pro-
gramming skill requirement. They can be downloaded directly from
the Subramanian group’s website (http://depts.washington.edu/maple/
Design.html).

As pointed out earlier, the resistance model used did not account for
the variance in the electrolyte composition and the time-dependency.
This secondary current distribution model captures some key physical
processes in the battery yet is still simple enough to be understood,
thus it provides a good starting point to explore the application of the
simultaneous optimization approach, especially with control of the
state variables. However, to be considered for real design applications,
a more detailed tertiary current distribution model like the P2D model
needs to be used. Applying the simultaneous approach to such a system
is extremely challenging. First of all, since all the electroactive species
have to be included in the model, the number of design variables will be
increased dramatically. Secondly, the number of governing equations
also becomes larger. Furthermore, as a consequence of including the
transient behaviors, the time-dependent state variables need to be
discretized both in time and in space, which will shoot up the number
of final “control variables” for the optimizer thereby making it a huge
challenge to solve such problems. Results based on P2D model will
be reported in the future.
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