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Data science, hailed as the fourth paradigm of science, is a rapidly growing field which has served to revolutionize the fields of
bio-informatics and climate science and can provide significant speed improvements in the discovery of new materials, mechanisms,
and simulations. Data science techniques are often used to analyze and predict experimental data, but they can also be used with
simulated data to create surrogate models. Chief among the data science techniques in this application is machine learning (ML),
which is an effective means for creating a predictive relationship between input and output vector pairs. Physics-based battery
models, like the comprehensive pseudo-two-dimensional (P2D) model, offer increased physical insight, increased predictability, and
an opportunity for optimization of battery performance which is not possible with equivalent circuit (EC) models. In this work,
ML-based surrogate models are created and analyzed for accuracy and execution time. Decision trees (DTs), random forests (RFs),
and gradient boosted machines (GBMs) are shown to offer trade-offs between training time, execution time, and accuracy. Their
ability to predict the dynamic behavior of the physics-based model are examined and the corresponding execution times are extremely
encouraging for use in time-critical applications while still maintaining very high (∼99%) accuracy.
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Data science, also known as data-intensive scientific discovery, is
hailed as the fourth paradigm of science.1 A field focused on extracting
knowledge or understanding from data, it includes the subdomains
of machine learning, classification, data mining, databases, and data
visualization. In the age of internet-scale data, these techniques are not
only powerful, but also necessary to extract the signal from the noise
and to have the throughput to do so in a reasonable amount of time. It
has revolutionized the fields of bio-informatics, climate science, word
recognition, advertising, medicine, and is finding more applications
daily. In Google’s Translate application, substantial improvements
over previous methods were achieved using artificial neural network
(ANN) structures, making 60% fewer errors than the previous state-of-
the-art algorithm.2 In climate science, where models are sophisticated
and numerous, data science techniques are used to determine which
of 20 models will give the best prediction on future and historical
data, the accuracy of which surpasses the accuracy of the average
of all models, the current benchmark.3 As chemical engineers are
increasingly tasked with the analysis of more complex data sets, these
same data science tools which have revolutionized other fields become
more relevant.4

When data sets grow, they must be managed intentionally in order
to be useful. Data management, a subfield of data science, fills this
role and gives the tools to be able to correct for missing data points,
ensure consistency of the data, and transform the content of the data
such that it is suitable for use in other aspects of data science. For
missing data, several techniques exist, such as deletion of the sample,
deletion of the feature column, assignment of the average value of the
feature column, and creation of a predictive model to fill the gaps.
Of these, the creation of a predictive model is of significant interest
for electrochemical modelers, as it can result in a better performing
model through the preservation of more information.5 In addition
to cleansing the data set of missing values, this step is often where
exploration and correlation is done, and is an opportunity for initial
feature engineering to take place. Feature engineering, discussed in
more detail in the Results and discussion section, is the practice of
combining input features that highlight patterns in the data with more
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efficacy than the individual features themselves. Feature engineering
is a very manual activity and, along with data preprocessing, it will
generally constitute 80% of the time spent on a data science project.6

In addition to analysis and organization of data, data science tech-
niques are also important in the communication of information. As the
scale of data increases, the way information is communicated becomes
more important. Data visualization is the field involving the research
and implementation of the most efficient ways to communicate large
scale, complex data. Historically, the ability of researchers to present
findings in engaging and consumable ways is outpaced by the rate of
acquisition of new findings, especially in large data-mined spaces.7

As this field improves, the barrier to entry lowers, and information
can be more effectively communicated.

Machine learning is an exciting subfield of data science which
allows computers to learn patterns in data without being explicitly
programmed.8 There exist a multitude of algorithm types, all of which
work on fundamentally different paradigms and which excel in differ-
ent problem types. ML algorithms have been used to build functional
relationships between input and output variables for engineering pro-
cesses in the past.4,9,10

Although there are countless different algorithms associated with
machine learning, this paper is primarily concerned with decision trees
(DTs), random forests (RFs), and gradient-boosted machines (GBMs).
Decision trees create sets of rules which can be applied to new data
of a similar format. RFs are ensembles of DTs which are randomized
such that each has the possibility of yielding a different response for
a given input. The outputs of the DTs are combined using a weighted
sum, resulting in RFs outperforming DTs in a majority of cases, at
the cost of larger size on disk and longer execution time. GBMs are
ensembles of many small DTs where the maximum depth is heavily
constrained such that the model generalizes more aggressively. Their
implementation is based upon the theory that a combination of a
large number of weak predictors enables the creation of a single,
strong predictor. The boosted term refers to the practice of focusing
on samples from the training set which are poorly predicted by the
previous model structure, and this is an iterative practice that leads to
significantly longer training times than RFs and DTs.

Tree-based models were selected for this work due to their favor-
ability in large parameter spaces and relatively low CPU time,11,12

their comparable results to ANNs,12,13 and their ability to act as a
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sensitivity analysis using feature importance, which improves the abil-
ity to construct new features in a process called feature engineering.
In this context, a feature is any single column of input variables – a list
of values which are of constant type and location in the input vector.
In general, RFs and DTs are extremely practical for prototyping due
to their flexibility, rapid training times, and rapid execution times. To
the best of our knowledge, studies reporting these techniques used for
building functional relationships among inputs and outputs for battery
models are very rare, though some studies using several versions of
static and dynamic ANNs have surfaced in the recent past.14,15

The performance of lithium-ion batteries is heavily dependent
upon the operating conditions present during their use in addition
to the states of several internal variables. This sensitivity has driven
the development of a wide range of models to simulate battery behav-
iors, from computationally expensive molecular dynamics simulations
down to simple empirical models, which trade predictive fidelity for
decreased computation time.16,17 Between these extremes lie a variety
of continuum-scale models, which include the single particle model
(SPM),18,19 and pseudo two-dimensional (P2D) model,16,20,21 the latter
of which represents a good tradeoff between physical fidelity, predic-
tive validity across chemistries, and execution time.22

Empirical models are generally simple functions which have been
fit to experimental data and are used to predict future battery perfor-
mance, and often perform very poorly outside of their narrow window
of accuracy. Polynomial, trigonometric, logarithmic, and exponential
fits to experimental data are examples of empirical models which may
offer some form of local accuracy. Equivalent circuit (EC) models are
a class of empirical models which combine a series of linear circuit
elements in order to approximate the behavior of a battery. Typically
used in state of charge (SOC) estimation, ECs are the one of the most
widely implemented battery models due to their simplicity and speed
of calculation.23 SOC, defined as the fraction of total capacity remain-
ing in the battery and represented as a percentage ranging from 0%
to 100%, cannot be directly measured from a battery and must be
inferred or modeled.

SOC (t) = Q (t)

Qn
[1]

When higher fidelity or higher charge rates are needed, the P2D
model is typically used. Based on the principles of electrochemistry,
transport phenomena, and thermodynamics, the P2D model is rep-
resented by coupled nonlinear partial differential equations (PDEs)
which vary with respect to electrode thickness x, particle radius r,
and time t. The predictive capabilities of the model are improved by
the inclusion of internal variables, including electrolyte concentration,
electrolyte potential, solid-state potential, and solid-state concentra-
tion within the porous electrodes, as well as the concentration and
potential of the electrolyte within the separator. This higher fidelity
model typically solves on the order of minutes. In an effort to make
these models easier to implement, faster to solve, and to allow for
greater flexibility of application, surrogate models will be created
using ML algorithms.

In this work, RFs, DTs, and GBM based surrogate models are cre-
ated and their abilities to predict the dynamic behavior of the physics-
based model are examined. The most comprehensive P2D model has
been utilized to create the data set for this study and the results are
analyzed for accuracy and execution time. Trade-offs among training
time, execution time, and accuracy for different ML algorithms are
reported. Although surrogate models based on the P2D model are
demonstrated in this paper, the concept is applicable for detailed 2D
and 3D models for batteries, including multiscale thermal models.

The rest of the paper is organized in the following fashion – the
second section discusses the formulation of P2D model, the associated
parameters and values of those parameters, and how the complete pa-
rameter set can be reduced to a set of most important parameters. The
third section presents the basics of the machine learning algorithms
used in this work, including an overview of the techniques and details
about the structures they create. Results are discussed in the fourth
section, followed by a perspective of where machine learning algo-

rithms can fit into the context of numerical modeling and surrogate
modeling in the fifth section, and a summary of the findings can be
found in the conclusions in the sixth section.

Choice of the Model

The model used to generate this data set is a Newman-type P2D
porous electrode model, as described in other works.16,20,21 For con-
venience, a summary of equations and parameters will be recounted
in Table I, Table II, and Table III here.

The P2D model is favored in literature16,24 due to its balance be-
tween accuracy and relatively low execution time, typically 80 sec-
onds when solved using finite difference techniques with 50,20,50
node points in cathode, separator, and anode, respectively. The model
describes the intercalation and deintercalation of lithium particles
from spherical anode and cathode particles in combination with ionic
and electronic conductivities of the anode and cathode materials and
electrolyte. The model includes effects from porosity of the anode,
cathode, and separator, and also includes effects related to the diffu-
sivity of ions through the electrolyte solution. Rates of reaction are
modeled using Butler-Volmer relationships and the potentials are dic-
tated by open circuit potentials, which are electrochemical properties
of the materials that constitute the anode and cathode.

The parameter count for this model is 46, including the 20 values
used for a piecewise-continuous linear fit for the open circuit poten-
tial, Up. In an effort to reduce the parameter space, the shape of this
curve was approximated prior to data generation by iteratively varying
the values and selecting the one with the lowest absolute error. All
of the values in the linear piecewise function were then scaled from
0.95 to 1.05 to allow for variance in the data set. This reduced the di-
mensionality to 27, while still retaining the flexibility associated with
variance in the open circuit potential. Practically, the dimensionality
of the model can be further reduced using sensitivities from the ML
models, which will be discussed further in the fourth section.

Surrogate Models from P2D Models

In this section, the processes of building surrogate models using
ML techniques and the intricacies associated with them are described
in detail. A flowchart representing the methodology is shown in Figure
1. When attempting optimization and real-time control using a surro-
gate for a computationally expensive model, the first step is to create a
data set for training, testing, and validating the surrogate model. Here,
the size of the data set is 24,000 individual trials with variance across
27 parameters as dictated by a linearly-scaled Sobol sampling arrange-
ment, implemented using the Julia package Sobol.jl.25,26 The ranges
for each parameter are shown in Table III and were chosen based
on a combination of the sensitivity of the model to these parameters
and value ranges taken from reasonable percentage deviations from
values from literature for nickel manganese cobalt oxide (NMC) type
batteries,16 and others were estimated using conventional optimiza-
tion techniques. The total time of data generation was 533 CPU-hours
spread across 12 threads in an i7-6800k running at 3.8 GHz.

Practical considerations when working with RFs include limiting
the number of features used, limiting the size of the data set, and
limiting the number of DTs in the forest. Training a RF is extremely
parallelizable, but CPU time and RAM requirements scale linearly
with the size of the forest and the number of output values, and can
quickly out scale typical hardware capabilities, occasionally requiring
over 30 Gigabytes of RAM for a single model.

Three types of models are created, which will be henceforth re-
ferred to as constant time forward, constant time inverse, and recur-
rent. The forward surrogate model takes in a vector of parameters
and outputs a voltage discharge curve, acting as a faster version of
the physics-based model. The inverse model takes a voltage discharge
curve as an input and estimates a set of parameters that were used
to create that discharge curve, allowing for O(1) parameter estima-
tion. The recurrent model takes a vector of parameters and voltages
from previous times as an input and estimates the next voltage, or
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Table I. Transformed Governing Equations.

Governing Equation Boundary Conditions

Positive Electrode

εp
∂cp
∂t = 1

l p

∂
∂ X [

Deff,p
l p

∂cp
∂ X ] + ap(1 − t+) jp

∂cp
∂ X |X=0= 0
−Deff,p

l p

∂cp
∂ X |X=1 = −Deff,s

ls
∂cs
∂ X |X=0

−σeff,p
l p

(
∂�1,p
∂ X

)
− κeff,p

l p
(
∂�2,p
∂ X ) + 2κeff,p RT

F
(1−t+)

l p
( ∂ ln cp

∂ X ) = I

∂�2,p
∂ X |X=0= 0

−κeff,p
l p

∂�2,p
∂ X |X=1 = −κeff,s

ls
∂�2,s
∂ X |X=0

1
l p

∂
∂ X [

σeff,p
l p

∂
∂ X �1,p] = ap F jp

( 1
l p

∂�1,p
∂ X )|X=0 = − I

σe f f,p

∂�1,p
∂ X |X=1= 0

∂cs
p

∂t = 1
r2

∂
∂r [r2 Ds

p
∂cs

p
∂r ]

∂cs
p

∂r |r=0 = 0

−Ds
p

∂cs
p

∂r |r=Rs = jp

ρpC p,p
dTp
dt = 1

l p

∂
∂ X [ λp

l p

∂Tp
∂ X ] + Qrxn,p + Qrev,p + Qohm,p −κe f f,p

∂Tp
∂ X |X=0 = henv(Tp |X=0 − Tair )− λp

l p

∂Tp
∂ X |X=1 = − λs

ls
∂Ts
∂ X |X=0

Separator

εs
∂cs
∂t = 1

ls
∂

∂ X [ Deff,s
ls

∂cs
∂ X ]

cp |X=1 = cs |X=0

cs |X=1 = cn |X=0

− κeff,s
ls

( ∂�2,s
∂ X ) + 2κeff,s RT

F
(1−t+)

ls
( ∂ ln cS

∂ X ) = I

�2,p|X=1 = �2,s |X=0

�2,s |X=1 = �2,n |X=0

ρsC p,s
dTs
dt = 1

ls
∂

∂ X [ λs
ls

∂Ts
∂ X ] + Qohm,s

Tp |X=1 = Ts |X=0

Ts |X=0 = Tn |X=1

Negative Electrode

εn
∂cn
∂t = 1

ln
∂

∂ X [ Deff,n
ln

∂cn
∂ X ] + an(1 − t+) jn

∂cn
∂ X |X=1= 0
−Deff,s

ls
∂cs
∂ X |X=1 = −Deff,n

ln
∂cn
∂ X |X=0

−σeff,n
ln

( ∂�1,n
∂ X ) − κeff,n

ln
( ∂�2,n

∂ X ) + 2κeff,n RT
F

(1−t+)
ln

( ∂ ln cn
∂ X ) = I

�2,n |X=1= 0
−κeff,s

ls
∂�2,s
∂ X |X=1 = −κeff,n

ln
∂�2,n
∂ X |X=0

1
ln

∂
∂ X [ σeff,n

ln
∂

∂ X �1,n] = an F jn

∂�1,n
∂ X |X=0= 0

( 1
ln

∂�1,n
∂ X )|X=1 = − I

σe f f,n

∂cs
n

∂t = 1
r2

∂
∂r [r2 Ds

n
∂cs

n
∂r ]

∂cs
n

∂r |r=0 = 0

−Ds
n

∂cs
n

∂r |r=Rs = jn

ρnC p,n
dTn
dt = 1

ln
∂

∂ X [ λn
ln

∂Tn
∂ X ] + Qrxn,n + Qrev,n + Qohm,n − λs

ls
∂Ts
∂ X |X=1 = − λn

ln
∂Tn
∂ X |X=0−κe f f,n

∂Tn
∂ X |X=1 = henv(Tair − Tn |X=1)

number of voltages. The extremely flexible nature of problem formu-
lation allows for a variety of applications from the same data set.

The three types of models used are based heavily on the classifi-
cation and regression trees (CART) algorithm, which greedily creates
binary splits in order to grow trees in a top-down fashion, meaning
that it begins at the inputs and ends with the outputs.27 This process
continues until the termination condition is reached, typically a max-
imum depth or perfect accuracy. The accuracy and training time of
the models are functions of the size of the training set, the parameter
space sampled in the data set, and several hyper-parameters of the
models.

Surrogate model formulation.—The process begins with a loss
metric for tree f , typically the mean squared error (MSE) between
the predictions of an existing tree structure and the data, which is
evaluated at each terminal node T, where Lj represents the total loss
at node j.27,28 In this context, each interior node in the tree represents

a set of rules used to split the data, which is optimized to increase the
predictability of the tree. For example, for some portion of the data,
if variance in feature 25 can separate the discharge curves with high
purity, a threshold will be chosen above which the data are sorted
right and below which the data are sorted left. The rules are generally
not as simple as a single feature value, and typically default to either
considering every feature or a random number up to log (nfeatures),
depending upon the implementation. The total number of trees, or
weak learners, is represented by n, and the potential attributes which
can be used to split are represented by Ij. The loss is effectively the
sum of the error accumulated across each tree, n, at each terminal
node, T, after considering the splits associated with each feature from
the data set, whose indexes are represented by Ij.

L ( f ) =
n∑

i=1

T∑
j=1

∑
i∈I j

L
(
yi , w j

) ≡
T∑

j=1

L j [2]
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Table II. Additional Equations.

Qrxn,i = Fai ji (�1,i − �2,i − Ui ), i = p, n

Qrev,i = Fai ji Ti
∂Ui
∂T , i = p, n

Qohm,i = σeff,i ( 1
li

∂�1,i
∂ X )2 + κeff,i ( 1

li

∂�2,i
∂ X )2 + 2κeff,i RTi

F (1 − t0+)

1
l2
i

1
ci

∂ci
∂ X

∂�2,i
∂ X , i = p, n

Qohm,s = κeff,s ( 1
ls

∂�2,s
∂x )2 + 2κeff,s RTs

F (1 − t0+) 1
cs

1
l2
s

∂cs
∂ X

∂�2,i
∂ X

Ui (Ti , θi ) = Ui,ref (Tref , θi ) + (Ti − Tref )[
dUi
dT ]|Tref , i = p, n

Ds
i,e f f = Ds

i exp(− E
Ds

i
a
R [ 1

T − 1
Tre f

]), i = p, n

ki,e f f = ki exp(− E
ki
a
R [ 1

T − 1
Tre f

]), i = p, n

Un = 0.7222 + 0.1387θn + 0.029θ0.5
n − 0.0172

θn
+ 0.0019

θ1.5
n

+0.2808 exp (0.90 − 15θn) − 0.7984 exp (0.4465θn − 0.4108)

κe f f,i = ε
brugg
i

(
4.1253 × 10−2 + 5.007 × 10−4c − 4.7212 × 10−7c2

+1.5094 × 10−10c3 − 1.6018 × 10−14c4

)
,

i = p, s, n

Def f,i = D · ε
brugg
i , i = p, s, n

σe f f,i = σi · (
1 − εi − ε f,i

)
, i = p, n

ai = 3
Ri

(1 − εi − ε f,i ), i = p, n; θp = cs |r=Rp
cs

max,p
; θn = cs |r=Rn

cs
max,n

A proposed split at node k, such that k = / = j, is done by maximizing
gain, or the difference in loss before and after the split. In this way,
new splits are created without redundancy, where the gain is defined
as the difference between the previous loss associated with node k,
Lk, and the losses associated with the new terminal nodes which are
the left and right splits, LkL and LkR, respectively. This process is
demonstrated in Figure 2.

Gain = L
(

fbe f ore

) − L
(

fa f ter

) = Lk − (LkL + Lk R) [3]

This process establishes the structure of the DT or RF but does not
instantiate any of the nodes with weights. A separate process optimizes
the weights at each node, wj, such that the total loss is minimized.

w j = arg minw

∑
i∈I j

L (yi , w) [4]

This is a typical stopping criterion for a DT, which contains only one
structure. This can be further extended and used as the termination cri-
terion for a RF by repeatedly solving for w j for additional structures
until nestimators is reached. The structures for these models are very
large and will go on to perfectly memorize the training data set unless
an artificial limit is imposed. For GBMs, this process is iteratively re-
peated using a boosting algorithm, which greedily fits additional small
(e.g. max depth < 5) structures until the nestimators limit is achieved.
This iterative nature leads to considerably longer training times than
either DTs or RFs. However, the ensemble of multiple weak and varied
predictors allows for better generalizability than either DTs or RFs.27

Formally, GBMs are a solution to the below problem statement, where
θm is the weights for the structure φm is a list of which minimizes the

Table III. Parameter Value Ranges.

Symbol Parameter Positive Electrode Separator Negative Electrode Units

σi Solid phase conductivity 7.00238–14.2888 70.0044–142.855 S/m
ε f,i Filler fraction 0.0174523–0.0356141 0.0229289–0.0467899
εi Porosity 0.380838–0.413231 0.3124–0.637511 0.256371–0.523131
Brugg Bruggeman Coefficient 1.05–2.14 1.05–2.14 1.05–2.14
D Electrolyte diffusivity 2.4e-11–1.5e-07 2.4e-11–1.5e-07 2.4e-11–1.5e-07 m2/s
Ds

i Solid Phase Diffusivity 9.62383e-16–7.37308e-
12

1.38021e-15–7.20549e-
12

m2/s

ki Reaction Rate constant 1.35627e-11–1.34804e-
09

1.03462e-11–
1.03141e-09

mol/(s m2) /(mol/m3)1+αa,i

cs
i,max Maximum solid phase

concentration
43996.0–47738.3 29027.3–32163.0 mol/m3

cs
i,0 Initial solid phase

concentration
15616.7–21880.8 25563.1–32055.5 mol/m3

c0 Initial electrolyte
concentration

1140.0–1263.14 mol/m3

Rp,i Particle Radius 3.97514e-06–1.58973e-
05

4.98866e-06–1.99519e-
05

m

li Region thickness 4.10747e-05–4.36543e-
05

1.282e-05–2.003e-05 4.5559e-05–4.6484e-05 m

t+ Transference number 0.31375–0.387338
F Faraday’s Constant 96487 C/mol
R Gas Constant 8.314 J/(mol K)
Tre f Temperature 298.15 K
P Density 2500 1100 2500 kg/m3

Cp Specific Heat 700 700 700 J/(kg K)
� Thermal Conductivity 2.1 0.16 1.7 J/(m K)

E
Ds

i
a Activation Energy for

Temperature Dependent
Solid Phase Diffusion

5000 5000 J/mol

Eki
a Activation Energy for

Temperature Dependent
Reaction Constant

5000 5000 J/mol
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Figure 1. Process Flowchart for the Creation of Surrogate Models from Simulated Data.

loss function.

{θm, φm} = arg min{θm ,φm }

n∑
i=1

L
(
yi , f (m−1) (xi ) + θmφm (xi )

)
[5]

The boosting process requires a gradient calculation of the loss in
function space gm(x), which is calculated by fitting a regression tree
model using MSE as its loss function.

− gm (x) = −
[

∂L (y, f (x))

∂ f (x)

]
f (x)= f (m−1)(x)

[6]

φm = arg minφ

n∑
i=1

[(−gm (xi )) − φ (xi )]
2 [7]

In addition to the direction of the step, a step length ρm must also
be determined. This is typically done using a line search algorithm
which inherits a learning rate from the initial GBM call.

ρm = arg minρ

n∑
i=1

L
(
yi , f (m−1) (xi ) + ρφm (xi )

)
[8]

fm (x) = ηρmφm (x) [9]

Finally, these concepts are implemented in the python package
Sci-Kit Learn.23

Building the models – constant time models.—Constructing a
forward model is a multi-input, multi-output problem, which dis-
qualified GBMs from this section, as their current implementation is
limited to a single output. While an ensemble of GBMs on the ba-
sis of single output model could have been created, the training time
was prohibitive. When implementing a machine learning model, it is
important to format the data such that the containers are of constant
size. In this case, the discharge voltage was sampled at 100 points
using linear interpolation, with the time value at the end of the vector
equal to 1800 seconds such that samples which overshoot the final
experimental time of 1600 seconds can still be fully captured. In the
case of the forward models, the inputs are the physical parameters, as
shown in the second section, and the output is a time-scaled voltage
discharge curve.

Construction of the inverse models was similar to that of the for-
ward models, however, the inputs and outputs were switched. In this
way, it was possible to use the inverse models for O(1) parameter esti-
mation for the surrogate or physics-based models. Due to the reduced
parameter space, it was also feasible to create per-parameter GBMs.

Figure 2. Visual representation of addition of splits during tree structure building. A split is created at T3 and reduces the total loss L, so it is kept.
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Figure 3. Representation of windowed clustering for creation of recurrent data set. For each time step, n voltages are taken as the input and the next voltage is
taken as the output. In this case, n = 5.

Building the models – recurrent models.—The extreme flexibility
of machine learning models allows for more creative uses of a typical
data set than matching or swapping input and output. In order to create
a recurrent model, the training and test sets need to be manipulated in
such a way that time or previous voltages are used as inputs to predict
some next range of voltages. This is done by first disassembling the
vectors of voltages and then reassembling the data such that the input
values contain a list of parameters and α voltages, and the output value
is the next voltage. In Figure 3 below, and in the later models, α is
equal to 5. This can be modified to predict SOC by simply generating
a value for the SOC at each voltage point and substituting the SOC
value for the predicted voltage value. While GBMs are restricted to
single value prediction, DTs and RFs can easily estimate anything
related to the data set. In the equation below, new X and Y arrays are
constructed using the old arrays which use a set of parameters and
previous voltages to predict the next voltage.

Xnew [i] = [Xold [i, n : n + α] , Y [i]] ,

Ynew [i] = X old [i, n + α + 1] [10]

Results and Discussion

Effect of sample size.—When splitting the data into test and train-
ing sets, it is advantageous to randomize the trials to minimize the
effects of sampling bias. In this data set, the individual trials were ran-
domized in batches of 100, such that smaller subsamples of the data
cannot contain runs from later batches. For example, when selecting
only the first 1000 trials, the training and test sets are randomized,
but do not contain samples from simulations 1000–24000, as they
might be in a single batch randomization. In this way, it is possible to
sequentially give more information to an RF or DT and examine the
effects of a larger training set, as demonstrated in Figure 4.

Constant time models.—The more traditional form of surrogate
models are effectively constant time models, in that they take in a set
of parameters and output the entire discharge curve at once, rather
than solving for the next time step iteratively, as is the case with
the recurrent models. The recurrent models can be used to iteratively
rebuild the constant time model result for a given set of parameters,
but doing so is a slower implementation of the same constant time
model, as the function must be called for each discretization of time
rather than once. The constant time surrogate models perfectly learn
the training data set, and any new set of parameters, like a sample from
the test set, yields a curve from the training set whose parameters are
similar in value. Depending upon the coarseness of the parameter
sampling, this may or may not yield a good result.

DTs are known as constant output estimators, meaning that they
allow for continuous inputs, but they do not interpolate between the
data points, the values are connected in a way similar to a step function.
In other words, although the input space is continuous, the output space
can only have the same values as the discrete values in the training
set. As such, an optimized result of a surrogate model using a DT will

yield, at best, the closest result from the training set. While this is a
good result, the act of using a DT contributes no tangible benefits over
calling a look-up table of the training data, other than a significant
speed increase. The closest result from the lookup table is used as
a benchmark in other problem formulations, so these results are not
shown here.

Since the constant time models exclusively use the parameters to
estimate the output curves, their ability to predict the output volt-
ages is inherently dependent upon their ability to identify meaningful
parameters and correlate them to the changes they cause. The physics-
based model is more sensitive to some parameters than others, and
this sensitivity carries over to the surrogate models. RFs are able to
report this relative sensitivity in a metric called feature importance, the
definition of which can vary by package. In this instance, it is defined
as the total number of times that feature is used in a split divided by
the total number of splits. A feature is a single input from the input
vector, meaning that each parameter in these constant time models is
a feature. In addition to the given features, it is also possible to create
artificial features that are combinations of your inputs in a practice
known as feature engineering.

Feature engineering is one of the most overlooked and most im-
portant facets of machine learning.6 It entails findings relationships
between features which can better represent the trends in the data
than the individual features themselves. Other works29 have already
demonstrated that the types of engineered features that can be learned
by various models can differ, and helps give insight into which types of
features to look for. If RFs can learn the relationship between an input
x and an output x2, for example, there is no need to explicitly create
the feature x2 in the input set, as no new information will be added.
This can help reduce the dimensionality of the feature engineering
problem.

Since this data is simulated, the equations themselves can be a
good source of inspiration for engineered features. Upon looking in
the equations, some of the below relationships became apparent.

Physically building these features requires creating a new array
containing the old features and having room for the new ones, and then
adding in the values which represent the combinations of features to
complete the array. This process can be vectorized trivially for perfor-
mance improvements, as shown in Equation 11. Figure 5 demonstrates
the feature importance of the entire spectrum of features, which in-
cludes 26 of the original 27 parameters, where the single parameter
representing the scale of the OCP has been expanded to the actual
values, bringing the parameter total up to 46. Additional parameters
are those represented in Table IV, in order of appearance. Only some
of the features have a strong feature importance, demonstrating that
these features have added patterns that accurately represent trends in
the data. The algorithm score as a function of importance threshold is
shown in Figure 6.

The best possible result would come from exhaustively creating
and trying every permutation of feature combinations, but that is an
intractable amount of features and is generally not computationally
feasible. Even with only 27 parameters, and for a single relation-
ship, like division, this represents 227 parameter combinations. When
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Figure 4. Effect of training size on test set error for a RF of size n = 100.

higher-order interactions are considered, manual feature engineering
becomes the only option. To demonstrate this, both processes have
been done – 40 manual features have been created using relationships
found in the data and various dimensionless groups, and ∼250 features
have been generated by randomly selecting 2 features and randomly
multiplying or dividing them. This has been done in 3 batches of sizes

150, 50, and 50, in order to allow for the later trials to create more
complex interactions by potentially sampling from parameter groups.

Fnew [:] = Yold [:, 5] . ∗ Yold [:, 6] ./Yold [:, 7] [11]

Once engineered features have been added, it is important to re-
move any features which are not contributing to the accurate prediction

Figure 5. Per-parameter feature importance. Parameters 0–27 represent the original input parameters, 28–66 represent the engineered parameters, and 67–316
represent the randomly created parameters. Clipped at 0.030 for visibility.
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Table IV. Engineered features, groups with importance > 0.0064 bolded.

Number Relationship Positive Electrode Separator Negative Electrode Units

1,2,3
ε

Brugg
i D

li 2εi
X X X 1/s

4,5 ai (1 − 0.1t+ki ) X X m2/m3(mol/(s m2) /(mol/m3)1+αa,I)

6,7 ai (1 − 0.1t+ki )
√

c0 X X m2/m3(mol/(s m2) /(mol/m3)1+αa,I)(mol/m3)0.5

8,9 ai (1 − 0.1t+ki )
√

c0

√
cs

i,0 X X m2/m3(mol/(s m2) /(mol/m3)1+αa,I)(mol/m3)

10,11,12
ε

Brugg
i D

li
X X X m/s

13,14 σi
li

X X s/m2

15,17,19
ε

Brugg
i

li
X X X 1/m

16,18,20
ε

Brugg
i (1−0.1t+)

li
X X X 1/m

21,22 σi
l2
i

X X s/m3

23,24
Ds

i,e f f

Rp,i
2 X X 1/s

25,26 ki√
c0

X X mol/(s m2)/(mol/m3)1+αa,i/(mol/m3)0.5

27,29
Rp,i

2

Ds
i,e f f

X X S

28,30
Rp,i

2

ε
Brugg
i D

X X S

31,32
Rp,i

2ki c0.5
0

X X m/(mol/m3 mol/(s m2) /(mol/m3)1+αa,i)

33,34 εi cs
i,0c0 X X (mol/m3)2

35,36
ε

Brugg
i li

ε
Brugg
s ls

X X m/m

37 ε p
εn

1

38 l p
ln

m/m

39,40 1
Rp,i

X X 1/m

of new data in a process called feature pruning.30 These features, which
have no true predictive value, can only make contributions to over-
fitting, and cannot be relied upon to accurately predict the test data.
By removing features whose importance is below a certain threshold,
the accuracy of the validation set is improved. At the two pruning
extremes, the model would use either all the features or one of the
features, and response of the score to the pruning threshold should
be a U-shaped curve, with a maximum at an intermediate value, as
implied by the bias-variance tradeoff.31 With increasing feature count,

the variance is reduced, but if some features contain little predictive
power, their effects may only be seen in the training set and not in the
test set, leading to increased bias, also called over-training.

As demonstrated in Figure 6, there is an optimal range of threshold
values where features which contribute exclusively to overfitting are
discarded, but features which add valuable information are retained,
increasing the accuracy on both seen and unseen data. The lines in
Figure 5 and Figure 6 are drawn at the same importance threshold,
which is determined by selecting the value that corresponds to the

Figure 6. Random forest score with varying feature importance threshold, obtained from model trained on original and engineered features.
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Figure 7. Test data set RMSE of identical models with original, original and
engineered, original and random, or all features.

highest R2 score, where the R2 value represents the quality of the fit
of the line y = x on a plot of predicted values vs true values. In this
instance, a value of 1.0 is perfect and a value of 0.0 is uncorrelated.
Of the 40 hand-created features, 5 represented high scoring features,
compared to 13 of the 250 randomly generated features and 7 of the
initial 27 features. It is worth nothing that the feature importance is rel-
ative to the other features, and does not define an absolute relationship
between any particular input with the outputs.

Initially, it seemed that feature importance was an extremely re-
liable method of feature pruning, and while it should certainly be
considered, it is not enough for a new feature to simply have a high
sensitivity – it must also describe a relationship that is not currently
described in the existing features. For instance, the most important
feature is socp, or initial state of charge in the positive electrode, with
a feature importance of 0.206. This feature is so important that its
presence in another random group, like 1

socp , can have a high selec-
tivity without necessarily generating new useful information. In this
instance, the addition of the randomized features actually decreases
the training accuracy as these artificially high-scoring parameter com-
binations can edge out features which may be less selective but which
may add meaningful relationships. By pruning the original features,
it is possible to achieve a test set RMSE of 0.0953 volts. Adding
in hand-engineered features can reduce this to a test set RMSE of
0.0832 volts, while the addition of randomly created features, even
with the hand-engineered features present, raises this again to an test
set RMSE 0.0861 volts. When only the original and randomized fea-
tures are used, the test set RMSE peaks at 0.0878 volts, as shown in
Figure 7. Despite this, it can be seen in Figure 5 that many of the
randomly created features have a very high feature importance when
compared to the hand-created features. As such, feature engineering
is a useful tool, but having features with higher importance does not
guarantee a better result on the test data set.

In addition to engineering new features, feature scaling is also an
important attribute. Due to the loss function lacking a normalization
term, the data must be scaled such that error can be adequately rep-
resented in the loss function, even for small numbers. As a concrete
example from this data set, the parameter kn, representing the rate of
reaction in the negative electrode, has a value of the order 10−14. Due
to its very small value, even extremely large changes in the relative
value of the prediction will be counted as accurate guesses by the loss
function.

In addition to using the forward model to create a discharge curve
from a set of model parameters, it is also possible to train a model in
reverse, such that for a given discharge curve, the model outputs the
parameters used to create that curve, which enables an O(1) function
for parameter estimation. Since this model is also trained using a

Figure 8. Relative error with respect to every parameter for inverse model
predictions, cropped at ± 50% error for visibility.

Table V. Root mean square error (RMSE) and execution times of
inverse-model estimated discharge curves.

Model Error (V) Execution Time (s)

Training Set Fit 0.02049 4.98
Gradient Boosted Machine 0.1850 5e-6

Random Forest 0.1074 5e-4

DT, it is subject to the same limitations as the forwards models above,
namely that the best result achievable is the closest fit from the training
data set.

Once this inverse model is trained, it is simple to apply to experi-
mental data, which requires scaling the X-axis to the same scaled time
as the training data and ensuring that the length of the vectors is the
same. Once this is done, it can be directly predicted using the algo-
rithms. By taking the closest result from the training set as the correct
values, it is possible to score the algorithms on their accuracy, the re-
sults of which are shown in Figure 8 and whose scores and execution
times are documented in Table V. The resulting discharge curves are
shown in Figure 9. The voltage remaining at 2.5 V after discharge
is not physically meaningful, but padding the relevant discharge in-
formation with values is necessary to keep a constant vector length

Figure 9. Simulated discharge curves associated with the estimated
parameters.
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Table VI. RMSE (Volts) as a function of distance from current
voltage for experimental data, where nt represents the number of
trees in the model.

Method n+1 n+2 n+3 n+4 n+5

DT 0.0290 0.0333 0.0720 0.1068 0.1414
RF (nt = 100) 0.0314 0.0326 0.0609 0.0955 0.1345
GBM (nt = 500) 0.0319 0.0711 0.1058 0.1364 0.1640

for the model, so the minimum voltage from the discharge curve was
used.

While this method is easy to implement, the results are not phe-
nomenal. It is possible that with more data, or with a machine learning
technique that is capable of true interpolation, that this technique could
be more successful. However, it is apparent that even the closest fit
from the training set is not a great fit to the experimental data. This
implies that in order to have the potential for a better fit using this
technique, it would be necessary to either generate more data or to
reduce the sampled parameter space, which is difficult to do without
knowing the values for the optimal fit. However, the speed increase is
significant, even compared to the lookup table.

Recurrent voltage prediction.—One of the more interesting appli-
cations of the data set is the ability to create models for closed-loop,
real-time control which are not possible using the set of equations
in the physics-based model as-is. For example, it becomes possible
to create models where the previous voltages are used to predict the
next voltage, or the next series of voltages, and are updated at regular
intervals. This allows for a fit which outperforms the training set in the
upper portion of the discharge curve, but which overshoots the final
voltage, as shown in Figure 10. The GBM RMSE is 0.0267 volts, and
the RMSE of the closest training data is 0.0158.

By changing the number of voltage points predicted, it is possible
to create a moving window of prediction where the errors can be used
to quantify the confidence of each prediction. Table VI below repre-
sents the RMSE of the points as a function of distance from the voltage
points used to predict. Interestingly, the GBM ensemble outperforms
both the DT and RF at predicting the next voltage point of the exper-

imental data, but does significantly worse predicting further voltages.
This is demonstrated in Figure 11, where the downward choppiness
of the prediction belies the tendency of the model to estimate an early
termination of the discharge curve.

Due to the requirements of DTs, RFs, and GBMs for consistent
dimensions of inputs, all information other than the direct model
inputs are discarded. As such, the model has no record of previous
discharge history beyond the previous 5 voltage values. There are two
approaches to quantifying error using these methods: the error of the
predicted points can be calculated sequentially using the experimental
data as inputs, or the error can be calculated by iteratively calling the
model using previously predicted values until the voltage has hit a
certain value, and examining how that accuracy changes as a function
of time. In other words, it is possible to sequentially predict only
the next voltage and rebuild a single curve from this series using
exclusively experimental data as input, as in Figure 11, and it is also
possible to extend each individual prediction past a single point to an
entire discharge curve, and to examine this series of curves, as done
in the next section.

Recurrent SOC prediction.—So far, these methods have been ap-
plied exclusively to voltage prediction, but they can easily be adapted
to estimation of state of charge. In the data set, rather than having
voltage as a function of time, it is possible to simply coulomb count
and give each time point a SOC measure. There are many different
ways to structure the predictive model. Based on the control scheme,
it may be desirable to have a SOC estimate for the current time, for
a future time, or for both. The flexibility of machine learning allows
for any formulation using any input, all generated from the same data
set. In this analysis, the current SOC was predicted using [n-4. . . n]
voltages.

Using the previously mentioned voltage discharge curve data set,
another output array was created that represents the simulated battery
SOC vs time. The original data were created using a constant 2C
discharge, so the SOC is linearly decreasing at all points between the
maximum voltage and the minimum voltage, as shown in Figure 12.
The recurrent methods were created such that the present voltage and
previous 4 voltage points can be used to predict the present SOC. The
variance of the data set is an advantage when using previous voltages
to predict the next voltage, as it allows for the model to adapt to

Figure 10. Gradient-boosted machine voltage estimation performance using 5 previous voltages to predict the next voltage, and the closest discharge curve from
the training set.
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Figure 11. DT predicted voltage vs dimensionless time for n+1 and n+5. Using 5 input voltages, either the voltage at n+1 (green line) or the voltage at n+5 (red
line) are predicted. This demonstrates the change in accuracy as a function of distance in time from n.

patterns that it has seen even if the entirety of the new curve is not in
the training set. However, this high variance causes SOC estimation
to be difficult due to the sensitivity of the calculation to the ending
time of the simulated data.

To create the SOC data set, the simulated data that did not get
below the typical SOC cutoff of 2.5 volts was omitted, which halved
the size of the data set. The lowest voltage was taken as 0% SOC and

the highest voltage was taken as 100% SOC. Since the current was
constant for these simulations, the SOC decreased linearly with time.
This decreased the uniqueness of the data set, simply requiring that
two simulated batteries hit their lowest voltage at the same time to be
considered identical.

Figure 13a gives a bit of insight into what is happening when the
DT fits a given curve via a series of voltage predictions, the output of

Figure 12. SOC and voltage relationship at constant current draw.
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Figure 13. a) Extended sequential voltage predictions for the target data, demonstrating the long-term variance of the predictions which are accurate in the
short-term. b) Error between the experimental and predicted curves for recurrent networks. c) Discharge graphs compared in b. d) Recurrent SOC error for
experimental data.

which is shown in Figure 13b. Figure 13a represents the combinations
of voltage forecasts that the DT makes as it iteratively fits sections
of voltage data. At the beginning of the discharge curve, there are
fewer predictions, and they are all very similar. By the 5th estimate,
the deviations of the data from the training set can be seen, and
several curves develop. While the extended voltage predictions are
fairly tightly grouped during the bulk of the discharge, we can see
there is a large amount of variance toward the end, in particular when
the curve achieves minimum voltage. The relatively large parameter
variance covers a number of batteries, and the target curve is similar to
only a handful of them. While the large error in the extended voltage
predictions does not hurt the short-range voltage predictions, it is very
detrimental to the SOC predictions, which are heavily dependent upon
the ending time of the curve. Figure 13b represents the accompanying
prediction of subsequent voltages, sampled only at the next point.
The errors in the predictions, in absolute volts, are shown in Figure
13c. It can be seen that the accuracy is well under 0.01 volts for
the majority of the discharge, and the major source of error occurs
when the experimental data stops at 2.5 volts, while the simulated
data often continues. This error can be reduced by restricting the data
set discharge voltages to terminate at exactly 2.5 volts. In Figure 13d,
the corresponding SOC estimate errors can be seen for each of the
predictive methods. The GBM performs the best, and also has the
smoothest output, likely due to its ability to generalize, enabled by
the creation of an ensemble of weak learners rather than completely
learning each data sample independently, as with RFs and DTs.

In order to combat the errors associated with the recurrent SOC
prediction, it is possible to restructure the data once again in order to
give only the information present at certain points of the discharge, like
the recurrent method, but to include the voltage history of the battery
in order to improve the SOC prediction accuracy, like the constant
time model. To do this, the constant time data is modified such that
any points past the current point in time are padded with zeros. For
instance, the first data point, when SOC is 100%, will contain just the
first voltage from the discharge cycle followed by 99 zeros. The fifth
data point will contain the first five voltages followed by 95 zeros. In
this way, much more relevant information is available to the algorithm
in order to predict SOC, and the results are significantly better, with
a greatly reduced MSE of 1.27%, down from the previous best of
3.25%. The SOC prediction error is shown in Figure 14.

Perspective

One of the main advantages of using machine learning in a sim-
ulation application is for the creation of highly accurate, extremely
fast and robust surrogate models. These models are approximations
for the original model, in this case the P2D lithium-ion battery model,
which is itself an approximation of reality.

There have been other instances in which researchers resort to ap-
proximations for algorithms, and must verify that the result remains
meaningful. A good example from the battery community is the work
by Doyle20 using BAND(J) routines, which were restricted to a single
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Figure 14. Effects of problem formulation on SOC estimation. The recurrent method uses only voltages [n-4. . . n] and the padded method uses [n = 0. . . n],
which results in significantly lower error for the experimental data set.

dimension in x. In order to solve for the diffusion in the radial direction
of the particle, rather than adding node points in the radial direction,
the authors used Duhamel’s superposition theorem, which is typically
used to give a solution for the model when the constant current bound-
ary position is replaced with a known profile which varies dynamically
in time. In the P2D model, this time-variant profile for porewall flux
is not known a priori, and the authors were able to solve the model
by approximating the unknown time integral. Another example in the
battery modeling literature is the paper by Paxton and Newman.32

Since a robust code that can solve when D is a constant was already
present, they provided an approach for materials where D changes
with θ, the state of charge. For example, by focusing just on the single
particle, the authors compared a D(θ) model to a D(iapp) model and
concluded that the D(θ) can be replaced by the D(iapp) model under a
range of operating conditions, although the variation in the magnitude
and direction of D(θ) will determine the accuracy. This means that the
Duhamel’s superposition based model can be used for D(θ) cases.

Similarly, a parabolic profile33 approximation for single particle
diffusion has been derived and compared to higher34–37 order approx-
imations for varying applied current. Both the parabolic profile and
higher order approximations have successfully been applied to the
P2D model and have been used for simulation, control, design, and
estimation purposes.33,38 The effective approximate model for solid
phase diffusion is different for constant diffusivity, where the Galerkin
approach36 is valid, and for varying diffusivity, where the only valid
approach is orthogonal collocation.39,40 It is often possible to switch
between different approximate models depending upon operating con-
ditions – using Faraday’s law for low rates, a parabolic profile for low
rates, a higher order model for moderate rates, and boundary layer type
finite difference or finite element models22,41,42 for very high rates. As
evidenced by many of these effective approximations, there are always
pros and cons for such approximations. Sometimes, approximation is
only the way to simulate43 and, sometimes, approximation is neces-
sitated by the availability of software and codes. Nevertheless, the
approximations had always been validated by comparing with the
full-order model and/or experimental data. Similarly, surrogate mod-
els from ML, if carefully developed, are expected to move the field
forward significantly.

Future work includes the creation of surrogate models which are
trained only at certain scales, but which can be extended to become
part of a more complex model, much like the parabolic profile or
similar approximations for a particular scale. An important consid-
eration during the creation of these models will be the ensuring the
conservation of flux, mass, and charge. For example, when solid phase
diffusion is approximated with any method, the average concentration
inside the particle is directly proportional to the applied current or
porewall flux.32,44 Enforcing this constraint on surrogate models will
result in much faster convergence.

The success or failure of a machine learning project depends heav-
ily upon the problem formulation and the desired outputs. For ex-
ample, this project began with a specific goal – to create a surrogate
model which allows for the prediction of a voltage vs time discharge
curve for a given set of model input parameters. After varying degrees
of success with this approach, a new goal was set – estimate the SOC
as well as the voltage, but using the same data set. While the approach
adopted for this task was reasonable, given the constant discharge rate
assumption, it would have failed for a varying discharge rate. How-
ever, the P2D model is capable of calculating the SOC by reporting
the fraction of lithium present in the anode and cathode, which are
a much better means of calculating SOC than using voltage. Since
those data were not stored when creating the data set, they were not
used for this paper, but a new surrogate model could easily be created
from a data set containing these lithium concentrations, electrolyte
concentrations, or other internal states, which may have much more
success in predicting SOC than the current surrogate model and may
prove more useful, especially in control applications.

Conclusions

Machine learning is a promising new field of research that gives the
ability to create surrogate models for faster execution of higher fidelity
models, as well as giving the ability to restructure the input-output
structures of the model without compromising accuracy. In this work,
decision trees, random forests, and gradient boosted machines have
been evaluated as candidates for the creation of surrogate models for
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the porous electrode pseudo two-dimensional physics-based lithium-
ion battery model during a 2C constant-current discharge event. In
this scenario, the surrogate models perform exceptionally well at next-
voltage prediction, but due to the structure of the data set, have no
ability to function at currents that are not 2C and chemistries that are
dissimilar to that of the simulated data set. In this version of the P2D
model, the open circuit potential for the positive electrode is fit using
a piecewise continuous linear curve. If a data set were created that
varied this curve significantly, it may be possible to express different
chemistries, or to have multiple chemistries contained in the same
data set. To incorporate them, a new model could be trained using the
same techniques demonstrated here.

It can be seen that while the voltage prediction using recurrent
methods is exceptional, the state of charge (SOC) estimation is fairly
poor due to the large variance in the terminal times of the simulated
discharge curves. The same variability that allows for high-accuracy
voltage prediction causes higher error in SOC estimates. By restruc-
turing the data set, it is possible to improve the resulting estimate for
SOC, which is highly dependent upon the discharge history of the bat-
tery. The ability to solve high fidelity models with low computational
cost has many applications, including real-time control in BMS appli-
cations, fast optimization for battery design, and multiscale modeling.
Future work will include the use of more complex ML algorithms,
such as ANNs, which take longer to train, but are similarly fast to
execute and offer superior interpolation performance in addition to
much smaller model size on disk. Additionally, while decision trees
can only select from training set data, and hence can only give phys-
ically meaningful results while the training data remains physically
meaningful, this may not be the case for other models while interpo-
lating or extrapolating, and may not be the case for random forests. In
random forests, the outputs of several curves are directly averaged to-
gether, often resulting in a curve that is closer in error but qualitatively
dissimilar – the curve may be blocky, with sudden drops in voltage
as the combined discharge curves are averaged. Future work will also
examine using multiple models whose algorithmic layouts are based
on physically relevant relationships, and work will be done to en-
sure that the outputs remain meaningful. Although surrogate models
based on the P2D model are demonstrated in this paper, the concept
is applicable for detailed 2D and 3D models for batteries, including
multiscale thermal models.

A saved version of the recurrent model can be found at
https://github.com/nealde/P2D_Surrogate, along with instructions for
downloading and executing it locally.
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