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A hybrid analytical-collocation approach for fast simulation of the impedance response for a Li-ion battery using the pseudo-two
dimensional model is presented. The impedance response of the spherical diffusion equations is solved analytically and collocation
is performed on the resulting boundary value problem across the electrode and separator thickness using an orthogonal collocation
scheme based on Gauss-Legendre points. The profiles for a frequency range from 0.5 mHz to 10 kHz are compared with the numerical
solution obtained by solving the original model in COMSOL Multiphysics. The internal variable profiles across a wide range of
frequencies are compared between the two methods and the accuracy, robustness, and computational superiority of the proposed
hybrid analytical-collocation approach is presented. The limitations of the proposed approach are also discussed. A freeware for
academic use that reads the various battery parameters and frequencies of interest as input, and predicts the battery impedance for a
half cell and full cell, is also developed and a means to access it is reported in this paper.
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Electrochemical impedance spectroscopy (EIS) has been widely
used to study the linear dynamics of many electrochemical systems,
including Li-ion batteries.1–4 Most physical and chemical processes
in an electrochemical system possess distinct characteristic time con-
stants, enabling EIS to distinguish these processes by their frequency
response. The dynamics of the porous electrodes used inside most
commercially available Li-ion batteries are governed by the conduc-
tion and mass transfer in the solid and the electrolyte phase, and
electro-chemical kinetics at the solid-electrolyte interface. Because
EIS is able to separate processes by their time-scales, it is often possi-
ble to see changes in each battery electrode as well as the degradation
that leads to capacity fade of the batteries.5–8

Equivalent circuits are the most commonly used models to study
the impedance response of batteries; however, the use of networks
of circuit elements can suffer from a lack of physical interpretability
and model degeneracy.9 Though much less used, physics-based mod-
els can provide more direct insight into the impedance response of
a battery. A critical review describing various continuum and mul-
tiscale physics-based models has been published before.10 Mathe-
matically, physics-based impedance models are transformed from the
time-domain to the frequency-domain by assuming a steady-periodic
response, thereby eliminating time as an independent variable.11 Ana-
lytical solutions for similar systems with a limited set of physics have
been reported since 1989 (Equation 53),12 but due to the difficulty
in separating the real and imaginary parts in parametric form, the
analytical solution needs to be derived repeatedly for different param-
eter sets, making it less efficient. Most rigorous physics-based models
for the impedance of a Li-ion battery employ a numerical scheme to
solve the resulting equations.11,13,14 The resulting equations are com-
putationally expensive to solve, and this reduces their usefulness for
multi-parameter optimization and analysis of different mechanisms
from experimental impedance data.

Part of the computational complexity in solving these models arises
from the coupling between mass transfer, kinetics, and thermodynam-
ics across the thickness of the electrode to the solid phase diffusion
inside the solid particles. Simultaneous simulation of multiple cou-
pled linear equations is inherently related to exponential matrix, in-
troduced by N. R. Amundson to the chemical engineering field.15 In
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addition to the initial value problems, an unified approach to solve
coupled boundary value problems (BVPs) has also been explored.16

This approach is effective even for elliptic partial differential equa-
tions (PDEs) in which more than 100 coupled BVPs were integrated
analytically.17

Though never explored with frequency-domain physics-based
model formulations, there have been significant advances to accelerate
time-domain computations of discharge-charge curves using physics-
based battery models.18–23 One strategy for reducing the simulation
time has been approximating solid phase diffusion using various poly-
nomial approximations.24–27 Approximations were typically applied
that reduced the number of state variables, along with the computa-
tional time. While Duhamel’s superposition method reduces the num-
ber of state variables (for example, it removes the radial coordinate ‘r’
from the model simulation), it is not ideal for reducing the computa-
tional time, as adaptive solvers for integrating the discretized system
of differential algebraic equations (DAEs) ( dy

dt = f (y, z), 0 = g(y, z))
cannot be used. Even though we have applied polynomial approxima-
tions for concentration in the solid phase for our past work,24 these
approximations are not needed for AC impedance simulation as the
radial dependence can be removed by solving analytically for the solid
phase impedance response.

Closed-form analytical solutions of the impedance have been de-
rived for certain cases, but these are only valid under specific de-
sign considerations or limited operating conditions. For example, an
analytical solution for the impedance response of porous intercala-
tion electrodes in the absence of solid-phase diffusion limitations has
been presented.28 Similarly, analytical solutions have been derived for
estimating physical properties of non-insertion porous electrodes in
symmetric cells, and of electrodes without electrolyte-phase diffusion
limitations.29,30 Symbolic closed-form solutions have also been de-
veloped for predicting the impedance response in planar electrodes,
due to diffusion process.31 Moreover, a general analytical expression
for the impedance response for Li-ion cells, accounting for the reac-
tion kinetics at the interface, along with potential distribution and mass
transport in the solid and electrolyte phase has also been proposed.32–34

However, most of these methods do not account for the entire battery
physics, and others numerically fail for high frequencies, unless very
high numbers of polynomial coefficient terms are used. Also, us-
ing the analytical solution requires operation in complex domain and
separating the real and imaginary parts of impedance in parametric
form is challenging, which limits its use for real-time simulation and
estimation.
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In this paper, we propose a computationally efficient way to solve
the impedance equations for the pseudo-2 dimensional (P2D) model
by first applying a coordinate transformation, then orthogonal colloca-
tion to represent the model equations. After applying a time periodic
solution form,11 the governing equations for the original P2D model
are converted to partial differential equations in the frequency domain,
where the independent variables are x (transverse spatial coordinate
across the cell), and r (local radial coordinate for the spherical elec-
trode particles). The radial dependence of the solid phase concentra-
tions can be solved analytically, even for the cases in which solid
phase diffusion coefficient is dependent on the concentration inside
the solid particle, as only the linear terms are considered for the lin-
ear AC impedance models. Once the analytical solution is available,
the dependency in radial coordinate ‘r’ is removed and the model
just becomes a BVP in the spatial coordinate ‘x’, with correspond-
ing boundary conditions for each variable. Solutions to the dependent
variables such as the complex oscillating concentrations and potentials
in the system are parameterized in frequency domain, along with the
physicochemical and geometric properties and electrodes, electrolyte,
and cell configuration. The details for obtaining the analytical solution
for the solid-phase concentration equations, are given in the appendix.
The resulting equations can be solved using finite difference method,
or using finite element method, in a computational platform such as
COMSOL Multiphysics.35

To simplify the computation of the BVPs, we apply a coordinate
transformation, to rescale the spatial coordinate, as described in more
detail below.

Coordinate Transformation

A Li-ion battery consists of cathode, separator and anode. The
model equations must be solved in each region simultaneously, with
the boundary conditions at the interfaces coupling the variables in
each region. As proposed earlier by Northrop et al., to reduce the
required computation, each region is rescaled to be solved within a
spatial domain from X = [0, 1].23 The spatial coordinate is rescaled
as:

X = x

lp
, 0 ≤ x ≤ l p [1]

X = x − l p

ls
, l p ≤ x ≤ l p + ls [2]

X = x − l p − ls

ln
, l p + ls ≤ x ≤ l p + ls + ln [3]

The resulting transformed governing equations for the model along
with boundary conditions, are given in Table AI in the appendix.

Applying Orthogonal Collocation

The theory behind orthogonal collocation has been extensively
developed, and the stability has been studied.36–38 In order to solve
the equations, a certain number of node points are chosen in each
region. The variables to be solved in each region, are assumed to be
represented by a polynomial function,

uk (X ) =
N+1∑
i=0

f k
i X i= f k

0 + f k
1 X+ f k

2 X 2+....+ f k
N X N + f k

N+1 X N+1

[4]

where uk represents the variable to be solved, f k
i represents the coef-

ficient of Xi , and the superscript ‘k’ represents the particular region
where the equation is solved (p, s, n for the positive electrode, sepa-
rator, and negative electrode respectively).

The governing equations of the model are then solved at the internal
node points, whereas the boundary conditions govern the dynamics at
the boundary points. The node points are chosen as the roots of the Nth

order Jacobi polynomial. We describe the process of collocation for
N = 1 internal node point in each region in appendix. For illustration
purposes, arbitrary constants are used for approximating all variables

using a polynomial profile. An alternate Lagrangian polynomial form
offers the ability to write the polynomial representation for a variable
by simply using the dependent variable at the internal collocation
points and the boundary points. For example, for N = 1, a polynomial
for a variable V, can be written using V0,V1 and V2 as

V (X ) = V0 (X − 0.5) (X − 1)

(0 − 0.5) (0 − 1)
+ V1 (X − 0) (X − 1)

(0.5 − 0) (0.5 − 1)

+ V2 (X − 0) (X − 0.5)

(1 − 0) (1 − 0.5)

where V0,V1 and V2 are the variables at X = 0, X = 0.5 (first and
only collocation point) and X = 1.

It should be noted that after applying orthogonal collocation, the
resulting equations are linear equations in the unknown variables and
can be solved using any linear solver. This approach can easily be
extended to higher number of collocation points until convergence is
achieved. As discussed later, higher frequencies necessitate a larger
number of collocation points.

Results

The parameter values used for this work are listed in Table AIII
in the appendix. The resulting set of equations from the collocation
approach is solved in the Maple 17 classic worksheet environment and
is solved for a range of 70 different frequencies, ranging from 0.5 mHz
to 10 kHz and were also independently solved in C. The results were
independently compared with ones obtained by solving the governing
equations in COMSOL 4.4, which uses finite element method for
the simulation.35 While solving in COMSOL, a physics-controlled
‘extremely fine’ mesh was selected in both the radial and the spatial
direction, and the equations were solved using the MUMPS solver
with a relative tolerance of 1e-4, to ensure convergence. The total
computational time required to solve the equations on an Intel(R)
Xeon(R) E5-2687 W 0 @ 3.1 GHz CPU with a 32 GB RAM for
N = 17 internal collocation node points was about 4.3 seconds in
Maple 17, as opposed to over 8 minutes required to solve in COMSOL
for the same set of frequencies. The memory required for Maple 17
was about 180 MB, as opposed to COMSOL which required in excess
of 2 GB. The computational time is even faster when moved to a
C-based environment (a freeware is available on our website).

Figure 1 shows the Nyquist plot, plotting the imaginary component
versus the real component of the linear impedance, for a range of
frequencies, obtained for N = 17 internal collocation node points.

Figure 1. Nyquist plot of the imaginary part of impedance vs the real part of
impedance.
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Figure 2. Comparison of variation of internal variables with scaled distance (X) for orthogonal collocation and COMSOL for ω = 10 mHz for (a) Real part of
concentration (c′

i ) (b) Imaginary part of concentration (c′′
i ) (c) Real part of liquid phase potential (�′

2,i ) (d) Imaginary part of liquid phase potential (�′′
2,i ) (e)

Real part of solid phase potential in the negative electrode (�′
1,n) (f) Imaginary part of solid phase potential in the negative electrode (�′′

1,n) (g) Real part of solid
phase potential in the positive electrode (�′

1,p) (h) Imaginary part of solid phase potential in the positive electrode (�′′
1,p).
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Figure 3. Comparison of Real part of concentration vs x in the negative electrode for ω = 3000 Hz (a) plotted for the continuous polynomial solution (b) plotted
only at discrete collocation points.

The plot shows the qualitative experimental response observed for
Li-ion batteries, with the mass transfer effects (in the solid phase)
governing the dynamics at low frequencies, and the interfacial and
kinetic effects governing the response at medium frequencies, before
a purely ohmic response at very high frequencies.

Figures 2a–2h represents the comparison of spatial variation of
various variables vs X (thickness of the battery), in each region from
the current collector at the negative electrode (X = 0) to the current
collector at the positive electrode (X = 3), for COMSOL, and the
results obtained using for the collocation approach at a frequency of
10 mHz. The profiles match exactly.

At high frequencies, oscillations are observed in the collocation
solution. Figure 3a shows the comparison of the variation of the real
part of concentration vs X in the negative electrode at a frequency of
3000 Hz, obtained in COMSOL, and collocation using N = 17 in-
ternal node points. Due to high frequency, extremely steep gradients
are developed near the anode-separator interface, and the separator-
cathode interface, resulting in a significant boundary layer. To capture
this phenomenon effectively, a very high number of collocation points
are needed to exactly match the continuous profile in the spatial di-
rection. However, the accuracy of the solution is maintained at the
collocation node points, without any oscillations. Figure 3b shows
the comparison of the values of the real part of concentration in the
negative electrode obtained in COMSOL, and obtained through collo-
cation, plotted only at the discrete collocation points. At points away
from the interface, the solution matches well. However, the error is
slightly higher close to the boundary at the interface, which needs
even larger collocation points.

While using a continuous solution in the spatial coordinate ‘x’
(independent variable) in applying orthogonal collocation, accuracy
and stability are guaranteed only at the collocation points, and a linear
interpolation between two collocation points will give a more sta-
ble solution, compared to the continuous polynomial solution, which
might oscillate at high frequencies. Use of alternate collocation ap-
proaches such as Chebyshev collocation, reduces the oscillations for
the continuous polynomial solution (i.e., continuous polynomial as in
Equation 4), however the resulting accuracy at the collocation points
is lower. The accuracy is highest for Gauss collocation, for rectangu-
lar coordinates.39 Accuracy at the boundary points can be increased
by using a higher number of collocation points throughout the re-
gion, or by using orthogonal collocation on finite elements (OCFE).
OCFE involves dividing the entire spatial domain into smaller finite
elements and applying orthogonal collocation in each finite element.
The number of collocation points can be varied in each element, based
on the physics of the particular problem. For example, for this prob-
lem, higher collocation points can be chosen in elements closer to the
interfaces, as compared to the current collectors, since the gradients
are steeper closer to the interface. However, the proposed collocation
approach already guarantees the desired accuracy in linear impedance
(as the accuracy is higher closer to the current collector), and hence
other collocation approaches are not explored in this work.

Figures 4a, 4b shows the real part of the concentration in the solid
phase in the negative and positive electrode respectively, vs the radial
coordinate r at a frequency of 10 mHz, at X = {0, 0.5, 1}. The concen-
tration gradient is higher closer to the interface than, near the current-
collector. Figures 5a, 5b shows the real part of the concentration in

Figure 4. Plot of real part of the solid phase concentration in the (a) negative and (b) positive electrode vs scaled radius (R) at X = 0, 0.5 and 1 for ω = 10 mHz.
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Figure 5. Plot of (a) Real part of solid phase concentration in the negative and (b) Real part of solid phase concentration in the positive electrode vs scaled radius
(R) at X = 0, 0.5 and 1 for ω = 1 Hz.

the solid phase in the negative and positive electrode respectively, vs
the radial coordinate r at a frequency of 1 Hz, at X = {0, 0.5, 1}. As
the frequency increases, very steep gradients are developed closer to
the surface of the particle.

This approach of orthogonal collocation can easily be extended for
higher order terms in the polynomial representation, which are needed
for higher frequencies. Figure 6 shows the plot for number of node
points required for various frequencies, for 6-digit accuracy, when
compared to the COMSOL solution. As discussed above, the required
number of points increase with increasing frequency as expected.

Table I shows the values of the real and imaginary part of
impedance up to 7 decimal digits obtained after choosing N = 3, 7, 15
and 17 internal node points along with values obtained in COMSOL
at specific frequencies. A frequency of 10 mHz requires N = 7 inter-
nal node points, to match with the values obtained in COMSOL for
6-digits accuracy. As mentioned above, the required number of node
points increase with increasing frequency with N = 15 internal node
points required for high frequency of 3000 Hz. The table also shows
values obtained for internal node points N = 17, which match with
the values obtained for N = 15, up to 6 digits, that proves the self-
convergence and consistency of the approach. Typically, COMSOL
uses a weak form of the original set of PDEs, but in the collocation
approach, the original form (strong form) of the model is simulated.
Because of the linearity of the impedance equations in this case, col-
location in the spatial dimension ‘x’ gives good accuracy. It is possible
to apply spectral methods in weak form as well, but the application of
that is beyond the scope of this paper.

Figure 6. Plot of log10 (ω) vs Number of internal collocation points (N) re-
quired for 6-digits accuracy.

It is important to note that the number of node points needed for the
desired accuracy also depends on the set of parameters being used for
the system, as the classification of low/high frequency is determined
entirely by the time constants of various physical processes, which
are dictated by the geometric and physicochemical parameters of
the battery. For example, the time constant of the electrode for the
kinetic processes depend on the charge transfer resistance and the
double layer capacitance of the electrode. To illustrate this, Figure 7
shows the Nyquist plot comparison for different values of the double
layer capacitance for the anode. The distinction in the two arcs of the
individual electrodes gets more pronounced as the capacitance of the
double layer increases. Table II shows the comparison between the
real and imaginary part of linear impedance values for different values
of the double layer capacitance of anode, for N = 15 and N = 17.
While the solution matches until 6 decimal digits for Cdln = 10,
it only matches until 5 decimal digits for Cdln = 100 and Cdln =
1000. This shows that even higher points than 17 might be required
to get convergence for such high values of the anode double layer
capacitance, for the same characteristic frequency of 3000 Hz. Similar
analysis can be done for other sets of parameter values. Since the
analysis in this work is only done for one set of parameter values,

Figure 7. Nyquist plot for linear impedance for Cdln = 10, 100
and 1000 μF/cm2.
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Table I. Values of Real and Imaginary part of impedance for various number of collocation points along with COMSOL values.

N = 3 N = 7 N = 15 N = 17 COMSOL

Re(Z̄ ) Im g(Z̄ ) Re(Z̄ ) Im g(Z̄ ) Re(Z̄ ) Im g(Z̄ ) Re(Z̄ ) Im g(Z̄ ) Re(Z̄ ) Im g(Z̄ )
Frequency (ω) (Hz) (�m2) (�m2) (�m2) (�m2) (�m2) (�m2) (�m2) (�m2) (�m2) (�m2)

0.01 0.0036412 0.0003119 0.0031576 0.00422005 0.0031576 0.0004223 0.0031576 0.0004223 0.0031576 0.0004223
0.1 0.0034421 0.0001167 0.0028985 0.0001365 0.0028978 0.0001369 0.0028978 0.0001369 0.0028978 0.0001369
1 0.0033643 0.0000331 0.0028029 0.0000475 0.0028013 0.0000475 0.0028013 0.0000475 0.0028013 0.0000475
10 0.0033468 0.0000449 0.0027737 0.0000655 0.0027727 0.0000656 0.0027727 0.0000656 0.0027727 0.0000656
100 0.0032124 0.0003164 0.0026064 0.0004714 0.0026058 0.0004728 0.0026058 0.0004728 0.0026058 0.0004728

1000 0.0024953 0.0002098 0.0012766 0.00061305 0.0012916 0.0006642 0.0012916 0.0006642 0.0012916 0.0006642
3000 0.0024487 0.0000739 0.0009827 0.0002832 0.0009198 0.0004208 0.0009195 0.0004205 0.0009195 0.0004206

Figure 6 shows the requirement of the number of collocation points
in a qualitative sense.

In this work, the same number of collocation points were used
in each region, namely cathode, separator and anode. However, de-
pending on the problem, different number of collocation points can
be used in different regions to get the desired accuracy. As there is
no solid-phase in the separator, a lower number of collocation points
in that region could still ensure an overall 6-digits accuracy of linear
impedance. This kind of variable collocation approach will reduce
the resulting number of equations to be solved, which will in turn
make the algorithm even faster. In this way, a robust, fail-proof and
fast solving code for calculating linear impedance for a full cell has
been obtained that can be used for various goals, including parameter
estimation for physics-based models using the EIS data.

Half Cell Impedance Simulation

In order to improve the performance of lithium-ion batteries, a lot
of efforts have been devoted to the development of materials for each
component in the battery system. When testing new cathode or anode
material, a half-cell configuration with the new material being one
electrode and lithium metal being the counter electrode is commonly
used by material scientists.40,41 To broaden the range of application of
the proposed impedance simulation approach and to meet the demand
of analyzing half-cell impedance data, simulation of the impedance
for such a half-cell system is also reported here. Cathode-lithium half-
cell is used as an example, but anode-lithium half-cell system can also
be simulated using the same approach.

The governing equations for the separator and the cathode in the
half cell are the same as in the full cell. The interface between the sep-
arator and the anode now becomes the interface between the separator
and the lithium metal, which is active in electrochemical reactions. For
the Lithium-separator boundary, Butler-Volmer kinetic expression is
assumed and determines the potential drop across the interface.42 The
equations and modified boundary conditions are listed in Table AIV
in the appendix for clarity. This half-cell model can also be viewed as
a base model for fresh lithium metal batteries before cycling.

A Nyquist plot for a half cell using N = 17 collocation node
points with the parameters listed in Table AIII is shown in Figure 8.
Compared with the full-cell impedance curve, the half-cell impedance
curve has the same shape with an overall reduced value, as expected.

Table II. Values of Real and Imaginary part of impedance for
different anode double layer capacitance (Cdln) for various
number of collocation points for a frequency of 3000 Hz.

N = 15 N = 17

Re(Z̄ ) Im g(Z̄ ) Re(Z̄ ) Im g(Z̄ )

Cdln

(
μF
cm2

)
(�m2) (�m2) (�m2) (�m2)

10 0.0009198 0.0004208 0.0009195 0.0004205
100 0.0007877 0.0003025 0.0007898 0.0003049

1000 0.0007672 0.00002546 0.0007602 0.0002561

The ohmic resistance decreases slightly when removing the graphite
electrode while the reduction in charge-transfer resistance is more
noticeable.

To test the robustness of this approach, a different set of parameters
were used in the half-cell impedance simulation to represent a differ-
ent chemistry with a different cell design. The new set of parameters
are listed in Table AV.43 The impedance of the new half-cell (half cell
#2) compared to the half-cell with parameters in Table AIII (half cell
#1) is plotted in Figure 9. The proposed hybrid analytical-collocation
approach is very stable over the physically reasonable range of the pa-
rameter values. The difference in chemistry and cell design can be well
captured by this impedance model and is reflected in the Nyquist plot.

Code dissemination.—An executable freeware code for both full-
cell and half-cell simulations is hosted on the corresponding author’s
website at http://depts.washington.edu/maple/EIS.html that can be
downloaded to calculate the linear impedance for given frequency
with N = 21 and N = 23 internal node points to check for self-
convergence, and gives the real and imaginary part of impedance.
The parameters and frequency are read from an external text file.
The instructions for running the code are also given on the website.
These codes are provided without any restrictions for academic use
and not for commercial use. More details about using the codes are
provided at the website. Current implementation in C (converted to exe
codes) is not the final optimized version, and CPU time and memory
requirements are expected to be even better when we continue to
optimize the algorithms.

Figure 8. Nyquist plot for linear impedance of a full cell and a half cell.
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Figure 9. Nyquist plot for linear impedance of half cell #1 with parameters
from Table AIII, and half cell #2 with parameters from Table AV to demonstrate
the hybrid approach’s robustness in handling different chemistries and designs.

Conclusions

A hybrid method of orthogonal collocation across the electrodes
coupled with the analytical solution in the solid-phase, for solving the
impedance equations for the P2D models that is extremely fast, robust
and fail-proof, is presented. Such a model can be used for parameter
estimation based on experimental data in real-time, i.e. the impedance
equipment can display P2D model predictions before the experiment
is completed. Future work involves adding more physics such as the
SEI layer dynamics to the existing model, extending the technique
to second and higher order harmonics, and estimating the material,
transport and kinetic properties using the first and second harmonics
signals, which could lead to more insight into battery dynamics that
is not captured by EIS.
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Appendix

Example for N = 1 collocation point.—Equations in the negative electrode.—
Consider the governing equations from Table AI, for the real and imaginary parts of
the electrolyte concentration, potential in the solid-phase, and potential in the liquid-
phase, in the negative electrode along with the boundary conditions. The expressions for
the current densities and the overpotentials are substituted from Table AII.

−εnc′′
nω = 1

ln

∂

∂ X

[
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2,n − dUdCn ∗ cns ′′) + ωCdln

F

(
�′

1,n − �′
2,n

))

1

ln

∂

∂ X

[ −σeff,n

ln

(
∂�′

1,n

∂ X

)]
− 1

ln

∂

∂ X

[
κeff,n

ln

(
∂�′

2,n

∂ X

)]

+ 1

ln

∂

∂ X

[
2κeff,n RT

Fc0

(1 − t+)

ln

(
∂c′

n

∂ X

)]
= 0

[A2]

1

ln

∂

∂ X

[ −σeff,n

ln

(
∂�′′

1,n

∂ X

)]
− 1

ln

∂

∂ X

[
κeff,n

ln

(
∂�′′

2,n

∂ X

)]

+ 1

ln

∂

∂ X

[
2κeff,n RT

Fc0

(1 − t+)

ln

(
∂c′′

n

∂ X

)]
= 0

1

ln

∂

∂ X

[
σeff,n

ln

∂

∂ X
�′

1,n

]
= an F

(
i0n (αA + αC )

RT

(
�′

1,n − �′
2,n − dUdCn ∗ cns ′)

− ωCdln

F

(
�′′

1,n − �′′
2,n

))
[A3]

1

ln

∂

∂ X

[
σeff,n

ln

∂

∂ X
�′′

1,n

]
= an F

(
i0n (αA + αC )

RT

(
�′′

1,n − �′′
2,n − dUdCn ∗ cns ′′)

+ ωCdln

F

(
�′

1,n − �′
2,n

))

Boundary conditions at the anode current collector (X = 0) are given by:

∂c′n
∂ X |X=0= 0

∂c′′n
∂ X |X=0= 0

�′
2,n |X=0= 0

�′′
2,n |X=0= 0(
1
ln

∂�′
1,n

∂ X

)∣∣∣∣
X=0

= − I
σe f f,n(

1
ln

∂�′′
1,n

∂ X

)∣∣∣∣
X=0

= 0

[A4]

Boundary Conditions at the anode-separator interface (X = 1) are:
−Deff,n

ln
∂c′n
∂ X |X=1 = −Deff,s

ls
∂c′s
∂ X |X=0

−Deff,n
ln

∂c′′n
∂ X |X=1 = −Deff,s

ls
∂c′′s
∂ X |X=0

−κeff,n
ln

∂�′
2,n

∂ X |X=1 = −κeff,s
ls

∂�′
2,s

∂ X |X=0

−κeff,n
ln

∂�′′
2,n

∂ X |X=1 = −κeff,s
ls

∂�′′
2,s

∂ X |X=0

∂�′
1,n

∂ X |X=1= 0

∂�′′
1,n

∂ X |X=1= 0

[A5]

The internal collocation point inside the negative electrode is chosen as the root of
the first-order Jacobi polynomial in the scaled regionX ∈ [0, 1]. The root lies atX = 1

2 .
Including the boundary points, the three points are now given asX = {0, 1

2 , 1}.
As mentioned previously, the variables are assumed to follow a polynomial profile.

For example, the concentrations are given by:

c′
n (X ) = An

0 + An
1 X + An

2 X2 =
2∑

i=0
An

i Xi

c′′
n (X ) = Bn

0 + Bn
1 X + Bn

2 X2 =
2∑

i=0
Bn

i Xi
[A6]

Similarly, the potentials in each phase are represented by:

�′
1,n (X ) = Cn

0 + Cn
1 X + Cn

2 X2 =
2∑

i=0
Cn

i Xi

�′′
1,n (X ) = En

0 + En
1 X + En

2 X2 =
2∑

i=0
En

i Xi
[A7]

�′
2,n (X ) = Qn

0 + Qn
1 X + Qn

2 X2 =
2∑

i=0
Qn

i Xi

�′′
2,n (X ) = Rn

0 + Rn
1 X + Rn

2 X2 =
2∑

i=0
Rn

i Xi
[A8]

where An
i ,Bn

i ,Cn
i , En

i , Qn
i and Rn

i are the coefficients of Xi , and the superscript ‘n’ denotes
the values in the negative electrode region.
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Table AI. Equations for the P2D impedance model for the full cell (u‘ represents the real-part of the variable u, and u” represents the imaginary
part of the variable u).

Governing Equation Boundary Conditions

Negative Electrode

−εnc′′
nω = 1

ln
∂

∂ X

[
Deff,n

ln
∂c′

n
∂ X

]
+ an(1 − t+)( j ′

n + j ′
dl,n)

εnc′
nω = 1

ln
∂

∂ X

[
Deff,n

ln
∂c′′

n
∂ X

]
+ an(1 − t+)( j ′′

n + j ′′
dl,n)

∂c′
n

∂ X |X=0= 0

∂c′′
n

∂ X |X=0= 0
−Deff,n

ln
∂c′

n
∂ X |X=1 = −Deff,s

ls
∂c′

s
∂ X |X=0

−Deff,n
ln

∂c′′
n

∂ X |X=1 = −Deff,s
ls

∂c′′
s

∂ X |X=0

1
ln

∂
∂ X

[ −σeff,n
ln

(
∂�′

1,n
∂ X

)]
− 1

ln
∂

∂ X

[
κeff,n

ln

(
∂�′

2,n
∂ X

)]
+ 1

ln
∂

∂ X

[
2κeff,n RT

Fc0

(1−t+)
ln

(
∂c′

n
∂ X

)]
= 0

1
ln

∂
∂ X

[ −σeff,n
ln

(
∂�′′

1,n
∂ X

)]
− 1

ln
∂

∂ X

[
κeff,n

ln

(
∂�′′

2,n
∂ X

)]
+ 1

ln
∂

∂ X

[
2κeff,n RT

Fc0

(1−t+)
ln

(
∂c′′

n
∂ X

)]
= 0

�′
2,n |X=0= 0

�′′
2,n |X=0= 0

−κeff,n
ln

∂�′
2,n

∂ X |X=1 = −κeff,s
ls

∂�′
2,s

∂ X |X=0

−κeff,n
ln

∂�′′
2,n

∂ X |X=1 = −κeff,s
ls

∂�′′
2,s

∂ X |X=0

1
ln

∂
∂ X

[
σeff,n

ln
∂

∂ X �′
1,n

]
= an F( j ′

n + j ′
dl,n)

1
ln

∂
∂ X

[
σeff,n

ln
∂

∂ X �′′
1,n

]
= an F( j ′′

n + j ′′
dl,n)

( 1
ln

∂�′
1,n

∂ X )|X=0 = − I
σe f f,n

( 1
ln

∂�′′
1,n

∂ X )|X=0 = 0

∂�′
1,n

∂ X |X=1= 0

∂�′′
1,n

∂ X |X=1= 0

−ωcs′′
n = 1

r2
∂
∂r

[
r2 Ds

n
∂cs

n
′

∂r

]
ωcs′

n = 1
r2

∂
∂r

[
r2 Ds

n
∂cs

n
′′

∂r

]
∂cs

n
′

∂r |r=0 = 0

∂cs
n
′′

∂r |r=0 = 0

−Ds
n

∂cs
n
′

∂r |r=Rn = j ′
n

−Ds
n

∂cs
n
′′

∂r |r=Rn = j ′′
nSeparator

−εsc′′
sω = 1

ls
∂

∂ X

[
Deff,s

ls
∂c′

s
∂ X

]
εsc′

sω = 1
ls

∂
∂ X

[
Deff,s
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s
∂ X

]
c′

n |X=1 = c′
s |X=0

c′′
n |X=1 = c′′

s |X=0

c′
s |X=1 = c′

p|X=0

c′′
s |X=1 = c′′

p |X=0

− 1
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∂
∂ X

[
κeff,s
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(
∂�′

2,s
∂ X

)]
+ 1
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∂

∂ X
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2κeff,s RT

Fc0
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(
∂c′

s
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)]
= 0

− 1
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∂
∂ X

[
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2,s
∂ X

)]
+ 1
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∂ X

[
2κeff,s RT

Fc0

(1−t+)
ls

(
∂c′′

s
∂ X

)]
= 0

�′
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�′′
2,n |X=1 = �′′

2,s |X=0

�′
2,s |X=1 = �′

2,p|X=0

�′′
2,s |X=1 = �′′

2,p|X=0Positive Electrode

−εpc′′
pω = 1

l p

∂
∂ X

[
Deff,p

l p

∂c′
p

∂ X

]
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∂
∂ X
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∂c′′
p
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s
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∂c′
p
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s
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∂c′′
p
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p
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p
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1
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∂ X
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∂ X

[
κeff,p

l p

(
∂�′
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∂c′

p
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1,p
∂ X
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∂
∂ X
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∂
∂ X
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∂c′′

p
∂ X
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∂�′
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∂
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∂
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Table AII. Additional Equations.
η′

p = �′
1,p − �′

2,p − dUdC p ∗ cps′

η′′
p = �′′

1,p − �′′
2,p − dUdC p ∗ cps′′

cps′ = cs
p
′|r=Rp

cps′′ = cs
p
′′|r=Rp

j ′
p = i0p (αA+αC )

RT η′
p

j ′′
p = i0p (αA+αC )

RT η′′
p

j ′
dl,p = − ωCdl p

F (�′′
1,p − �′′

2,p)

j ′′
dl,p = ωCdl p

F (�′
1,p − �′

2,p)
η′

n = �′
1,n − �′

2,n − dUdCn ∗ cns′

η′′
n = �′′

1,n − �′′
2,n − dUdCn ∗ cns′′

cns′ = cs
n
′|r=Rn

cns′′ = cs
n
′′|r=Rn

j ′
n = i0n (αA+αC )

RT η′
n

j ′′
n = i0n (αA+αC )

RT η′′
n

j ′
dl,n = − ωCdln

F (�′′
1,n − �′′

2,n)

j ′′
dl,n = ωCdln

F (�′
1,n − �′

2,n)
Def f,p = Dε

Brugg
p

Def f,s = Dε
Brugg
s

Def f,n = Dε
Brugg
n

κe f f,p = κε
Brugg
p

κe f f,s = κε
Brugg
s

κe f f,n = κε
Brugg
n

σe f f,p = σp(1 − εp − ε f,p)Brugg

σe f f,n = σn(1 − εn − ε f,n)Brugg

Values of the real and imaginary parts of each of the variables are assumed at these
three node points as:

c′
n (X ) = {

c′
n,1, c′

n,2, c′
n,3

}
c′′

n (X ) = {
c′′

n,1, c′′
n,2, c′′

n,3
}

�′
1,n (X ) = {

ϕ′
n,1,ϕ

′
n,2, ϕ

′
n,3

}
�′′

1,n (X ) = {
ϕ′′

n,1,ϕ
′′

n,2,ϕ
′′

n,3

}
�′

2,n (X ) = {
ψ′

n,1, ψ
′
n,2, ψ

′
n,3

}
�′′

2,n (X ) = {
ψ′′

n,1, ψ
′′

n,2,ψ
′′

n,3

}

[A9]

Substituting the values of X in Equation A6, the following relations can be easily
derived.

c′
n,1 = An

0 + An
1 (0) + An

2(0)2 = An
0

c′
n,2 = An

0 + An
1 ∗ (

1
2

) + An
2 ∗ (

1
2

)2

c′
n,3 = An

0 + An
1 ∗ (1) + An

2 ∗ (1)2

[A10]

The coefficients An
0 , An

1 , An
2 can easily be solved in terms of c′

n,1, c′
n,2, c′

n,3. Similar
equations are obtained for other variables.

c′′
n,1 = Bn

0 + Bn
1 (0) + Bn

2 (0)2 = Bn
0

c′′
n,2 = Bn

0 + Bn
1 ∗ (

1
2

) + Bn
2 ∗ (

1
2

)2

c′′
n,3 = Bn

0 + Bn
1 ∗ (1) + Bn

2 ∗ (1)2

[A11]

ϕ′
n,1 = Cn

0

ϕ′
n,2 = Cn

0 + Cn
1 ∗ (

1
2

) + Cn
2 ∗ (

1
2

)2

ϕ′
n,3 = Cn

0 + Cn
1 ∗ (1) + Cn

2 ∗ (1)2

[A12]

ϕ′′
n,1 = En

0

ϕ′′
n,2 = En

0 + En
1 ∗ (

1
2

) + En
2 ∗ (

1
2

)2

ϕ′′
n,3 = En

0 + En
1 ∗ (1) + En

2 ∗ (1)2

[A13]

ψ′
n,1 = Qn

0

ψ′
n,2 = Qn

0 + Qn
1 ∗ (

1
2

) + Qn
2 ∗ (

1
2

)2

ψ′
n,3 = Qn

0 + Qn
1 ∗ (1) + Qn

2 ∗ (1)2

[A14]

ψ′′
n,1 = Rn

0

ψ′′
n,2 = Rn

0 + Rn
1 ∗ (

1
2

) + Rn
2 ∗ (

1
2

)2

ψ′′
n,3 = Rn

0 + Rn
1 ∗ (1) + Rn

2 ∗ (1)2

[A15]

Equations A11–A15 can be used to eliminate all the coefficientsBn
i ,Cn

i , En
i , Qn

i and
Rn

i in terms of the variables at the specific node points, as shown in the right hand side of
Equation A9.

Equations A6–A8 are substituted in the governing Equations A1–A3 to get:

−εn

(
2∑

i=0

Bn
i Xi

)
ω= 1

ln

[
Deff,n

ln

(
2An

2

)] + an (1 − t+)

(
i0n (αA + αC )
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i=0
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i Xi

)

−
(
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Qn
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)
−dUdCn ∗ cns ′

)
− ωCdln

F

((
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i=0
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i Xi

)
−

(
2∑

i=0

Rn
i Xi

)))

[A16]

εn

(
2∑

i=0

An
i Xi

)
ω= 1

ln

[
Deff,n

ln

(
2Bn

2

)] +an (1 − t+)

(
i0n (αA + αC )

RT

((
2∑

i=0

En
i Xi

)

−
(

2∑
i=0

Rn
i Xi

)
−dUdCn ∗ cns ′′

)
+ ωCdln

F

((
2∑

i=0

Cn
i Xi

)
−

(
2∑

i=0

Qn
i Xi

)))

Table AIII. List of parameters.

Symbol Parameter Positive Electrode Separator Negative Electrode Units

σi Solid phase conductivity 100 - 100 S/m
ε f,i Filler fraction 0.025 - 0.0326
εi Porosity 0.385 0.724 0.485
Brugg Bruggeman Coefficient 4 4 4
D Electrolyte diffusivity 7.5 × 10−10 7.5 × 10−10 7.5 × 10−10 m2/s
κ Electrolyte conductivity 0.204737 0.204737 0.204737 S/m
Ds

i Solid Phase Diffusivity 1.0 × 10−14 - 3.9 × 10−14 m2/s
i0i Exchange current density of the reaction 3.67 - 3.30 A/m2

c0 Initial electrolyte concentration 1000 1000 1000 mol/m3

Rp,i Particle Radius 2.0 × 10−6 - 2.0 × 10−6 m
ai Particle Surface Area to Volume 885000 - 723600 m2/m3

li Region thickness 80 × 10−6 25 × 10−6 88 × 10−6 m
t+ Transference number 0.364 0.364 0.364
αi Charge transfer coefficient 0.5 - 0.5
dUdCi First derivative of open-circuit potential −11.6724 × 10−6 −3.21038 × 10−6 V.m3/mol
Cdli Double-layer capacitance 10 10 μF/cm2

F Faraday’s Constant 96487 C/mol
T Temperature 298 298 298 K
R Gas Constant 8.314 J/mol/ K
I Applied Current 1 1 1 A/m2

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 205.175.118.213Downloaded on 2018-05-29 to IP 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 165 (7) A1324-A1337 (2018) A1333

Table AIV. Governing Equations and Boundary conditions for a cathode-lithium half cell.

Region Governing Equations/Boundary Conditions

Lithium-Separator interface −Deff,s
ls

∂c′
s

∂ X |X=0 = −I (1−t+)
F

−Deff,s
ls

∂c′′
s

∂ X |X=0 = 0

�′
2,n |X=0 = 0

�′′
2,n |X=0 = 0

Separator −εsc′′
sω = 1
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]
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∂ X

[
κeff,s

ls

(
∂�′′

2,s
∂ X

)]
+ 1

ls
∂
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∂c′
s
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∂c′
p
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−Deff,s
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s
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∂c′′
p
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2,s
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∂�′
2,p
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Table AV. List of parameters for a different chemistry with different cell design.

Symbol Parameter Positive Electrode Separator Units

σi Solid phase conductivity 3.8 - S/m
ε f,i Filler fraction 0.214 -
εi Porosity 0.416 0.593
Brugg Bruggeman Coefficient 5.2 2.4
D Electrolyte diffusivity 3.35 × 10−10 3.35 × 10−10 m2/s
κ Electrolyte conductivity 0.98 0.98 S/m
Ds

i Solid Phase Diffusivity 1.0 × 10−13 - m2/s
i0i Exchange current density of the reaction 4.16 - A/m2

c0 Initial electrolyte concentration 1000 1000 mol/m3

Rp,i Particle Radius 8.5 × 10−6 - m
ai Particle Surface Area to Volume 130588 - m2/m3

li Region thickness 144.4 × 10−6 76 × 10−6 m
t+ Transference number 0.363 0.363
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Where cns ′ and cns ′′ are the real and imaginary parts of the surface concentrations of
the particle in the solid-phase respectively, and are given by the analytical solution of the
coupled solid-phase equations, in the radial direction.

Equations A16–A18 are valid at the internal collocation points, and hence the values
of X (X = 1

2 ) is substituted in A16–A18. Further, Equations A10–A15 can be used to
get:
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It should be noted that Equation A20 remains the same as Equation A17 in this case,
as there is no X term in Equation A17. However, when collocation for higher internal node
points is considered, Equation A20 will have more terms owing to more number of roots
of the resulting higher order polynomial.

At the boundary points (X = 0 and X = 1), the boundary conditions A4–A5 give
additional sets of equations for each variable. Equations A6–A8 can be used in the
boundary conditions to get:
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Equations in the separator.—A similar treatment as done in the negative electrode can
be done to obtain the resulting equations in the separator region. For the sake of brevity,
below we only show the resulting equations in the separator region.
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The boundary conditions at the anode-separator interface lead to:
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And the boundary conditions at the separator-cathode interface lead to:
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Equations in the positive electrode.—Again, a similar treatment in the positive elec-
trode leads to the following set of equations.
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The governing equations in the positive electrode at the collocation point are given
by:
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Where cps ′ and cps ′′ are the real and imaginary parts of the surface concentrations of
the particle in the solid-phase respectively in the positive electrode, and similar to the
negative electrode, are given by the analytical solution of the solid-phase equations.

The additional boundary conditions at the separator-cathode interface are given by:
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The remaining boundary conditions at the cathode current collector are given by:
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The resulting set of Equations A1–A15 and A19–A44 can now be solved simultane-
ously to obtain all the unknowns of the system. The linear impedance of the battery is
given by:
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Analytical solution for solid-phase equations.—The dynamics of diffusion inside
the solid particles for constant diffusivity is represented in the spherical coordinates by
the equation:
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Applying Fourier transform, the following equations can be derived for the respective
real and imaginary parts:
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With the corresponding boundary conditions given by:
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The following equation can be derived using a simple variable transformation as
shown:
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The boundary conditions for the transformed variables cre(Y ) and cim(Y ) at Y = 0
are given by:
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Where β and δ are unknowns to be determined.
The analytical solution for Equations A49 and boundary conditions A51 is given by:
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This relation can be used to obtain the original variables as:
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√
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)
δ
)
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The real and imaginary parts of the surface concentration of the particle is defined as:

cis ′ = cs
i
′ (r )

∣∣
r=Ri

= cre(Y )
Y

∣∣∣
Y=1

=
√

2
(

cosh
(

1/2
√

2w
)

sin
(

1/2
√

2w
)
β−cosh

(
1/2

√
2w

)
sin

(
1/2

√
2w

)
δ+sinh

(
1/2

√
2w

)
cos

(
1/2

√
2w

)
β+sinh

(
1/2

√
2w

)
cos

(
1/2

√
2w

)
δ
)

2w
[A54]

cis ′′ = cs
i
′′ (r )

∣∣
r=Ri

= cim(Y )
Y

∣∣∣
Y=1

=
√

2
(

cosh
(

1/2
√

2w
)

sin
(

1/2
√

2w
)
β+cosh

(
1/2

√
2w

)
sin

(
1/2

√
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)
δ−sinh

(
1/2

√
2w

)
cos

(
1/2

√
2w

)
β+sinh

(
1/2

√
2w

)
cos

(
1/2

√
2w

)
δ
)

2w

The boundary conditions at r = Ri contains j ′
i and j ′′

i , which are functions of cis ′and
cis ′′respectively. Same conditions are used to obtain the unknown variables β and δ. From
Table AII, after substituting the expressions for j ′

i , j ′′
i , η′

i and η′′
i , the boundary conditions

can be rewritten as:

∂cs
i
′

∂r

∣∣∣∣
r=Ri

= − j ′ i
Ds

i
= A1 + B1

(
cis ′)

∂cs
i
′′

∂r

∣∣∣∣
r=Ri

= − j ′′ i
Ds

i
= A2 + B2

(
cis ′′) [A55]

Where A1, B1, A2 and B2 are given by:

A1 = − i0i Ri (αa +αc )
(
�′

1,i −�′
2,i

)
RT Ds

i

B1 = i0i Ri (αa +αc )dUdCi
RT Ds

i

A2 = − i0i Ri (αa +αc )
(
�′′

1,i −�′′
2,i

)
RT Ds

i

B2 = i0i Ri (αa +αc )dUdCi
RT Ds

i

[A56]

Equation A53 is used to calculate the slope of cs′
i and cs′′

i required in Equation A55,
which is then solved simultaneously with Equation A54 to get the required unknowns β

and δ. The last step is too complicated to be written here, but can be performed using a
symbolic mathematical tool, such as Mathematica or Maple. Once β and δ are known,
Equation A54 can be used to calculate the surface concentration, and the effect of the
pseudo radial coordinate can be decoupled.

List of Symbols

ci
′ Real part of the electrolyte concentration in region ‘i’,

i = {p, s, n}
ci

′′ Imaginary part of the electrolyte concentration in region
‘i’, i = {p, s, n}

cs′
i Real part of the solid-phase concentration in region ‘i’,

i = {p, n}
cs′′

i Imaginary part of the solid-phase concentration in re-
gion ‘i’, i = {p, n}

cps ′ Real part of the solid-phase concentration at the surface
of the particle in the positive electrode

cps ′′ Imaginary part of the solid-phase concentration at the
surface of the particle in the positive electrode

cns ′ Real part of the solid-phase concentration at the surface
of the particle in the negative electrode

cns ′′ Imaginary part of the solid-phase concentration at the
surface of the particle in the negative electrode

j ′
i Real part of the pore-wall flux in region ‘i’, i = {p, n}

j ′′
i Imaginary part of the pore-wall flux in region ‘i’, i =

{p, n}
j ′
dl,i Real part of the double-layer flux in region ‘i’, i =

{p, n}
j ′′
dl,i Imaginary part of the double-layer flux in region ‘i’,

i = {p, n}
X Scaled x-coordinate

Greek

�′
1,i Real part of the solid-phase potential in region ‘i’, i = {p, n}

�′′
1,i Imaginary part of the solid-phase potential in region

‘i’, i = {p, n}
�′

2,i Real part of the electrolyte-phase potential in region ‘i’,
i = {p, s, n}

�′′
2,i Imaginary part of the electrolyte-phase potential in re-

gion ‘i’, i = {p, s, n}
η′

i Real part of the overpotential in region ‘i’, i = {p, n}
η′′

i Imaginary part of the overpotential in region ‘i’, i =
{p, n}

Subscripts

e f f Effective, as for diffusivity or conductivity
c Related to electrolyte concentration
cs Related to solid-phase concentration
n Related to the negative electrode—the anode
p Related to the positive electrode—the cathode
s Related to the separator
dl Related to the double-layer
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Superscripts

avg Average, as for solid-phase concentration
sur f Surface, as for solid-phase concentration
s Related to solid phase
1 Related to the solid-phase potential
2 Related to the liquid-phase potential
′ Representing the real part
′′ Representing the imaginary part
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