
A886 Journal of The Electrochemical Society, 166 (6) A886-A896 (2019)

On the Creation of a Chess-AI-Inspired Problem-Specific
Optimizer for the Pseudo Two-Dimensional Battery Model Using
Neural Networks
Neal Dawson-Elli,1 Suryanarayana Kolluri, 1,∗ Kishalay Mitra,2
and Venkat R. Subramanian 1,3,∗∗,z

1Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
2Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak, 502 285 Telangana, India
3Pacific Northwest National Laboratory, Richland, Washington 99352, USA

In this work, an artificial intelligence based optimization analysis is done using the porous electrode pseudo two-dimensional (P2D)
lithium-ion battery model. Due to the nonlinearity and large parameter space of the physics-based model, parameter calibration is
often an expensive and difficult task. Several classes of optimizers are tested under ideal conditions. Using artificial neural networks, a
hybrid optimization scheme inspired by the neural network-based chess engine DeepChess is proposed that can significantly improve
the converged optimization result, outperforming a genetic algorithm and polishing optimizer pair by 10-fold and outperforming a
random initial guess by 30-fold. This initial guess creation technique demonstrates significant improvements on accurate identification
of model parameters compared to conventional methods. Accurate parameter identification is of paramount importance when using
sophisticated models in control applications.
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Lithium ion batteries are complex electrochemical devices whose
performance is dictated by design, thermodynamic, kinetic, and trans-
port properties. These relationships result in nonlinear and compli-
cated behavior, which is strongly dependent upon the conditions dur-
ing operation. Despite these complexities, lithium ion batteries are
nearly ubiquitous, appearing in cell phones, laptops, electric cars, and
grid-scale operations.

The battery research community is continually seeking to improve
models which can predict various states of the battery. Due to this
drive, a multitude of physics-based models which aim to describe the
internal processes of lithium ion batteries can be found, ranging in their
complexity and accuracy from computationally expensive molecular
dynamics simulations down to linear equivalent circuit and empirical
models. Continuum scale models such as the single particle model1

and pseudo two-dimensional model (P2D)2–5 exist between these ex-
tremes and trade off some physical fidelity for decreased execution
time. These continuum models are generally partial differential equa-
tions, which must be discretized in space and time in order to be
solved. In an earlier work, a model reformulation based on orthogonal
collocation2 was used to greatly decrease solve time while retaining
physical validity, even at high currents.

Sophisticated physics-based battery models are capable of describ-
ing transient battery behavior during dynamic loads. Pathak et al.6

have shown that by optimizing charge profiles based on internal model
states, real-world battery performance can be improved, doubling the
effective cycle life under identical charge time constraints in high cur-
rent applications. Other work7 has shown similar results, lending more
credence to the idea that modeled internal states used as control ob-
jectives can improve battery performance. However, in order for these
models to be accurate, they must be calibrated to the individual battery
that is being controlled. This estimation exercise is a challenging task,
as the nonlinear and stiff nature of the model coupled with dynamic
parameter sensitivity can wreak havoc on black-box optimizers. Go-
ing into different approaches for estimating parameters is beyond the
scope of this paper.

Data science, often hailed as the fourth paradigm of science,8 is a
large field, which covers data storage, data analysis, and data visual-
ization. Machine learning, a subfield of data science, is an extremely
flexible and powerful tool for making predictions given data, with no
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explicit user-parameterized model connecting the two. Artificial neu-
ral networks, and the most popular form known as deep neural net-
works (DNNs), are extremely powerful learning machines which can
approximate extremely complex functions. Previous work has looked
at examining the replacement of physics-based models with decision
trees, but this has proven to be moderately effective, at best.9–12 In
this work, neural networks are used not to replace the physics-based
model, but to assist the optimizer. The flexibility in problem formula-
tion of neural networks affords the ability to map any set of inputs to
another set of outputs, with statistical relationships driving the result-
ing accuracy. In this instance, the aim is to use the current parameter
values coupled with the value difference between two simulated dis-
charge curves to refine the initial parameter guess and improve the
converged optimizer result. The outputs of the neural network will
be the correction factor which, when applied to the current parameter
values, will approximate the necessary physics-based model inputs to
represent the unknown curve.

One interesting aspect of data science is the idea that it is difficult to
create a tool which is only valuable in one context. For example, con-
volutional neural networks were originally created for space-invariant
analysis of 2D image patterns,13 and have been very successful in im-
age classification and video recognition,14 recommender systems,15

medical image analysis,16 and natural language processing.17 To this
end, the comparative framework inspired by DeepChess18 has found
effective application in the preprocessing and refinement of initial
guesses for optimization problems using physics-based battery mod-
els, where the end goal of the optimization is to correctly identify the
model parameters that were used to generate the target curves. Specif-
ically, the problem formulation is inspired by DeepChess – the ideas
of shuffling the data each training epoch and of creating a compara-
tive framework were instrumental, and the inspiration is the namesake
of this work. The problem of accurate parameter identification and
model calibration is paramount if these sophisticated models are to
find applications in control and design. The process of sampling the
model, creating the neural networks, and analyzing the results are out-
lined for a toy 2-dimensional problem using highly-sensitive electrode
thicknesses and a 9-dimensional problem, where the parameters vary
significantly in sensitivity, scale, and boundary range.

In this article, the sections are broken up as follows: the problem
formulation and an overview of neural networks are discussed first, fol-
lowed by the sensitivity analysis and a two-dimensional demonstration
of the neural network formulation. Then, the problem is discussed in
9 dimensions, where the neural network recommendation is restricted
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to a single function call, meaning that the neural network performs
a single refinement of an initial guess, and different optimization al-
gorithms are explored. In the next section, the same 9 dimensions are
used, but the neural network is randomly sampled up to 100 times, and
the best guess from the resulting refinements is used in the optimiza-
tion problem. This is shown to dramatically improve the converged
result. The resulting neural network refinement system is only appli-
cable to this model, with these varied parameters, over these bounds
and at the sampled current rates, which effectively makes the neural
network a problem-specific optimizer.

Ideas of Data Science and Problem Formulation

Traditionally, data science approaches to optimization or fitting
problems would include creating a forwards or inverse model, as has
already been explored using decision trees.9 In the forwards prob-
lem formulation, a machine learning algorithm would map the target
function inputs to the target function outputs, and then traditional opti-
mization frameworks would use this faster, approximate model rather
than the original expensive high fidelity model, with the optimization
scheme remaining unchanged. However, this is not the most efficient
way to use the data that has been generated, and comes with addi-
tional difficulties, including physical consistency.19 The concerns with
physical consistency stem from machine learning algorithms’ native
inability to enforce relative output values, which can violate output
conditions like monotonicity or self-consistency.

An additional problem formulation style, known as inverse prob-
lem formulation, seeks to use machine learning in order to map the
outputs of a function to its inputs, seeking to create an O(1) optimiza-
tion algorithm tailored to a specific problem. While this ambitious
formulation will always provide some guess as to model parameters,
they are subject to sensitivity and sampling considerations and a large
amount of data is needed for these inverse algorithms to be successful
in nonlinear systems.9

In this work, the flexibility of neural network problem formulation
is leveraged in order to create a comparative framework. A compar-
ative framework could be considered a way of artificially increasing
the size of the data set, one of several tricks which are common in
the machine learning space known as data augmentation.20 Another
popular technique, especially in 2-dimensional image classification,
is subsampling of an image with random placement. This forces the
neural network to generalize the prediction with respect to the location
of learned features and, more importantly, allows the neural network
to leverage more information from the same data set by creating more
unique inputs to the model.

In order to make the model nonlinear, activations functions are ap-
plied element-wise during neural network calculations. In this work,
an exponential linear unit (eLU)21 was used, the input-output relation-
ship of which is described in Figure 1. This activation function was
chosen to keep the positive attributes of rectified linear units (ReLU)22

while preventing ReLU die-off associated with zero gradients at neg-
ative inputs. Another consideration when selecting eLU as the activa-
tion function was to avoid the “vanishing gradient problem”.23 During
training, error is propagated as gradients from the last layers of the
neural network back to the top layers. When using activation func-
tions which can saturate, such as sigmoids or hyperbolic tangents, the
gradients passed through these activation functions can be very small
if the activation function is saturated. This effect is compounded as the
depth of the neural network increases. By selecting an activation func-
tion which can only saturate in one direction, and by restricting the
depth of the neural network to only three layers, vanishing gradients
can be avoided.

Additionally, each of the neural networks used in this work are of
identical size, consisting of hidden layers of 95, 55, and 45 nodes, and
each neural network was trained for a maximum of 500 epochs. Mean
squared error was used as the loss function for each neural network,
and Adam24 was the training optimizer of choice.

Figure 1. Exponential Linear Unit activation function input-output mapping.
The activation function adds nonlinearity to the neural network which allows
the outputs to capture more complex phenomena.

2D Application and Sensitivity Analysis

The version of the P2D model used in this work has 24 parameters
which can be modified in order to fit experimental data; a set com-
posed of transport and kinetic constants. In order to reduce this large
dimensionality to something more reasonable, a simple one-at-a-time
sensitivity analysis was performed. A range for each parameter was
established based on a combination of literature values9 and model so-
lution success, and an initial parameter set was chosen. For each of the
parameters, the values were permuted from the initial value to the up-
per and lower bounds. The resulting change in root mean squared error
(RMSE) was used as the metric for sensitivity. The results are summa-
rized along with the bounds in Table I and Figure 2. These sensitivities
were used to inform the parameter down-sampling to 9 dimensions.
The selected parameters are bolded in Table I. The diffusivities were
selected for their relatively low sensitivity and wide bounds, while
the maximum concentrations in the positive and negative electrodes,
porosity in positive and negative electrodes, and thicknesses of positive

Figure 2. Ordered sensitivity of model parameters, calculated by measuring
the root mean squared error change in output voltage associated with a unit
step of 10% of the bounded range in either direction from the initial value. It
is important to note that this is a function of the current parameter values.

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 205.175.118.33Downloaded on 2019-03-25 to IP 

http://ecsdl.org/site/terms_use


A888 Journal of The Electrochemical Society, 166 (6) A886-A896 (2019)

Table I. Sensitivity and bounds of available P2D Model parameters. Bolded values are selected for use in the 9-dimensional analysis which makes
up the bulk of this work.

Parameter Description Lower Bound Upper Bound Sensitivity Units

D1 Electrolyte Diffusivity 7.50E-11 7.50E-09 0.0053579 m2

s

Dsn Solid-phase diffusivity (n) 3.90E-15 3.90E-13 0.0143956 m2

s

Dsp Solid-phase diffusivity (p) 1.00E-15 1.00E-13 0.001759 m2

s
Rpn Particle radius (p) 2.00E-07 2.00E-05 0.0841821 m
Rpp Particle radius (n) 2.00E-07 2.00E-05 0.1211896 m
brugp Bruggeman coef (p) 3.6 4.4 0.0312093
brugs Bruggeman coef (s) 3.6 4.4 0.0702692
brugn Bruggeman coef (n) 3.6 4.4 0.0032529
ctn Maximum solid phase concentration (n) 27499.5 33610.5 0.2041194 mol

m3

ctp Maximum solid phase concentration (p) 46398.6 56709.4 0.0373641 mol
m3

efn Filler fraction (n) 0.02934 0.03586 0.0827452
efp Filler fraction (p) 0.0225 0.0275 0.012084
en Porosity (n) 0.4365 0.5335 0.1816505
ep Porosity (p) 0.3465 0.4235 0.0379277
es Porosity (s) 0.6516 0.7964 0.0010536
iapp Current density 13.5 16.5 0.9174174 A

m2

kn Reaction rate constant (n) 5.03E-12 5.03E-10 0.0028494
mol

(s m2 )

( mol
m3 )

1+αa,i

kp Reaction rate constant (p) 2.33E-12 2.33E-10 0.0032171
mol

(s m2 )

( mol
m3 )

1+αa,i

lp Region thickness (p) 8.80E-06 0.00088 0.7764841 m
ln Region thickness (n) 8.00E-06 0.0008 0.7386793 m
ls Region thickness (s) 2.50E-06 0.00025 0.0398143 m
σn Solid-phase conductivity (n) 90 110 7.45E-06 S

m

σp Solid-phase conductivity (p) 9 11 1.74E-05 S
m

t1 Transference number 0.3267 0.3993 8.88E-05

and negative electrodes were selected for a combination of high sen-
sitivity and symmetry. In general, it would be advisable to select only
the most sensitive parameters when fitting, regardless of symmetry.
However, since these sensitivities are only locally accurate, symme-
try was prioritized above absolute sensitivity for interpretability. The
diffusivities were selected to examine how the DNN performs when
guessing parameters with low sensitivity.

The selected parameters, with the exception of the diffusivities,
were varied uniformly across their bounds in accordance with a quasi-
random technique known as Sobol sampling.25 The diffusivities had
a very large parameter range, roughly two orders of magnitude, so
log scaling was used before a uniform distribution was applied, which
ensured that the sampling was not dominated by the upper values from
the range. The main benefit of the Sobol sampling technique is that it
more uniformly covers a high dimensional space than naïve random
sampling without the massive increase in sampling size required to
perform a rigorous factorial sweep. The downside is that it is not
as statistically rigorous as other techniques like fractional factorial
or Saltelli sampling, which have the added advantages of allowing
for sensitivity analyses.26 However, the number of repeated levels for
each parameter is much higher with these methods of sampling, which
results in worse performance when used as the sampling technique for
training a neural network.

Two of the most sensitive parameters, the thicknesses of the neg-
ative and positive electrodes, were selected to demonstrate the non-
convexity of the optimization problem while performing parameter
estimation for the P2D model. A relatively small value range was se-
lected, and 50 discrete levels for each parameter were chosen, resulting
in 2500 discharge curves, which were generated using each of the val-
ues. Then, a random, near-central value was selected as the ‘true value,’
corresponding to 0 RMSE, and an error contour plot was created as
shown in Figure 3. The blue dot represents the true values of parame-
ters and an RMSE of 0. As these discharge curves are simulated, their
final times can vary. In order to make the two curves comparable, the
target curve is padded with values equal to the final voltage of 2.5 V,

and any curve which terminates early is also padded with values equal
to 2.5 V. Another option would be to simply interpolate at the target
data points and throw away any data past either terminal time, but this

Figure 3. 2D error contour plot demonstrating the optimization pathway based
on a set of initial guesses. The Nelder-Mead algorithm fails to achieve an
accurate result from one of three starting points due to the nearest error trough,
which drives the optimization algorithm away from the true 0 error point. It
should be mentioned that Nelder-Mead cannot use constraints or bounds.
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Figure 4. Using the trained neural network as a refinement of the initial guess,
all starting points can be made to converge. The changes made by the neural
network are highlighted in teal, and the red lines fade to blue as the optimization
progresses. In this instance, all optimization algorithms successfully arrive at
the true 0 error location.

would change the sensitivity of the parameters arbitrarily, as the end of
the curves are thrown away each time. Several example optimization
problems are demonstrated with their lines traced on the contour plot,
showing the paths the algorithms have taken in their convergence. The
demonstrated optimization method here is Nelder-Mead, a simplex-
type method implemented in Scientific Python (Scipy), a scientific
computing package in Python.27

After using Nelder-Mead, a deep neural network was implemented
which seeks to act as a problem-specific optimizer, comparing two
model outputs and giving the difference in parameters used to cre-
ate those two curves. The exact formulation of the neural network is
discussed in the next section. As seen in Figure 4, when starting at
some of the same points as the above optimizer, the neural network
gets extremely close to the target value in a single function call, even
with only 100 training examples. In this instance, the neural network
has demonstrated added value by outperforming the look-up table,
meaning that the estimates from the neural network are closer than the
nearest training data.

When looking at RMSE as the only metric for difference between
two curves, this seems to be an extremely impressive feat – how can
all of this information be extracted from a single value? In the case
of optimization, the goal is simply to minimize a single error metric,
an abstraction from the error between two sets of time series data,
in this case. However, during this abstraction, a lot of information is
destroyed – in particular, exactly where the two curves differ is com-
pletely lost. A similar example can be found in Anscombe’s Quartet,28

which refers to four data sets which have identical descriptive statistics,
and yet are qualitatively very different from one another. In Figure 5,
the differences in the time series are demonstrated, and it is clear that
the curves look very different depending upon which electrode is lim-
iting, the positive electrode or the negative electrode. This information
is leveraged in the neural network, but is lost in the naïve optimization.
The next section looks to apply this same idea to a higher dimensional
space and quantify the benefit that is present when using a neural net-
work to improve a poor initial guess, as is the case with an initial model
calibration. Figure 6 demonstrates how the time series data can differ

with respect to positive and negative electrode thicknesses in the 2D
problem.

Methodology

In this section, the process of using a DNN as a problem-specific
optimizer for a 9-dimensional physics-based lithium ion battery model
is outlined. The DNN used is typical, with 3 hidden layers comprising
95, 55, and 45 nodes each with 9 nodes on the output dimension,
one for each of the model parameters to be estimated. Before being
input to the model, each of the parameters was normalized over the
range [0,1]. This is separate from sampling, and is done in order to
allow the neural network to perform well when guessing large or small
numbers. When training a neural network to predict values which vary
from one another by several orders of magnitude, it is important to
scale the inputs and outputs such that some values are not artificially
favored by the loss algorithm due to their scaling. Additionally, when
calculating the gradients during training, the line search algorithm
assumes all of the inputs are roughly order 1. Another consideration
is that the initial values of neural networks are generated under the
assumption that the inputs and outputs will be approximately equal to
1. When calculating the loss associated with a misrepresented value,
in the case of diffusivities where the target value is 1e−14, any value
near 0 will be considered extremely close to accurate. It is important to
note that this normalization is completely separate from the sampling
distribution, its only purpose is to force the data to present itself as the
neural network engines expect.

The voltages, already fairly close to 1 in value, were left unscaled
and unmodified for simplicity. The nonlinearity comes from the eLU
activation function,21 which exponentially approaches −1 below 0 and
is equal to the input above 0. This is similar to leaky ReLUs,29 or LRe-
LUs, which simply have two lines of different slopes that intersect at
0. The point of having a nonzero value below an activation input of 0 is
to prevent a phenomenon known as ReLU die-off, in which the weights
or biases can become trained such that a neuron never fires again, as
the activation function input is always below 0. This can effect up to
40% of neurons during training. Giving the activation functions a way
to recover when an input is below 0 is a way of combatting ReLU die-
off, and often results in faster training and better error convergence.
Additionally, having an activation function which can output negative
numbers reduces the bias shift that is inherent to having activation
functions which can only produce positive numbers, as with ReLUs,
which can slow down learning.30 Additionally, non-saturating acti-
vation functions like eLUs and ReLUs combat vanishing gradients,
which can cause significant slowdowns during training when using
saturating activations functions like hyperbolic tangents.31

The training protocol for this work was adapted from Deepchess,18

which created a new training set for each epoch by randomly sampling
a subset of the data in a comparative manner. This process is leveraged
here, where a new training set is generated at each training epoch. For
large enough data sets, this can greatly limit overfitting, as the ma-
jority of training data given to the neural network is only seen once.
The process is described visually in Figure 7, and involves 2 sets of
parameter inputs and model outputs, A and B. In the neural network
formulation, set A is the current initial guess, while set B is a simu-
lated representation of experimental data, where the numerical model
inputs would be unknown, but the desired simulated discharge curve
shape is known. The DNN inputs are the scaled parameter set A and
the time series difference between the discharge curves generated by
parameter sets A and B. The DNN output is a correction factor, calcu-
lated as Output = B − A. In this way, knowing the correction factor
and numerical model inputs A allows for the reconstruction of the
desired numerical model inputs, B. During training, the DNN learns
to associate differences in the error between the output curves and the
current numerical model input parameters with the desired correction
factor which will approximate the numerical model input parameters
used to generate the second discharge curve.

For the 9-dimensional problem, the input dimension was 1009 – the
values of the current scaled parameters and two concatenated discharge
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Figure 5. a) Anscombe’s Quartet, a set of 4 distributions which have identical second-order descriptive statistics, including line of fit and coefficient of determination
for that fit. b) An electrochemical equivalent where the RMSE is equal to 0.200V, but the curves are qualitatively very different. This was achieved by modifying
different single parameters to achieve the error.

curves, each of length 500. The size of the training data was varied
between 500 and 200,000 samples for the same 9 parameters with the
same bounds. For each new training set, the model hyper-parameters
remained the same – a batch size of 135, trained for 500 epochs with
a test patience of 20, meaning that if test error had not improved in the
past 20 epochs, the training ended early, which was used to combat
overfitting. The smaller data set models had 50% dropout applied to the
final hidden layer in order to fight overfitting, which was present in the
smaller data sets. In order to enforce the constant-length input vector
requirement of the neural network, the discharge data was scaled with
respect to time according to t = (4000/iapp) uniformly spread over
the 500 times steps. Local third-order fits were used to interpolate
between the numerical time points. In this text, iapp values of 15, 30,
60, and 90 A/m2 are referred to as 0.5C, 1C, 2C, and 3C, respectively.
Additionally, although the neural networks are labeled by the size of
the generated data sets, ranging from 500 to 200,000, only 3/4ths of
the data were used for training, which is occasionally alluded to in the
text. The neural network labeled as needing 200,000 sets of data will
have trained on 150,000, while the remainder is held for validation.
For all neural networks, the same static test set of 10,000 parameter
pairs was used so that the results are directly comparable.

Figure 6. Differences in time series from the 2D example. Changing the pos-
itive thickness extends the discharge curve with respect to time, but increasing
the negative thickness raises the average voltage without extending the length
of the discharge curve.

The purpose of this formulation comes down to two practical con-
siderations – information extraction and physical self-consistency. If
a forward model were to be trained on the same data, the model
would be responsible for producing physically self-consistent results
– for instance, for a constant applied current, the voltage would need
to be monotonically decreasing. This requirement is extremely diffi-
cult to achieve, especially with finely time-sampled data – the noise
will quickly climb above the voltage difference between adjacent
points, resulting in an a-physical discharge. In the inverse formula-
tion, where a discharge curve is mapped onto the input parameters via a

Figure 7. A visual representation of the proposed training paradigm. Given
some set of model inputs A and another set B, there will be some error between
the simulated discharge curves. The goal is to traverse the 9-dimensional space
to arrive at the model inputs B. Numerical model inputs A are scaled to be on
the set [0,1], concatenated with the error between the discharge curves, and
the neural network output is calculated as parameter values A subtracted from
parameter values B. In this way, to reconstruct an estimate for parameters B, the
NN output must be added to the initial guess A. The flat lines after simulated
discharge are artifacts of the constant-length input vector requirements of neural
networks, and are not from the model simulation.
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Table II. Prediction error at unseen 1C current rate after optimization convergence at 0.5C and 3C rates for various black box optimizers, both
with and without neural network initial guess refinement.

SLSQP Nelder-Mead L-BFGS-B GA

Function RMSE at function RMSE at function RMSE at function RMSE at

Optimizer Initial Error (V) calls 1C (V) calls 1C (V) calls 1C (V) calls 1C (V)
no Neural Network 0.3750 78 0.2236 750 0.0875 418 0.1064

200k samples 0.0928 46 0.0727 577 0.0218 489 0.0283 17852 0.0470
50k samples 0.0936 71 0.0727 589 0.0277 430 0.0320 4783 0.0501
20k samples 0.0896 51 0.0862 596 0.0264 442 0.0341 2081 0.0511
5k samples 0.2970 111 0.0895 670 0.0533 448 0.0528 765 0.0547
2k samples 0.3273 67 0.1285 648 0.0766 450 0.0751 519 0.0560

neural network, each data point only gets to be used once. This results
in significantly poorer guesses for a data set of the same size when
compared to this formulation. This is due to the fact that the neural
network gets many unique examples where the parameters to estimate
are varied – for a data set of 2000 simulations, there are 2000 unique
error-correction mappings for every value. This allows the neural net-
work to more intimately learn how each parameter varies as a function
of the input error by squaring the effective size of the data set.

There is an important consideration which can be easily illustrated.
In the 2D example, an error contour plot was generated which demon-
strated the RMSE between curves as a function of their electrode
thicknesses with the neural network’s mapped corrections superim-
posed. At first, the performance may look relatively poor, even though
it beats the lookup table performance, but it is important to note that
this could have been replicated using any of the points and the per-
formance would have been comparable. That is to say that the neural
network is not simply learning to navigate one error contour, it is learn-
ing to navigate every possible constructed error contour and is able to
interpolate between training points in a way that a lookup table of the
training data cannot.

9D Application and Analysis

Once the model was trained, it was used as a first function call
in a series of optimization schemes. Using three different optimizers,
a pre-determined set of 100 A-B pairs was created which mimicked
the initial and target discharge curves of a classic experimental fitting
optimization problem. Here, however, the concerns about the model
being able to adequately match the experimental data are removed,
meaning that any measurable error between the converged value and
the target curves are due to optimizer limitations and not due to an
inability of the model to describe the experiment.

As shown in Table III, passing the initial simulation through the
neural network optimizer can drastically reduce the error at conver-
gence, improving the final converged error by 4-fold. The optimization
methods tested here include Sequential Least Squares Programming
(SLSQP),32 Nelder-Mead,33 the quasi-newton, low-memory variant
of the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm
(L-BFGS-B),34 and a genetic algorithm (GA).35 Each of these op-
timization methods works fundamentally differently, and they were
selected in order to adequately cover the available optimizers. All of
the methods are implemented by Scipy27 in Python. SLSQP and L-
BFGS-B are bounded optimizers, while Nelder-Mead cannot handle
constraints or bounds.

The first column of Table II shows the average initial error between
points A and B, which equals 375 mV. After passing these relatively
poor initial guesses through the neural networks once, the errors are
demonstrably improved. Interestingly, although the 20k sample neural
network creates guesses with a lower initial error on the unseen data,
the converged results after optimization are consistently worse. This
could be a coincidence of sampling, and can likely be attributed to
the fact that the parameters given to the DNN do not have identical
sensitivity in the physical model. Looking at the values of the relative
error of the parameters, as in Table III, the models stack according to

intuition, with the initial guesses being extremely wrong, and the neu-
ral networks performing significantly better, ordered in performance
by the size of their training data. Note that these massive parameter
errors are possible because the diffusivities vary by three orders of
magnitude. These values were calculated on the parameters after they
had been descaled, and as such, the effects of the accuracy in the dif-
fusivities are likely dominant due to their massive variance relative to
the other values.

The genetic algorithm is implemented in the differential evolution
function through Scipy35 and the number of generations and size of
the generations were varied to reflect the training size divided by the
number of iterations, leaving between 20,000 and 200 function eval-
uations per optimization. Unfortunately, the genetic algorithms could
not be seeded with any values, which means that the neural network
outputs could not be used. The limitation on the number of viable
function calls was the compromise for restricting information for the
genetic algorithm. In this instance, polishing, or finishing the genetic
algorithm with a call of L-BFGS-B, was set to False. All other de-
faults were left, other than the maximum number of iterations and the
population size. The number of iterations and population size were
not optimized for the best performance of the genetic algorithm. For
SLSQP, in order to convince the optimizer that the initial guess was not
a convergent state, the step size used for the numerical approximation
of the jacobian was changed from 10−8 to 10−2. Everything else was
left as default.

In general, it is apparent that refining a relatively poor initial guess
using the neural network optimizer can improve convergence and re-
duce the error, which was calculated at unseen data. A typical opti-
mization pathway is demonstrated below in Figure 8, which shows
the error between the optimizer and the target data as a function of the
number of function evaluations. The method used below was Nelder-
Mead, an algorithm which is not extremely efficient in terms of the
average number of steps needed for convergence, but it is relatively
robust to local minima and generally produces the best results with
this model, as seen in Table II. It is apparent from Figure 8 below that
improving an initially relatively poor guess with the neural network
transports the optimizer across a highly nonconvex space, allowing it
to converge to a much more accurate local minimum in fewer function
calls than without using the neural network optimizer. Interestingly,
there are several points where the unrefined error is lower than the

Table III. Test set loss and mean relative absolute error of descaled
parameters.

Mean Relative Absolute
Method Error of Parameters (%) Test Set Error

Initial 2958
200k NN 56 .0324
50k NN 58 .0391
20k NN 79 .0393
5k NN 143 .0634
2k NN 343 .0707
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Figure 8. Typical optimization pathway for Nelder-Mead, where the current
estimate error is displayed vs the function call number. Starting from the same
initial guess with an error of 220mV, the guess refined by the neural network
converges to a significantly lower error than the unchanged guess.

refined error, which hints at the relative number of local minima in the
optimization space. Considering Figure 5b, it is apparent that given
the number of different ways the parameters can change the shape of
the discharge curve, it is not surprising that there are multiple avenues
for the reduction of error, even if the result is not the globally optimal
result.

While the average case is improved, it is important to note that
the cost of having a small neural network which is also generalized
implies an accuracy tradeoff – if the initial guess is very good, the
neural network may suggest changes which make the guess worse,
in which case, the output can be ignored and the total opportunity
cost of attempting to improve an initial guess with the neural network
was only a single extra function call. Additionally, while all of the
training data is physically meaningful, there is no guarantee that the
per-parameter corrections given by the neural network optimizer will
result in physically meaningful parameters. Although the training data
bounds are sensible, there is no guarantee that an output from the
neural network will fall within these bounds, and no meaningful way to
predict when it will happen. Aside from changing the initial guess and
estimating with the neural network again, there is no way to quickly
repair an a-physical estimate. For example, the neural networks trained
on smaller data sets have recommended negative diffusivities. In this
instance, the guess was thrown out.

Lookup table performance is examined in the next section, which
directly compares the neural networks with genetic algorithms in terms
of using best-of-set sampling for generating initial guesses. The neural
network size selected was chosen to compromise between simplicity
and accuracy – a smaller network will prefer generalizability to over-
fitting, but with an extremely large data set, better test error may be
achieved with a larger network despite the tendency to over-fit. There
are additional considerations as well, such as size on disk and time to
compute. A look-up table is O(n), and as such takes around 2.5 seconds
for the training set of 150,000 simulations, stored in a Numpy array,
loaded into memory. When stored in an HDF5 array using H5Py,36 the
array does not need to be pulled into memory, but can be loaded one
chunk at a time. While this is extremely beneficial for large datasets,
it is also considerably slower, taking 10 minutes to look through the
table once. Additionally, the compressed size of the data on disk is
1.04 GB. Time to evaluate the neural network is roughly 1e-6 sec-
onds, and the size on disk is 1.2 MB – significantly faster and smaller
than keeping the compressed data. While modern hardware can handle
these larger files easily, if model estimation is attempted on cheaper
or more limited hardware, these may not be acceptable.

While this work focuses on using this formulation to fit discharge
curves of simulated lithium ion batteries, any multi-objective opti-
mization which is compressed to a single objective for an optimizer
could stand to benefit from framing a neural network as a single-step

optimizer rather than compress the multiple objectives into a single
value and pass that to a traditional black box optimizer. This tech-
nique does not eliminate the value of traditional optimizers, however;
the best result comes from using the neural network to refine a poor
guess, as is often the case when starting an optimization problem. The
neural network can never achieve arbitrary precision the same way a
traditional optimization algorithm can. The goal of the neural network
optimizer is to traverse the highly non-convex space between an ini-
tial guess and the target parameters, and give an easier optimization
problem to the traditional, theoretically proven optimization methods.

9D Application - Genetic Algorithm Comparison

While the above method is useful for analyzing the performance
for navigating in a 9-dimensional parameter space and trying to get
from some point A to some point B, those who wish to arrive at the
best result for an optimization problem often do not place much value
on the initial guess. In these instances, other methods may first be used
to explore the parameter space, and the best result from that will be
used as an initial guess for the new optimization problem using a more
traditional optimizer.

There is an analog for this deep neural network optimization
method as well, where after the neural network is trained, instead
of starting from some unseen data point, a random sampling of train-
ing or test points are fed in as initial guesses, where the target curves
remain the original targets. This has the added advantage of not re-
quiring simulations to get a parameter guess, only to check the error of
the guess. This technique leverages the idea that the neural network is
only hyper-locally accurate, and that an accurate guess at the parame-
ters cannot be guaranteed from any point in the 9-dimensional space.
However, by sampling several points, it is possible to end up with an
extremely performant guess for the cost of a few simulations.

To understand how this method is in direct competition with a ge-
netic algorithm, that approach must first be explained. For each gener-
ation, a series of randomly generated points are created and evaluated.
At the end of each generation, the best few results are kept and either
randomly permuted, or combined with other results in order to create
the next generation, which is then evaluated. This technique is pop-
ular in the literature, but it tends to be very function-call inefficient,
converging only after many evaluations.

For this optimization, the formulation is equivalent – sets of input
parameters are either randomly generated or are randomly selected
from a list of pre-generated, unseen parameters. These are then of-
fered to the neural network, along with the associated error between
the discharge curves, and a refined guess is generated by the neural
network. The value of this guess is very difficult to determine without
examining the result, and can be significantly better or significantly
worse depending on many factors, including the sampling density of
the parameter space, the size of the parameter space, and the initialized
weights of the neural network. Although it may take several function
calls to end up with a good guess, this guess is often very accurate,
and for very sparse sampling it can compete with the lookup table
performance.

Using the same data as the previous section, a new static set of 100
final target values was created by randomly sampling from the test
data. There are two main differences between this analysis and the
previous analysis – rather than interpolating the currents, a new set of
neural networks were trained on discharges at 0.5C and 1C, and the
reported RMSE values are the summed result of calculation at these
two currents. From the results in Table IV, it is clear that the neural
networks perform significantly better than the genetic algorithm per
function call, and that 100 random, unseen samples is sufficient to
approximate the lookup table performance after passing the guesses
through the neural network. While the lookup table seems to outper-
form the neural network, the converged results examined in Table V
reinforce the idea that the root mean squared error metric does not tell
the whole story, and the neural networks outperform the lookup table
at low sampling densities.
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Table IV. Average root mean squared errors of the best-of-sampling results from each initial guess generation technique, fitting simulations at
0.5C and 1C. The error reported here is the sum of RMSE of voltage at 0.5C and 1C.

NN training size NN test error From initial (V) 10 samples (V) 20 samples (V) 50 samples (V) 100 samples (V) Lookup Table (V)

200k 0.0412 0.0895 0.0482 0.0285 0.0150 0.0106 0.0072
50k 0.0419 0.0960 0.0704 0.0460 0.0305 0.0226 0.0083
20k 0.0423 0.0897 0.0408 0.0285 0.0190 0.0132 0.0128
5k 0.0526 0.1129 0.0723 0.0500 0.0260 0.0193 0.0205
2k 0.0644 0.1275 0.0918 0.0646 0.0371 0.0283 0.0292

500 0.0839 0.1960 0.1605 0.1108 0.0646 0.0494 0.0485
18 samples 81 samples 144 samples 990 samples 2079 samples

GA 0.2044 0.0784 0.0568 0.0275 0.0256

In Figure 9 below, the resulting RMSE as a function of num-
ber of random guesses is examined for each of the neural networks
and compared with a genetic algorithm. The neural network er-
rors were sampled at 1, 10, 20, 50, and 100 random inputs, and
the genetic algorithm was sampled as closely to 20 and 100 sam-
ples as math would allow, as the number of function calls scales as
len(x) ∗ (maxiter + 1) ∗ popsize. Since the length of x is 9 in this
instance, it was not possible to perfectly hit the desired sampling val-
ues.

Looking at the results in Table IV, some clear patterns emerge. The
error of the guesses from the neural network is extremely high for the
more coarsely sampled training sets, resulting in very poor error for
the first function call, all of which were taken from the same initial
guesses. After this initial function call, however, the guess points were
randomly sampled from unseen data and the accuracy of the improved
points was examined. The best results from each sample range are
kept.

In this work, neural networks are fairly small for this size of input
data, where the input dimension is 1009, but the largest internal node
size is only 95. This was done in order to force the neural network
to generalize more aggressively, which can often improve the perfor-
mance on unseen data when compared to a larger network which can
memorize the dataset, but tends to over fit. This is classically known as
the bias-variance tradeoff.37 The size of the neural network was kept
constant across sampling rates, in order to increase interpretability,
meaning the network size is likely too large for the very coarse sam-
pling and too small for the very fine sampling, and changing the neural
network hidden layer dimensions to suit the sampling would result in
better performance. It is worth mentioning that genetic algorithms are
iterative in nature, meaning that the population generation and eval-
uation is embarrassingly parallelizable, but the number of iterations
is inherently serial. For the neural networks, no action is serial, so
the entire sampling is embarrassingly parallel, which can drastically
decrease the time to an accurate estimate for long function calls.

After these initial guesses were collected, Nelder-Mead was used to
polish the optimization result and the number of function evaluations
needed to accomplish this task were recorded, along with the aver-
age final value. The parameter-level tolerance for convergence was set
to 1e-6, and the maximum number of iterations was set sufficiently
high to allow convergence. These results are compared to the output
values from the genetic algorithm and are compared in Table V. It
is important to note that the initial errors between the static starting
points and ending points was 0.9004V, and Nelder-Mead converged
at an average RMSE of 0.0327 V when starting the optimization from
that point. By refining the initial guess with a neural network, it was
possible to drastically reduce this error to 0.0032 V, representing a
10-fold reduction in error. However, by forgoing this constraint en-
tirely, it was possible to get an even lower 0.00137 V error after getting
a very close initial guess by randomly sampling the neural network.

This performance offers a significant improvement over the con-
verged error after polishing the output of the genetic algorithm, which
had errors which were comparable in value to the neural network sam-
pling, but which resulted in significantly worse convergent error. For
example, by generating an initial guess using a genetic algorithm over
the same bounds used for the generation of the training data, limiting
the number of function calls to 990 spread across a population size of
11 and 9 iterations, an initial error of 8.3mV can be achieved. A com-
parable initial guess error can be found either using a neural network
trained on 20,000 simulations and sampled 50 times, or a neural net-
work trained on 5,000 simulations and sampled 100 times. However,
after optimization, the initial guess from the genetic algorithm aver-
ages to 2.6mV error, while the initial guesses provided by the neural
network converge to 0.48mV and 0.6mV error, respectively – a 5-fold
improvement over the existing technique, despite comparable initial
errors.

These results are summarized in Figure 10, which serves to show-
case the idea that RMSE is not a sufficient metric when considering
the difficulty an optimization algorithm will face when attempting to
minimize the error from a given set of initial conditions. If a vertical

Table V. Final converged root mean squared errors as a function of number of samples, neural network training data size, and genetic algorithm
function evaluations. The error is the sum of RMSE for 1C and 0.5C discharges.

NN Training size from initial 10 samples 20 samples 50 samples 100 samples Lookup Table

num final num final num final num final num final num final
calls error (v) calls error (v) calls error (v) calls error (v) calls error (v) calls error (v)

200k 705 0.003205521 674 0.002464 662 0.001637 659 0.001533 654 0.00137 1752 0.001129

50k 1137 0.004354459 1745 0.002323 1710 0.002444 640 0.002879 643 0.001964 663 0.001116
20k 1822 0.003040758 685 0.001741 695 0.001687 652 0.001493 646 0.001554 715 0.002721
5k 736 0.006148043 1777 0.004997 3902 0.003494 682 0.002625 671 0.002265 2863 0.004176
2k 1841 0.008858207 765 0.006464 758 0.006183 2214 0.003428 2218 0.002825 756 0.007579

500 787 0.013215034 1873 0.014534 784 0.011733 765 0.010926 772 0.011221 797 0.01185
GA 18 evaluations 81 evaluations 144 evaluations 990 evaluations 2079 evaluations

num final num final num final num final num final
calls error calls error calls error calls error calls error
2867 0.03054 1790 0.02772 713 0.02483 2792 0.0184 657 0.0191
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Figure 9. The root mean squared error between the best estimate from the
neural networks and a genetic algorithm as a number of function calls. The
neural networks are all similar, with errors decreasing with increasing training
size. The genetic algorithm shares a qualitatively similar relationship, but the
error begins to plateau by 1000 function calls, while the error is still higher
than that of the neural networks.

line were drawn on Figure 10, it would indicate an equal initial error.
Plotting intuition on this graph would likely look like a line with a
45-degree slope, indicating that any guess with a lower initial error
would result in a converged result with lower error. Instead, it is clear

Figure 10. The converged error vs the initial error, grouped by method of guess
generation. The neural networks clearly perform significantly better than the
genetic algorithm, despite having many points which have comparable initial
errors to the genetic algorithm.

that guesses generated by the neural networks and those generated by
the genetic algorithm perform significantly differently, even when the
value of the initial error is identical. This suggests that there is some-
thing which the neural networks are doing extremely well which the
genetic algorithm is doing poorly, and that the guesses generated by
the neural networks result in much easier optimization problems than
those generated by the genetic algorithm. Even in the data-starved or
data-comparable conditions of 500 and 2000 samples for training, the
neural network outperforms the best-performing genetic algorithm.

Although it is popular to use a genetic algorithm to get an initial
guess followed by a traditional optimization technique, genetic algo-
rithms are extremely inefficient in terms of performance per function
call. The neural networks trained on Sobol-sampled data outperform
the genetic algorithm, even with small amounts of data – the smallest
neural network trained on only 500 sets of generated data and sam-
pled 100 times matches the genetic algorithm performance for 600
total function calls, compared to 990 for the genetic algorithm. This
means that the neural network will outperform the genetic algorithm,
even when starting from scratch. In addition, neural networks have
the added benefits of being entirely embarrassingly parallelizable and
are inherently reusable for new optimization problems. The ease of
deployment and speed of neural networks make them a convenient
way to compress the information from a large number of generated
data points into a compact and easily accessible size, trading off some
linear algebra for gigabytes of compressed data.

This discrepancy between the success of the optimization algorithm
and the initial errors of the guesses is extremely interesting and serves
to both demonstrate the inadequacy of a single value to represent the
deviation between two discharge curves and to emphasize the impor-
tance of building parameter sensitivity into an initial guess generation
method. For the current implementation of the genetic algorithm, no
parameter scaling was done, which likely led to oversampling of large
values in the range of diffusivities, which vary by three orders of mag-
nitude. However, the lookup table results also feature a large error
on the diffusivity-related parameters, which serve to demonstrate the
extremely low sensitivity to these parameters when lithium diffusion
is not the limiting factor that shapes the discharge curve.

An additional analysis was done using the lookup table results for
the training sets of each of the neural networks. While randomly sam-
pling 100 sets of parameter values was sufficient to approximate the
error performance of the lookup table for each neural network, an in-
teresting trend results from optimizing based on those recommended
values. For coarser sampling, the RMSE of the converged values is
improved by two fold compared to using the best fit from the training
data, as shown in Table VI. Examining the error between the target
parameters and the estimated parameters reveals that the neural net-
works are significantly better at estimating the parameters than using a
lookup table, shown in Figure 11. A clear pattern emerges, wherein the
optimization results based on the neural network’s output outperform
the training data until the sampling becomes so fine that the small neu-
ral network size tends to limit the accuracy of the model outputs, and
the resulting errors well below one millivolt begin to converge. While
this problem was done with 9 dimensions, the full dimensionality of
the P2D model is 24, which would require significantly more samples
to adequately explore.

It is clear that the RMSE between two curves does not fully pre-
dict the ease with which an optimizer will converge to an accurate
solution. Two different problems have been analyzed, one of which
was 2-dimensional for the purposes of visualizing the process, and
the other of which was 9-dimensional for the purposes of exploring a
practical set of optimization problems in higher dimensions. Potential
future work would include extending this analysis to higher dimen-
sions, using battery simulations with differing sensitivities to the pa-
rameters, or perhaps combining these approaches with Electrochem-
ical Impedance Spectroscopy measurements for increased sensitivity
to other parameters. Additionally, the same underlying assumptions
used when generating the data are applied to the applicability of the
model. For example, to assume that the parameter space is uniformly
varying across a parameter range is likely false, in particular with
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Table VI. The RMSE of the previous converged results at the unseen condition of a 2C discharge. This represents an extrapolation in terms of
current values, as 2C is higher than the 0.5C and 1C used for curve fitting. The NN and lookup table significantly outperform the GA, and the
neural network outperforms the lookup table, especially when sampling is coarse.

NN Training size Initial (V) converged (V) GA initial (V) converged (V) Lookup Table initial (V) converged (V)

200k 0.01204 0.003065 2079 0.04358 0.03711 200k 0.0111 0.003117
50k 0.01841 0.003403 990 0.0438 0.03373 50k 0.01102 0.003569
20k 0.01462 0.003453 144 0.05362 0.03681 20k 0.01594 0.00493
5k 0.01963 0.004788 81 0.06227 0.03894 5k 0.02299 0.00648
2k 0.02536 0.0048644 18 0.1084 0.03911 2k 0.02916 0.01083
500 0.04137 0.01804 500 0.04202 0.01611

electrode thickness – it is likely closer to a bimodal distribution, as
some cells are optimized for energy and others for power. Sampling
the types of batteries to be fit and using the distributions of parame-
ters can increase the chances of success when calibrating the model
to experimental batteries.

Conclusions

In this work, a deep neural network was used both to refine a poor
initial guess and to provide a new initial guess from random sam-
pling in the parameter space. For the execution cost of one additional
function call, it is reasonable to improve the final converged error on
unseen data by 100-fold when compared with random model param-
eterization, often with fewer total function calls. It should be noted
that this performance is on an exceptionally poor guess, indicating
the difficulty optimizers have with this model. However, by randomly
generating data and feeding these points into the neural network, it
is possible to get an extremely good fit for under 100 function calls,
which improves final converged error by 5-fold compared to generat-
ing an initial guess using a genetic algorithm, and improves the error
by 10-fold when evaluating model performance at higher currents.
This framework is generally applicable to any optimization problem,
but it is much more reliable when the output of the function to be op-
timized is a time series rather than a single number. Additionally, the
outputs of the neural network after 100 function calls outperform the

Figure 11. Relative per-parameter error for best GA, neural network, and
training data. The neural network clearly offers the best performance, demon-
strating significantly better performance than a lookup table of the training
data.

lookup table of the training data, indicating value added by the ability
to interpolate between data points in high dimensional space, while
taking significantly less space on disk than the training data. The deep
neural network can easily be implemented in any language which has
matrix mathematics, as was done with Numpy in Python. In this in-
stance, the neural network acts as a much more efficient encoding of
the data, replacing a lookup table with a few hundred element-wise
operations and replacing a gigabyte of data with a megabyte of weights
and biases.

The optimization formulation of the neural network leverages the
increased informational content of a difference between time series
over an abstracted summary value, like root mean squared error,
which is required by many single-objective optimizers. Additionally,
the ability of neural networks to take advantage of data shuffling
techniques allows the algorithm to efficiently combat overfitting for
only minimal computational overhead during training. This formula-
tion also allows the neural network to extract the maximum amount
of information from the generated data when compared to the in-
verse formulation, in which each discharge curve and input parameter
pair is only seen once. The source code for this work can be found
at www.github.com/nealde/EChemFromChess, along with examples
and code for generating some of the images.
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