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Abstract

The separation of variables method is extended to obtain concentration profiles in a particle electrode under galvanostatic boundary
conditions. The method is also used to find exact analytical solutions for composite slab and spherical electrodes. Finally, the method is
used to obtain a solution for a lithium/polymer cell model that was presented previously by Doyle and Newman. © 2001 Elsevier Science

B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to present an extension of the
separation of variables method for solving the model equa-
tions that govern concentration distributions in solid elec-
trodes operating under galvanostatic conditions (at both the
ends). The method presented here is new and is useful
because it reduces significantly the work required to obtain
an analytical solution to the general class of model equations
presented here. We illustrate our method for a thin film
electrode, a spherical electrode particle and composite
electrodes.

2. Thin film electrode

Consider the unsteady state diffusion in a thin film
electrode with zero initial concentration. The governing
equation for the concentration in dimensionless form is

dc >
ot ox?
with the initial condition ¢(x,0) = 0 and boundary condi-

tions

0
5o(0.0) =0 @)

6]
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and

0
(L) =0 3)

where ¢ is the dimensionless current density.
The analytical solution for this boundary value problem
(BVP) is given by [1]

(="

n2

1,2 2 ¢ 2.2
c=90 t+8(3x - 1)—;; exp(—n-nt) cos(nmx)

“4)

This solution can be obtained by applying the Laplace
transformation technique. Unfortunately, inverting back to
time is very difficult and time consuming as shown in
Appendix A.

Fortunately, this BVP can be solved easily by our exten-
sion of the method of separation of variables by using the
following variable transformation:

c(x, 1) = u(x, 1) + w(x) + v(z) Q)
The addition of the term v(¢) in Eq. (5) is important and is not

presented elsewhere to our knowledge. Here w(x) satisfies
the inhomogeneous boundary conditions

—(0)=0 (6)
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Nomenclature

A separation constant (Eq. (15))

A, coefficient in the infinite series

B constant

c dimensionless concentration (Sections 2 and

3 and Appendix A) concentration (mol/cm?,
Sections 4 and 5)

c1, Co concentration (mol/cm?)

e . 3
Co initial concentration (mol/cm”)
Ci, Cy dimensionless concentration

D,, D, diffusion coefficient (cm?/s)

F Faraday’s constant (96,487 C/g equivalent)
applied current density (A/cm?)
dimensionless current density

length (cm)

radial distance (cm)

radius of the particle (cm)

Laplace transform variable

dimensionless time (s, Sections 2 and 3 and
Appendix A) (Sections 4-6)

distance (cm)

dimensionless distance

y dimensionless distance

Sty Y NN

b

Greek letters

0 dimensionless current density
10} dimensionless potential
A independent variable (only in Section 4)
Jon eigenvalue
0, 0, dimensionless concentration
T dimensionless time
and
dw
—((1) =9 7
() ™

The variable u(x, f) satisfies the homogeneous boundary
conditions

15]
52(0.0) =0 ®)
and
0
So(1,1) =0 ©

The variable v(7) satisfies the initial condition
v(0)=0 (10)

and all three variables together also satisfy the initial con-
dition

u(x,0) + w(x) +v(0) =0 (11)

The transformation given by Eq. (5§) changes Eq. (1) to
Ou dv Pu  d’w

—t—==+—-— 12
&+dt mf+m2 (12)
Separating the variables, we get

ou  u

—=_= 13
ot 0x? (13)
and

dv  d*w

= 14
dr  dx? (14

Since v(¢) is a function of ¢ only and w(x) is a function of x
only, we require that

dv d>w
dt dx?
where A is a constant. Typically, when A is 0, Eq. (5) can be
replaced by the usual variable transformation [2],

c(x, 1) = u(x,t) + w(x) (16)

=A (15)

For this case, A is nonzero and is determined by the
boundary conditions. The second half of Eq. (15) can be
solved with the boundary conditions to give

A=35 (17)
and
w(x) =16x* + B (18)

where B is an arbitrary constant. The left-hand side of

Eq. (15) can be solved with the initial condition for v(¢)

(Eq. (10)) to give

v(r) = ot (19)

Hence, the solution is given by

c(x,t) = u(x,t) + w(x) +v(t) = u(x,t) +16x> + 6t + B
(20)

Now u(x, t) is obtained by solving Eq. (13) with the homo-
geneous boundary conditions (Egs. (8) and (9)) to give

u(x,1) = ZA,, exp(—n*n’t) cos(nmx) (21
n=1

where A, (n=1,2,...) are constants. Hence, the final
solution is given by

5 o0
c(x, 1) = Exz +0t+ B+ ZA” exp(—n’n*t) cos(nmx)
n=1

(22)

The constants A,, and B are obtained by imposing the initial
condition

c(x,0)=0= gxz +B+ ZA,, cos(nmnx) (23)

n=1
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Eq. (23) is of Sturm-Liouville type. A, can be obtained by
multiplying both sides of Eq. (23) by cos(nnx) and integrat-
ing from O to 1 to get
2(=1)"

n*n?

A, = - (24)
The constant B can be obtained from Eq. (23) by specifying a
value for x (and picking 10 or more terms in the expansion)
and solving for B. Alternatively, B can be obtained by
integrating both sides of Eq. (23) from O to 1

—30 (25)

Substituting Eqs. (24) and (25) into Eq. (22) yields Eq. (4).

Mathews and Walker [2] solved the same problem by
using the transformation given by Eq. (16). One cannot solve
explicitly for w(x) by using Eq. (16) subject to the boundary
conditions given by Egs. (6) and (7). They assumed arbi-
trarily a parabolic profile for w(x) satisfying these two
boundary conditions (Egs. (6) and (7)), thereby make the
governing equation for u(x, f) inhomogenous. Consequently,
their method leads to a more difficult problem to solve and is
not general.

Clearly our variable transformation Eq. (5) is a more
direct method than that presented by Mathews and Walker
(we do not have to assume that w(x) is parabolic) and our
method is easier to apply than the classical Laplace trans-
form technique given in Appendix A.

A similar problem is solved by Bird et al. [3] (pages 295—
296 and 362) for laminar tube flow with constant heat flux at
wall. However, they assumed the form of the solution (see
Eq. (9.8.23) of [3]). Also, they introduced another boundary
condition (Eq. (9.8.25) of [3]) by heat balance. Our method
does not require assuming the form of the solution as in
references [2,3]. Also, our method does not need the addi-
tional boundary condition introduced by [3].

3. Spherical electrode particle

The utility of our method is even greater for the case of a
spherical electrode particle with unsteady state diffusion and
zero initial concentration. The governing equation for the
concentration in dimensionless form is given by

Oc 10 ([ ,0c
o o ( ar) (20

with the initial condition ¢(r,0) = 0 and boundary condi-
tions

X 0n=0 &)
and
giu 1) =0 (28)

where again ¢ is the dimensionless current density.

The analytical solution for this BVP is given by [4]

1 S sin(4,r)
re /12 sin(4,)

exp(—/,1)

(29)

1
=0 3t+10( —-2=-

where 4, (n =1,2,..
tan(4,) = A, (30)

.) are the positive roots of

This solution can be obtained by applying the Laplace
transformation in the time variable, as shown in Appendix
A. Unfortunately, using the Laplace transform technique for
this problem is even more difficult and time consuming.
Fortunately, our method works well and is easy to apply. As
before, the following variable transformation is used:

c(ry1) = u(r; 1) +w(r) +v(1) 31

where w(r) satisfies the inhomogeneous boundary condi-
tions

d

(=0 (32)
and

d

d—v: (1) =0 33)

The variable u(r, t) satisfies the homogeneous boundary
conditions

% 0,6)=0 (34)
and
gﬁ (1,6) =0 (35)

The variable v(r) satisfies the initial condition

v(0)=0 (36)
and three variables together also satisfy the initial condition
u(r,0) +w(r) +v(0)=0 37

Applying the same procedure as before the variables are
solved as

w(r)=16r* +B (38)
v(t) = 36t (39)
and

_ 1 o : 2
u(r,0) = ;An sin(2,r) exp(—22t) (40)

where A, (n=1,2,..
solution is given by

.) are constants. Hence, the final

c(r,t) = grz +0t+ B+ EZA,, sin(4,r) exp(—/2t)  (41)

n=1
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The constants A, and B are obtained by imposing the initial
condition

0 1 &
C(T,O):0:§r2+B+; AnSin(/’Lnr) (4’2)

n=1

Eq. (42) is of Sturm—Liouville type. A, can be obtained by
multiplying both sides of Eq. (42) by r sin(4,r) and inte-
grating from O to 1 to get

2
Ap=—05———+ (43)
7, sin(Ay,)
The constant B is obtained by multiplying both sides of
Eq. (42) by /* and integrating from O to 1

B=—235 (44)

4. Composite electrodes

We consider two types of composite electrodes in this
section. One is a thin film composite electrode with three
layers. The inner layer is made of material different from the
outer two layers. An electrochemical reaction is assumed to
be occurring on the surfaces of the outer layers so that the
centerline of the inner layer can be considered to be a plane
of symmetry. The second composite electrode (Section 5) is
a spherical electrode with an inner core and an outer layer
where an electrochemical reaction is assumed to occur at the
surface. These composite electrodes can be used to model
intercalation electrodes found in the nickel/metal hydride
and lithium ion batteries where charge is stored in a solid
phase in the form of charged species (e.g. Li*). Unfortu-
nately, no analytical solution exists in the literature (that we
could find) for a composite electrode with flux conditions.

Fortunately, our method can be used to derive an analy-
tical solution for such cases. Consider a rectangular slab
with region 1 (0 < x < [;) of one medium with diffusion
coefficient Dy and region 2 (/; < x < L) of another medium
with diffusion coefficient D,, respectively. The governing
equations for the concentration of diffusing species in
regions 1 and 2 (c; and ¢,) are

) o
%:1)18762‘, 0<x<l (45)
) o
=D s, h<x<L (46)

Let the initial concentration be c, i.e.

c1(x,0) = c2(x,0) = ¢y, forallx 47)

Symmetry at the center (x = 0) gives the boundary condition

%1 0,1 = 0,

Ee fort >0 (48)

Under galvanostatic discharge conditions, applied current
gives the boundary condition at the surface

86‘2
2 (L -
ox ( 7t) I’lFD2 ’

where i is the applied current density (a positive quantity) at
the surface of the electrode, F' the Faraday’s constant and n
the number of electrons transferred in the electrochemical
reaction. The negative sign in Eq. (49) is used because
charge is being removed from the battery. Assuming no
charge transfer resistance at the interface (x =1;), the
boundary conditions at the interface are

fort >0 (49)

a(li,t) =c(h,1), t>0 (50)
8c1 8C2
Dy ——(lL,t) =Dy—=(l1,t), t>0 51
lﬁx(l’) 2ax(17)> > (51)
Next, we introduce the following dimensionless variables:
Dyt
=21, =21, x=2 =2
Co Co L L2
(52)
The governing equations in dimensionless form are
oc,  19°¢C
— ==, 0<X 53
ot prox?’ sAse (53)
oC,  9°Cy
L= X<1 54
g oxz TS oD
where
L
1 55
x=7 (35
and
D
2 2
== 56
F=5 (56)

The initial and boundary conditions are transformed to

C1(X,0) = C5(X,0) =0, forallX (57)

0C|

6—X (O, ‘L') = 0, >0 (58)

0C,

a—X(l,T)——57 >0 (59)

Ci(a,7) = Co(ot,7) =0, >0 (60)

8C1 o2 aCZ

a—X(OC,T) = a—X(Oﬁ,T>7 >0 (61)

where

5=k (62)
nFDzCo

is the applied dimensionless current density at the surface of
the electrode (a positive number).

Now applying our variable transformation defined by
Eq. (5) for both C; and C, separately and solving with
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the initial (Eq. (57)) and boundary conditions (Eqgs. (58) and
(59)), we get

l oo
Cr = SKFX* ke + a1+ Y_B, cos(4,pX) exp(~7;7)
n=1

(63)

and

1 o0
Co=5kX* — (6 + b)X +kt+ay + Y _Eycos(Zy[1 — X))
n=1

x exp(—/A21) (64)

where k, a; and a, are constants to be determined by the
boundary conditions at the interface (X =a), 4,
(n=1,2,3,...) are the eigenvalues, and B, and E, are
the constants associated with the eigenvalues. Boundary
conditions 4, at the interface (Egs. (60) and (61)) yield

k=—o (65)
a —a; =160*(1 — B?) (66)
B b4, (67)

cos(4A,[1 — a]) - cos (A, fo)

where A,, is a new constant associated with the eigenvalue 4,,.
Now the solutions for C; and C, are given by the simplified
expressions

1 o0
C, = _E(Sﬁzxz —0t+a + ZAn cos(Zq[1 — o)

n=1

x 08 (1, fX) exp(—/27) (68)

l o0
C, = fiéxz — St +ay+ Y Aycos(An[l — X))

n=1
x c0s (L, fot) exp(—42t) (69)
where 4, are the positive roots of the transcendental equation
tan(4,
tan(4,[1 — o) + w =0 (70)

which was obtained by equating the flux at the interface
(Eq. (61)). Now C; and C, separately satisfy the initial
condition (Eq. (57))

1 o0
Ci(X,0)=0= —EéﬁzX2 +a + ZA” cos(A,[1 — a])

n=1

x cos(4,fX) (71)
and

1 o0
C(X,0) =0 = _Eaxz +ay+ Y Aycos(An[l — X))

n=1

X cos( A, o) (72)

Egs. (71) and (72) are of the Sturm—Liouville type. Applying
a procedure similar to the one presented above for the thin

film electrode, the constants are obtained as follows:

ar = 8(g+ 3 [1 — 7] —5o[1 — B7)) (73)
ay = 3(5 + 5o [1 = B7)) (74)
and

20 cos(fl,0)

An = acos? (A1 — o) + (1 — o) cos?(fA,or) (75)

Hence, the concentrations of the diffusing species are given
by
o0

Ay cos(Au[l — o)

n=1

1
c1=co [1 — E&ﬂZXZ —o0t+a; +
x cos(4,pX) exp(iﬁr)}

1 oo
= ¢y {1 - §5X2 — o0t +ap+ ZA,, cos(A,[1 — X])

n=1
x cos(A,fo) exp(—iir)} a7

where a;, a, and A,, are defined by Eqs. (73)—(75) and the
eigenvalues 4, are given by Eq. (70). When f§ = 1, both ¢,
and ¢, given by Eqgs. (76) and (77) reduce to
20 X (—1)"
= " exp(—n*n’1)

n=1

cc0[1512(3X21)+

x cos(nnX)] (78)

which is the solution for diffusion in a thin film electrode
of diffusion coefficient D, (D, = D; = D), as expec-
ted. Dimensionless concentration (c1/co[0 < X < o] or
ca/cole < X < 1]) profiles for 6 =1, « =0.5 and =2
are given in Fig. 1 for several values of .

5. Composite spherical electrodes
A general model for a composite spherical electrode is

presented here by using our approach. The governing equa-
tions for the concentrations of the diffusing species are

86‘1 D1 6’ ) 661

(2 7
o r? 8r(r or)’ O<r<n (79)
86‘2 D2 6’ ) 66‘2

I P R

ot r2or (r or ) TS (80)
with the initial and boundary conditions

c1(r,0) = c3(r,0) = ¢o, forallr (81)
86‘1

—(0,1)=0, >0 82
oy (00 =0, 1> (82)
86‘2 —1

— Rt)=——, t>0 83
8}’ ( ) ) nFD2 Y > ( )
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Fig. 1. Concentration profiles during discharge of a composite slab electrode.
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Using the same procedure followed for a composite rectan-
gular slab presented above, we arrive at the solution for the
concentration profiles

1 &
Cc] = Co |:1 — 55/32}(2 — 351 + ay +)—(;An
X [Ancos(An[l — a]) — sin(A,[1 — a])] sin(4,X)
X exp(—)jr)} (86)
— |1 - Lax? — 35 Ly
¢2=c |l =3 - r—l—a2+)—( n

n=1

X [An cos(An[1 — X]) — sin(4,[1 — X])] sin(4, o)

x exp(—221)] (87)
where
5— R (88)
nFDzCQ
r Dot
X = E, T = F (89)
_n
n= (90)
2_D2
F=5 D
ar = (5 + o[l = f7] = 5o7[1 = 7)) 92)

and
a, = 5(5+1a’[1 - B7)) (93)

The eigenvalues are given by

1 An0l Anll
- = 4
i + Btan(A,Bo) + tan(4,[1 — o — ¢]) 0 ©4)
where
tan~' (A,
p=tn_Uhn) ©5)
The Fourier series constants are given by
20 sin(fiA,0)
, = 20sin(Pre) (96)
Anfu(2)
where
oul? ul,,u ou2? u2,,u
(o) = pn  “lpntn 2 ‘pn pntn 97
(R A
with
u2, = Ay sin(4, o) (98)

U, = sin(4, fo)[A, cos(A,[1 — ) — sin(4,[1 — o])] (99)

ul,, = 2, cos(A,for) Ay cos(Aa[l — a]) — sin(A,[1 — o])]
(100)

and

U2py = A sin(A,fo)[cos(A,[1 — o) + A, sin(A,[1 — o]
(101)
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Fig. 2. Concentration profiles during discharge of a composite spherical electrode.

When f§ =1, both ¢; and ¢, given by Egs. (89) and (90)
reduce to

0 20 o sin(4,X)
=co|l -3t ——(5X*-3)+) ——~
¢ Co{ T X Z;j sin(Z,)

n=1
X exp(—lﬁr)}

where 4, (n = 1,2,...) are the positive roots of
tan(4,) = 4, (103)

which is the solution for diffusion in a single spherical
particle of diffusion coefficient D, (=D;) as expected.
The dimensionless concentration (c;/co[0 < X < a]orcy/
colo < X < 1]) profiles for 6 =1, o =0.5 and =2 are
given in Fig. 2.

6. Solution phase limitations in a lithium ion cell

Doyle and Newman [5] presented simplified models for
composite lithium/polymer cell sandwich under uniform
current distribution. The dimensionless concentration pro-
files in their cell sandwich (see their Fig. 1) is given by

90, %0,

B B2 (0 <y <1, separator) (104)
0 %0
%:81/2%—)};4—] (1 <y <1+4r, cathode) (105)
with the boundary conditions
0
@:Jsratyzo (106)
dy

0.5 0.6 0.7 0.8 0.9 1.0
0
902 _ Gaty =141 (107)
Jy
0, =0aty=1 (108)
00, 32 00,
ay € ay aty (109)
with the initial condition
0 =0,=1att=0 (110)

Doyle and Newman solved Eq. (104) for steady-state con-
ditions by assuming that the left-hand side of Eq. (104) is
zero and integrating the resulting second-order ordinary
differential equation (i.e. d%0, /dy2 = 0) to obtain a linear
profile for 0,

0, = B + Jery (111)

where B is an arbitrary constant. Next, they present a steady-
state solution for Eq. (105). It appears that they may have
assumed a quadratic profile (as did Mathews and Walker
[2]). Complete solutions for 6; and 0, can be obtained by
applying our method.

0, —1 0, —1
= 1 ) C2 = 2
J J
This transformation is substituted into Eqs. (104) and (105)
to get

Ci

(112)

oc,_oc
ot Oy?
G _ 1p PG
ot 0y?

(0 <y < 1, separator) (113)

+1 (1 <y<1+r,cathode) (114)
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and the boundary conditions (Egs. (106)—-(109)) become

% raty =0 (115)
dy

8C2—0aty—1+r (116)
dy

Ci = Caty =1 (117)
8C1 3/28C2

el ty =1 11
By By aty (118)

with the initial conditions
Ci=C,=0att=0 (119)

This problem is very similar to the composite electrode
problem solved in Section 4. We apply the variable trans-
formation (Eq. (5)) for both C; and C,

Ci = ui(y,7) +wi(y) +vi(1) (120)
and
C = ur(y,7) + wa(y) + va(7) (121)

By applying the same procedure as before we get

vi(t) = w2(t) =0, wi(y) = B + ery,
1 (1 1 (y?
WZ()’):B“‘S")’—\/E(Z—FV)—\/§<2—Y(l+r)>
(122)

Note that w; and w; satisfy all the four boundary conditions
given by Egs. (115)—-(118). The transient solutions are
obtained as before

- Zn )
u = ZA” cos (61—/0 cos(,y) exp(—/421),

n=1

U = ZAnCOS</Ln —t/:_ )>cos(in)exp(—i,21r) (123)

where /7, (n =1,...,00) and the eigenvalues are given by
the transcendental equation

tan(1,) = —&/* tan(e~"/*1,r) (124)

By applying the initial condition and by using the Sturm—
Louiveille theorem (see Section 4) we get

B—_1 (1+——“)—1\/5r3,
1+er 2 31+ er

20, cos(Ayr /e M) er — &/4 sin(A,r/e!/*)cos(Ay,)

A= :
o (cos?(Aur/e'/*)+er cos?(4,))

(125)

Thus, the dimensionless concentration profiles are

0i=1+J

00 1
B+er+ ZA,, cos (%) c0s(Zny) exp(—lif)] ’

n=1

()l
—&—ZAncos( 1+]/Z y)> Cos()vn)exp(—)»ir)}

(126)

021+J|:B+8F

where the constants B and A,, are given by Eq. (125). Note
that Eq. (126) is simpler than the solution reported by Doyle
and Newman [5]. The solution given by Doyle and Newman
involves two different constants (F, and G,,) for both 0, and
0, separately. Even though our solution looks different from
that of Doyle and Newman, both are equivalent. The con-
centration is minimum at the end of the cathode (y = 1 + r).
The time for this concentration to reach zero is the dimen-
sionless depletion time. This concentration can be obtained
by substituting y = 1 + rinto Eq. (114). Doyle and Newman
used only one term in the expansion for longer times. They
found a short time solution by applying the Laplace trans-
form technique. It should be noted that as mentioned by
Doyle and Newman one term in the series in Eq. (14) and the
short time solution is sufficient for estimating the depletion
time. However, if one wants to follow the transient behavior
of the cell sandwich, one term is not sufficient. We have used

N = 20 terms and predicted the concentration profiles inside

the cell sandwich for various values of time and plotted them
in Fig. 3 for the given value of applied current, J = —0.1. As
shown in Fig. 3, the one term approximation used by Doyle
and Newman is not valid for predicting the transient beha-
vior inside the cell sandwich.

!
1
|
1
1
)]
|

1]
1
T

Fig. 3. Dimensionless transient concentration profiles in a time in a
lithium ion cell sandwich.
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Fig. 4. Concentration profiles in a lithium ion cell sandwich as a function
of applied current, J at a particular time (t = 1).

We would like to stress again that we obtained a simpler
but equivalent solution to that obtained by Doyle and New-
man. The effect of applied current, J can be seen using the
same set of coefficients with our method unlike Doyle and
Newman. This is true because their coefficients are functions
of the applied current, J (Egs. (33) and (34), [5]) which means
that one has to calculate the coefficients for every value of J.
At a particular value of dimensionless time (t = 1), the
concentration profiles inside the cell sandwich are plotted
in Fig. 4 for different value of applied current density, J.

7. Conclusion

An extension of the method of separation of variables
presented here and given by Eq. (5) is useful for solving
BVPs that include flux boundary conditions. This method
yields an unambiguous, straightforward way to obtain ana-
Iytical solutions for problems of this type. The utility of the
method is demonstrated for two classical problems (diffu-
sion in a slab and a sphere). Also the method is used to obtain
analytical solutions for diffusion in slab and spherical
composite electrodes. The transformation proposed helps
in obtaining a compact, and easy to use solution for the
lithium ion cell sandwich under solution phase diffusion
limitations. The method applied can be easily extended to
cylindrical coordinates. The method appears to be general
and should be useful for solving other similar problems with
flux boundary conditions.
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Appendix A. Thin film electrode

The Laplace transform (for the time variable) can be
applied to Egs. (1)—(3) to obtain

2
ddcx(zs) —sc(s) =0 (A.1)

dflx(s) =0atx=0 (A2)
and
de(s) o B

Eq. (A.1) can be solved subject to the boundary-conditions
given by Egs. (A.2) and (A.3)

_ dcosh(y/sx)
cls) = s+/s sinh(1/s)

Eq. (A.4) can be written in series form

(A4)

o(s) = D) 00" /2 (A.5)

O(s) 238"/ (2n+ 1)

In Eq. (A.5), the polynomial Q(s) is of higher power in s than
P(s). The poles are s = 0 (multiplicity 2) and the roots of
sin(4,) =0 (i.e. 4, =nm,n=1,2,3,...) (where s = —iﬁ).
The inverse Laplace transform of Eq. (A.5) can be obtained
by using the Heaviside expansion theorem [6]. For a func-
tion (with multiple poles)

(A.6)

where a is the pole of multiplicity m, the inverse transform is
given by

tnfl

= exp(at) 2 9" S (A7)

For this case, a = 0, m = 2 and

0 h
$(5) = (5= a'r(s) = Yoot (a8)
In this case, Eq. (A.7) reduces to
f(t) =14'(0) + ¢(0)1] (A9)
Now from Eq. (A.8) we have (for s = 0)
_®)O)1_0
¢(0) = 0 —0 (A.10)

Applying L’ Hospital’s rule once to Eq. (A.8) we get

cosh(~/sx) + x+/s sinh(+/sx)

=90 A1l
d(s) coshy/s (A.11)
Substituting s = 0 and simplifying we get
$(0) =0 (A.12)
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Similarly from Eq. (A.8)

_ 0 cosh(y/sx) sinh(y/s) + x/s sinh(y/sx) sinh(y/s) — /s cosh(y/sx) cosh(y/s)

/ A.13
¢ =3 (] (A13)
which for s = 0 yields Eq. (A.19) can be written in series form

0 00 (n+1)/2,2n+1
¢'(0) = o (A.14) o(s) = P(s) _ l 52;0”:05( )12y /(2n+1)!

O(s)  rs2d 02 st=1/2/(2n+1)(2n — 1)!

After applying L’ Hospital’s rule three times we get (A.20)
¢'(0) = — g =+ g X2 (A.15) In Eq. (A.20), the polynomial Q(s) has a greater power in s

(The expressions obtained after applying L’ Hospital’s rule

are too big to be included here.) The complete solution can

be obtained by using Heaviside expansion theorem for no

repeated roots (Eq. (8.3.22) of [6]) and adding the result to

Eq. (A.9); the solution is given by

c(x,t) = ot — 0 + éxz + iexp( — 220 (%) (A.16)
’ 6 2 o " "

where 4, = nm and

than P(s). The poles are s = 0 (multiplicity 2) and the roots
of tan(4,) = 4, (n = 1,2,3,...), where s = —ii. Using the
Heaviside expansion theorem for repeated roots [6]

1 ds sinh(4/s7)

9ls) = (s = a)"f(s) = 7/ cosh /s — sinh(,/s) (A2D)
From Eq. (A.21) we have (for s = 0)

_(6)(0)0 0
$(0) = H0—0) "0 (A.22)

P(s = — ,1%) —20 cos(nmx) After applying L’ Hospital’s rule to Eq. (A.21) two times and
(p()“n) = (S - j'Vl)f(s) = o N I\ 2 2 simplifvin
Q(s=-1,) (—1)"n’n plitying
- (A.17) b(s) = 6 3cosh(y/sx) + xy/s sinh(4/sx) (A23)
Hence, the complete solution is cosh /s
1 2 &K (=1)" Substituting s = 0 and simplifying we get
C:5t+8(3x2—1)——2 ( 2) & pilying &
L= $(0) = 36 (A24)
x exp( — n’n’t) COS(”M)] (A.18) Similarly from Eq. (A.21) we get
#(s) = 024/ssinh(y/sx) cosh(y/s) — (s + 2) sinh(y/sx) sinh(y/s) + xs cosh(y/sx) cosh(y/s) — x/s cosh(y/sx) sinh(v/s)
2 scosh?(1/s) — 2y/s cosh(y/5) sinh(y/s) 4 sinh?(,/5)
(A.25)
As seen for this case, inversion to the time domain is which for s = 0 yields
cumbersome even for simple eigenvalues of A, = nm. Eva- 0
luation of the residues at s = 0 involved using L Hospital’s ¢'(0) = 0 (A.26)
rule thrice even for this simple case. )
After applying L’ Hospital’s rule six times we get
¢'(0) = —35+15r (A.27)

A.l. Spherical electrode particle

As before, applying the Laplace transform (in the time
variable) to Eq. (26) and solving with the boundary condi-
tions (27) and (28) we get

1 0 sinh(+/sr) _P(s)

c(s) = rs(y/scoshy/s —sinh(v/5))  QO(s)

(A.19)

When we go from rectangular to spherical coordinates even
for finding the residue at the origin, we need to L’ Hospital’s
rule twice the number of times. Next, by using the Heaviside
expansion theorem for no repeated roots (Eq. (8.3.22) of
[6]), the solution in the time domain is given by

c(x, 1) =30t — % + grz + Zexp(—),it)(p(in) (A.28)
n=1
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where 4, is given by tan(4,) = 4, and

P(s=-2) 125 sin(4,7)
Qs =—i2) r 22sin(A,)
(A.29)

@(}vn) = (S - j~n)f(s) =

Hence, the complete solution is

1 1 <= sin(4,r) 9
=03t+— (5 =3)—2-) —" exp(—A*t
c 10( r ) r;iﬁ Sil‘l(/ln) Xp( n)

(A.30)
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