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Abstract²First-principles models that incorporate all of the 

key physics that affect the internal states of a lithium-ion 

battery are in the form of coupled nonlinear PDEs. While these 

models are very accurate in terms of prediction capability, the 

models cannot be employed for on-line control and monitoring 

purposes due to the huge computational cost. A reformulated 

model [1] is capable of predicting the internal states of battery 

with a full simulation running in milliseconds without 

compromising on accuracy. This paper demonstrates the 

feasibility of using this reformulated model for control-relevant 

real-time applications. The reformulated model is used to 

compute optimal protocols for battery operations to 

demonstrate that the computational cost of each optimal control 

calculation is low enough to be completed within the sampling 

interval in model predictive control (MPC). Observability 

studies are then presented to confirm that this model can be 

used for state-estimation-based MPC. A moving horizon 

estimator (MHE) technique was implemented due to its ability 

to explicitly address constraints and nonlinear dynamics. The 

MHE uses the reformulated model to be computationally 

feasible in real time. The feature of reformulated model to be 

solved in real time opens up the possibility of incorporating 

detailed physics-based model in battery management systems 

(BMS) to design and implement better monitoring and control 

strategies. 

I. INTRODUCTION 

Lithium-ion  chemistries are more attractive for many 

applications due to high cell voltage, high volumetric and 

gravimetric energy density (100 Wh/kg), high power density 

(300 W/kg), good temperature range, low memory effect, 

and relatively long battery life [2-4]. Capacity fade, 

underutilization, and thermal runaway are the main issues 

that need to be addressed in order to use a lithium-ion battery 

efficiently and safely for a long life. Detailed models that 

incorporate electrochemical, transport, and thermodynamic 

processes along with geometry of the underlying system can 

be used to monitor and control internal states of a battery [5-

9]. These electrochemical models tend to be computationally 

very expensive, which has prohibited their use in the control 
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and monitoring of internal states in real time. The 

observability of these electrochemical models has remained a 

challenging issue since the dynamics of some internal states 

are excited only at higher charging rates and the contribution 

from some states are significant only during either charging 

or discharging. Depending on the above factors, the 

observability of internal states can vary significantly and 

hence various approximations have been made in order to 

make the model locally strongly observable [10-13]. 

The use of detailed electrochemical models in control has 

been limited due to computational cost and issues related to 

observability. Several simplified/reduced electrochemical 

models have been proposed and control-relevant studies 

performed to try to address these issues [10-16]. Efforts in 

optimal control and nonlinear model predictive control 

incorporating a Single Particle Model (SPM) and other 

reduced order models have been published [17, 18].   

A mathematical reformulation method [1, 19-21] gives 

rise to a computationally efficient model that can be solved 

in milliseconds without compromising on accuracy. A 

reformulated model with <35 states can be valid for a wide 

range of battery operations, and includes more meaningful 

physical states (e.g., volume-averaged flux). These qualities 

make the reformulated model a suitable candidate for 

embedded applications and in BMS. The model consists of 

two collocation points (after taking care of the boundary 

conditions) in each region (anode, cathode, and separator) to 

produce a system of Differential Algebraic Equations 

(DAEs).  

This paper evaluates the feasibility of the reformulated 

model for real-time implementation in receding-horizon 

approaches to control and estimation (aka model predictive 

control and moving-horizon estimation). Section II discusses 

BMS and the application of electrochemical models for 

advanced BMS. Section III illustrates the use of the 

reformulated model in computing optimal protocols for 

battery operations along with a feasibility study on state 

estimation using the moving horizon technique. Section IV 

presents results and discussion, which are followed by 

conclusions and future direction. 

II. BATTERY MANAGEMENT SYSTEMS 

A BMS is needed to employ batteries aggressively at 

high efficiency and utilization in electric and hybrid vehicles 

in a reliable way. A BMS monitors and controls the flow of 

energy in such a way as to optimally use the energy in the 

battery, prevent damage to the battery, and ensure safety [4]. 
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with Fk differential equations constraints, Gk algebraic 

equations constraints, N time discretizations, z differential 

states, y algebraic states, and an applied current of iapplied. 

The differential state constraints include physically 

meaningful bounds on the solid-phase lithium concentration 

in the anode and cathode regions, bounds on electrolyte 

concentration and temperature in the three regions (300 to 

320 K in anode, separator, and cathode). Meaningful bounds 

were provided for algebraic states (e.g., voltage across the 

cell should be less than 4.2 V).  

In simultaneous nonlinear programming [29-31], both the 

control variables and state variables are discretized, which 

results into a large set of nonlinear equations to be solved 

simultaneously for obtaining the optimum charging profile. 

B.  State Estimation 

In order for any model to be useful for closed-loop 

control, the internal states of the model should be observable 

from the experimental data. Physics-based models for 

lithium-ion batteries are very accurate for the prediction of 

the internal states but their complexity makes it very difficult 

to use for observer design. Many studies have published 

observer designs for simplified models [10-13, 15, 32, 33]. 

Since only the voltage difference is experimentally 

observable, the observability of open-circuit voltages of the 

individual electrodes is not guaranteed [11]. Also some 

states of the model can be weakly observable based on 

charging rate, SoC, etc. For example, some battery dynamics 

may not be excited for small rates of charging, in which case 

it is better to have a suitable assumption or reduction to 

derive a locally strong observable model. Observability in 

case of linear systems is easily defined; any linear system 

will either have one optimal estimate or it will be 

unobservable. But in the case of nonlinear systems, multiple 

estimates can exist that are locally optimal estimates that can 

reconstruct the data arbitrarily closely [34, 35]. Battery 

models, being highly nonlinear and poorly conditioned, 

require state estimation techniques that can incorporate 

bounds on the states in an efficient manner. Moving horizon 

estimation is one of the state estimation techniques that, 

although computationally expensive compared to other 

techniques, can give better estimates due to its ability to 

explicitly incorporate nonlinear models and bounds on states 

and parameters. 

Moving Horizon Estimation (MHE): 

MHE is an optimization-based strategy for state 

estimation and process monitoring that is especially useful 

for nonlinear systems with constraints [36]. To limit the 

online computational cost, a fixed-size moving window of 

model predictions and process measurements is chosen. As 

soon as a new measurement arrives, the oldest measurement 

is discarded and the model states are updated based on the 

new information.  

The optimization solved at each time step in moving 

horizon estimation is to minimize the difference between the 

available process measurements and model predictions for a 

fixed-size moving window to estimate the states and/or 

parameters at the current time [37]:  
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with model voltage V(k) (an algebraic state), voltage output 

V(k)
meas

, Nest past samples used in the estimation window, 

algebraic states y, differential states z, and applied current 

iapplied. MHE is usually desirable when constraints are present 

or when measurements are available infrequently and at 

various sampling periods, as these features can be easily 

incorporated in the MHE formulation. 

Two sets of operations of practical importance in 

evaluating state estimation performance are (i) a randomly 

perturbed discharge profile and (ii) an optimal charging 

profile calculated by open-loop optimal control for a given 

cost function. 

Since the optimal charging profile calculation for 

maximizing charge storage in a given time will require 

knowledge of the initial states to perform optimization, it is 

of practical importance to study the observability for a 

randomly perturbed discharge profile that mimics an urban 

driving cycle [38]. The aim is to determine whether the 

estimated states at the beginning of charging are within a 

given specified limit from the true states. Once the optimal 

profile is calculated based on the initial states, it is important 

to determine whether, for a given optimal charging profile, 

the states are still observable within a satisfactory tolerance 

given that the optimal charging profile might not be able to 

excite all the dynamics. This will enable the implementation 

of an updated optimal profile as charging progresses that will 

form a base for model predictive control. Due to space 

limitations, the estimation performance for only the first set 

of operating conditions is presented here. 

A simulation of the reformulated model is performed 

using the current values specified in Figure 2. Based on the 

current values, the model was solved for the state variables, 

with a current value of 30 A/m
2
 corresponding to a 1C rate 

of charge. 
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Figure 2.  Current and voltage profiles. 
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II. RESULTS AND DISCUSSION 

A.  Optimal Control 

The optimal control problem is to maximize the charge 

stored in a specified amount of time subject to model 

equations and bounds on the state variables (temperature and 

voltage) as well as control variable (current). An upper 

bound of 320 K was placed on temperature and 4.15 V was 

placed on the voltage across the battery. Figures 3 and 4 

show the optimal current profile and corresponding voltage 

and temperature profiles. The optimization was solved for 1 

h of operation. In Figure 3 the current is shown in C rate of 

charging. The maximum current in this case was restricted to 

a 2C rate to minimize capacity fade in the battery.  

The voltage and current profile qualitatively follow a 

constant-current charge followed by a constant-potential 

charge, but deviate significantly from the conventional 

method of charging batteries currently used in industry.  

Battery lifetime modeling can be incorporated into this 

model to pose constraints on the overpotential of side 

reactions to avoid capacity fade during continuous operation 

[17] rather than only on the voltage difference, which would 

more aggressively utilize the battery. 
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Figure 3.  Optimal charging profiles (Voltage and current). 
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Figure 4.  Temperature profile associated with the optimal current profile 

B.  State Estimation: 

In this study, reformulated isothermal pseudo 2D model 

is used that is composed of a system of 25 equations having 

10 differential states and 15 algebraic states. Reformulation 

is performed in such a way that the reduced number of 

resultant states also represents the true value of the original 

states at the collocation points. The differential states 

corresponds to concentration in three regions: electrolyte 

concentration in anode (2 states), lithium concentration in 

anode (2 states), electrolyte concentration in separator (2 

states), electrolyte concentration in cathode (2 states), and 

solid-phase concentration in cathode (2 states). 100 data 

points were taken to simulate 1000 seconds of battery 

operation.  

For moving horizon estimation, a window of 100 data 

points was used. The model was discretized for 100 points, 

resulting in 2500 equations. The 25 equations at the first data 

point require an estimate of the states at the 0
th

 data point, 

which adds 10 degrees of freedom. Values of current iapplied 

were directly assigned in the equations. IPOPT [39] was 

used to solve this simultaneous nonlinear program to obtain 

the optimized profile that minimizes the difference between 

experimentally measured voltage (synthetically generated 

voltage) and predicted values at the 100 data points.  

Since the robustness of NLP is dependent on the initial 

guess, a consistent set of states was obtained by simulating 

discharge of the same battery from an equilibrated condition 

(where internal states of the battery are known with good 

confidence) with the first value of the current profile until the 

battery reaches the first value of the voltage profile (3.9 V in 

this case). The obtained states were used as initial values and 

the model was solved with the given current profile to obtain 

the initial guesses for all the discretized states. The initial 

guess obtained in this manner will be consistent with the 

nonlinear model of the battery. 

The estimation problem was solved for three different 

cases with different level of noises. Random noise was 

applied with normal distribution with 0 mean and 1 mV, 10 

mV, and 50 mV standard deviation to simulated voltage data 

to predict the experimental data. Figures 5 to 9 show the 

comparison of three different cases with noise level 1 mV 

(dashed blue line), 10 mV (dotted red line), and 50 mV 

(black circle) with true states (green curve). During 

discharging, the electrolyte concentration in all three cases 

converges to the true states very rapidly in anode and 

cathode (Figures 5 and 8). The solid-phase concentration in 

the anode and cathode are weakly observable and converges 

to true states rather slowly (Figures 6 and 9). Similar 

observations were found for the electrolyte concentration in 

separator region (Figure 7). 

Although some state estimates converge rather quickly to 

the true states, other state estimates converge much more 

slowly (compare the state profiles in Figure 7). We are 

currently investigating the use of regularization and Bayesian 

estimation to improve the accuracy of the estimates of more 

weakly observable states, and in computing more formal 

observability metrics. These techniques will be especially 

useful for state estimation during constant-current or optimal 

charging, when some of the states may be less excited. 

While designing the moving horizon estimator, several 

factors are important. The size of the moving window is very 

critical for the performance of estimation. Better estimations 

are generally achieved when using a larger window size. 

Conversely, increasing the window size increases the online 

computational load, which might not be desirable for the best 

real-time performance. Moreover, reliable and increased 

precision in voltage and current can significantly affect the 

performance of the estimator. If the window size is small or 

the initial guesses in the nonlinear program are poor, then 

some of the state estimates can poorly converge while 

producing an estimated voltage output that is close to the 

true voltage output. Understanding the physics behind 
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battery operation can affect the performance in a significant 

way. Physically meaningful bounds on the state variables can 

be used to ensure that the estimated states converge in to the 

correct neighborhood values. Including the skin temperature 

in the model and experiments can provide better estimation 

results, however, this would require a detailed 2D model that 

would have to be reformulated for efficient simulation. 

III. CONCLUSION AND FUTURE DIRECTIONS` 

As a first step towards model predictive control using 

physics-based reformulated models for lithium-ion batteries, 

open-loop optimal control was performed with a 

computation time of less than a minute. Further, state 

estimation using a moving horizon technique was performed 

and the preliminary results showed that performing MPC and 

closed-loop control using this model is feasible. 

The low observability of some of the states in lithium-ion 

batteries motivates the inclusion of additional measurements 

into the state estimation. Most sensors that could be inserted 

into a battery result in operational problems; however, the 

temperatures at external surfaces of the battery are 

measurable quantities that could be employed in estimation. 

Including these temperatures in the model, however, would 

require a reformulated detailed 2D model to be implemented 

that is fast enough for real-time implementation. 

The MHE results presented here were based on a 2-point 

collocation. In our experience, a larger number of 

collocation points (at least 3) are needed for accurate 

prediction at higher rates. While these points may increase 

the CPU time somewhat, they may give better observability 

and robustness in estimation. In addition, employing 

collocation or higher-order discretization schemes in time 

will yield faster CPU times. 
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Figure 5.  True states and estimated states with different noise. 
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Figure 6.  True states and estimated states with different noise. 
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Figure 7.  True states and estimated states with different noises. 
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Figure 8.  True states and estimated states with different noise. 
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Figure 9.  True states and estimated states with different noise. 
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