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ABSTRACT Recently, electrochemical power sources have had significant 
improvements in design, economy, and operating range and are expected to play 
a vital role in the future in automobiles, power storage, military, mobile-station, 
and space applications. Lithium-ion chemistry has been identified as a good 
candidate for high-power/high-energy secondary batteries and commercial bat-
teries of up to 75 Ah have been manufactured. Applications for batteries range 
from implantable cardiovascular defibrillators (ICDs) operating at 10 mA current 
to hybrid vehicles requiring pulses of 100 A. While physics-based models have 
been widely developed and studied for these systems, these models have not 
been employed for parameter estimation or dynamic optimization of operating 
conditions or for designing electrodes for a specific performance objective. This 
is an unexplored area requiring model reformulation and efficient simulation of 
coupled partial differential equations. This paper describes model reformulation 
and its application to (1) parameter estimation and prediction of capacity fade 
for lithium-ion batteries, and (2) optimal product design.
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Introduction

Several issues arise in the operation of lithium-ion batteries—capacity 
fade, underutilization, abuse caused by overcharging, and thermal run-
away caused by operation outside the safe window (Newman et al, 2003). 
For example, the batteries used in hybrid cars operate at 50% state of charge 
to enhance life while compromising on utilization (energy efficiency). The 
capability to accurately predict capacity and internal state variables is highly 
desired as it can help extend the life of the battery and provide for better 
operational strategies. Three different approaches have been used in the lit-
erature for modeling lithium-ion batteries: (1) empirical models (Plett, 2004), 
(2) transport phenomena models (Doyle et al, 1993), and (3) stochastic models 
(Darling and Newman, 1999). Although parameter estimation, design calcu-
lations, and dynamic optimization are easiest to apply to empirical models 
due to their low computational cost, these models fail at many operating 
conditions and cannot predict the future behavior or current capacity accu-
rately. Several recent studies have tried to understand micro- and nanoscale 
phenomena in batteries using stochastic methods. These models would need 
to be coupled with transport phenomena models to predict process behavior 
of batteries at the system level. 

Of the three modeling approaches, transport phenomena models are cur-
rently the most promising candidates for use in design because these models 
can predict both internal and external behavior (system level) with reason-
able accuracy. These models are based on porous electrode theory coupled 
with transport phenomena (Doyle et al, 1993, Botte et al, 2000) and electro-
chemical reaction engineering. These models are represented by coupled 
nonlinear partial differential equations (PDEs) in 1 or 2 dimensions and are 
typically solved numerically, requiring between a few minutes to hours to 
simulate. As an example of the form of these PDEs, the model equations for 
the lithium-ion battery cathode are
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Model Reformulation and Design of Lithium-ion Batteries 989

Electrochemical modeling of a typical secondary battery involves three 
regions: positive porous electrode, separator, and negative porous electrode 
(see Fig. 1). The original model involves 10 PDEs (4 in each electrode + 
2 in the separator). If 100 node points are used in the x-direction in each 
region and 20 node points are used in the r-direction, the original model 
involves 2 × 100 (separator) + 3 × 100 (macroscale in each electrode) + 1 × 
20 × 100 (microscale in each electrode) = 200 + 300 × 2 + 2000 × 2 = 4800 
differential-algebraic equations (DAEs) in time. This model accounts for 
diffusion and reaction in the electrolyte phase in the anode/separator/
cathode, diffusion (intercalation) in the solid phase in the cathode and 
anode, ionic and electronic conductivity in the corresponding phases in the 
porous electrodes (cathode and anode), nonlinear ionic conductivity, and 
nonlinear kinetics. 

While first principles-based models have been discussed in detail in the 
literature, attempts to rigorously estimate parameters have been minimal. 
As of today, literature on dynamic optimization or design of lithium-ion 
batteries based on physics-based models for a specific performance (e.g., 
minimized capacity fade) is non-existent (the linearized models analyzed 
in the frequency domain by Smith and Wang (2006) cannot be used for 
non-constant parameters). For a lithium-ion battery, the process variable 
could either be current or voltage (e.g., for a given load or current, the 
battery operates at a voltage that decays with time, or when the battery 
is operated at a certain voltage, current decays with time). In a hybrid 
environment, in which batteries operate in series-parallel combination 
with fuel cells or other devices, energy or power might be specified which 
is typically delivered by operating the battery at a particular current or 
voltage profile. To optimize electrochemical power sources, and to pro-
duce mini- and micro- batteries and fuel cells for the future, there is 
an urgent need to develop and implement effective and robust param-
eter estimation and optimization strategies. While existing models can 
be used for offline analysis and simulation purposes, these models are 
unsuitable for parameter estimation, dynamic optimization, or product 
design. Recently we have begun applying systems engineering methods 
with the objectives of (1) predicting underutilization and capacity fade, 
(2) devising optimal operating strategies, and (3) designing new materials 
for improved performance (e.g., extended life). This paper focuses on the 
following topics:

 1. Development of reformulated efficient models to facilitate parameter 
estimation, dynamic optimization, and product design.

 2. Estimation of transport and kinetic parameters as a function of a 
battery’s cycle life.

 3. Design of batteries with higher average utilization over time.
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Figure 1 
Lithium-ion battery, cross-sectional view (top) and numerical grid for modeling (bottom).
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Model Reformulation

Model reduction is an active area of research for many engineering and science 
fields (Benner, 2008). There are standard methods available in the literature for 
reducing a given set of coupled partial differential equations (PDEs) to reduced 
order models with different levels of accuracy and detail. Proper Orthogonal 
Discretization (POD) uses the full numerical solution to fit a reduced set of 
eigenvalues and nodes to get a meaningful solution with a reduced number 
of equations (Cai and White, 2008). A drawback of POD is that the resulting 
model needs to be reconstructed when the operating current is doubled, the 
boundary conditions are changed, or if the parameter values are changed sig-
nificantly. Orthogonal Collocation (OC) is another widely used technique to 
reduce the order of the models in a variety of chemical engineering problems. 
A drawback of the OC technique is its inability to accurately define profiles 
with sharp gradients and abrupt changes. Certain models might require a 
large number of collocation points (Wei, 1987). Orthogonal collocation was 
found to be only as efficient as solving the PDEs using the finite difference 
method for battery models and resulted in unstable codes for smaller number 
of points because of the model’s DAE nature.

This paper describes a method for mathematical model reformulation 
that applies various techniques to solve for the dependent variables with-
out losing accuracy. Specific information for the dependent variables in the 
x direction is provided that was not reported in past papers on the model 
reformulation (Subramanian et al, 2007; 2009). Volume averaging coupled 
with polynomial approximation for the solid-phase concentration gives 
high accuracy at low-to-medium rates of discharge for modeling lithium-ion 
batteries (Subramanian et al, 2005; Wang et al, 1998). This step converts the 
model from a pseudo-2D to a 1D model.

Below is a description of the step-by-step procedure to reduce the ten cou-
pled nonlinear PDEs (in x, r, t) in the battery model to a small number of 
DAEs (< 50). The approach considers each dependent variable separately and 
finds a suitable mathematical method to minimize the computational cost 
associated with that particular variable. The dependency of a chosen vari-
able with other dependent/independent variables is kept intact. 

We have attempted and arrived at various possible ways of simulating 
this model including the finite element method (FEM), finite difference 
method solved using BANDJ (Newman, 1968) or DASSL (Brenan et al, 1989), 
and orthogonal collocation. This paper only describes the most efficient 
approaches we have found for solving this system of equations.

reformulation for the Finite Difference Method

This section describes model reformulation used with finite difference 
method (see Fig. 2 for a flowchart of the procedure).
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The governing equation for the solid-phase potential is derived from Ohm’s 
law for the positive and negative electrodes. If jp was a constant, the govern-
ing equation can be solved to obtain a closed-form solution. However, jp is a 
nonlinear function of the dependent variables. If finite difference method is 
applied in the x-direction, the solid-phase potential equation is given by
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where N is the number of interior node points. Eq. (1) can be written in matrix 
form as 
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The dependent variable Φ1 can be eliminated (expressed in terms of jp) by 
inverting the coefficient matrix in Eq. (2). Typically 50 node points might  
be needed to obtain a converged solution. Matrix methods can be used to 
derive and store the inverse matrix and solution a priori in the computer to 
eliminate the need for keeping Φ1 in the model equations. A general expres-
sion can be obtained for the eigenvalues and eigenvectors as a function of N, the 
number of node points, so that there is no loss of accuracy. For the original equa-
tion with the boundary conditions, the exact solution for each eigenvalue is 
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Although similar equations can be derived for eigenvectors as a function 
of N, a numerical approach can be more efficient. Similar steps can be per-
formed (although the equations are more complicated for other variables) as 
shown in Fig. 2 and discussed elsewhere (Subramanian, et al, 2007; 2009).

STEP 6 Benchmark with rigorous model simulation

Numerical simulation of decoupled equation

Decoupling concentration equation

Exact solution for solution phase potential

Exact solution for solid-phase potential

300 decoupled ODEs
with 200 DAEs

7 PDEs in x, t

10 PDEs in x, t

12 PDEs in x, t

10 PDEs in x, r. t

Approximation for solid-phase concentration

STEP 5

STEP 4

STEP 3

STEP 2

STEP 1

Figure 2 
Schematic of steps involved in reformulation using the finite difference method.
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After reformulation, even if 50 node points are used in each region, the 
resulting 150 decoupled equations for c coupled with 100 decoupled alge-
braic equations (AEs) for cs,surf or jp/n and 100 decoupled ordinary differen-
tial equations (ODEs) for cs,ave,p/n (which occurs only in the electrode) can be 
solved very efficiently. After this step, the reformulated models can be run 
in <100 ms, which is required in a hybrid environment that may have super-
capacitors with time constants <1 s. 

The reformulated models have been compared with models from the lit-
erature. Both external/system (voltage-time curve, process variable) and 
internal variables match exactly for rates less than 2C. The computational 
cost is much higher for finite difference/volume/element methods that need 
to perform matrix algebra as a function of N, the number of node points. 
We could not derive any analytical expressions reported in the literature for 
banded matrices in mixed domains (cathode/separator/anode) with vary-
ing diffusion coefficients in each region. While it is possible that there exists 
an analytical solution, numerical analysis can be performed to obtain them 
empirically as a function of N. Our computational experience suggested that 
the finite difference method was not the best possible approach for the refor-
mulation. The next section presents a more efficient method that implements 
model reformulation using a polynomial representation.

reformulation for Polynomial representation

A more efficient option than finite differences is to write jp as a sum of poly-
nomials or other pre-specified functions: 
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The governing equation for the solid-phase potential can be integrated with 
respect to x to obtain
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In the literature, various kinds of polynomials such as Chebyshev polynomi-
als (Varma and Morbidelli, 1999) have been used for model reformulation. If 
the pre-specified functions have exact double integrals, the solution is ana-
lytical with numerical error approaching zero as long as the functions form a 
complete basis and enough terms are chosen in Eq. (4). If simple polynomials 
are chosen, then
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and 
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The above integration constants are solved from the boundary conditions. 
Using a polynomial for jp is more advantageous than using the finite differ-
ence, finite element, or finite volume methods for reformulating Φ1 as double 
integration to get Φ1 is less computationally expensive than inverting matri-
ces. Using one of the above reformulation approaches, an analytical solution 
can be derived for the solid-phase potential distribution in each porous elec-
trode. This reformulation enables a closed-form solution for the solid-phase 
potential distribution in each electrode as a function of other dependent 
variables without compromising on accuracy and without losing any physics 
of the battery system. Moreover, this reformulation technique reduces one 
PDE for the solid-phase potential to one algebraic equation. At this stage, the 
original model for the solid-phase potential is reduced to
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The governing equation for the liquid-phase potential is given by the modi-
fied Ohm’s law. If κ eff p, is a constant, the governing equation for electrolyte 
potential can be solved analytically as
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κ eff p,  is a nonlinear function of the dependent variable (electrolyte concen-
tration) for various chemistries. If the function governing the variation of 
1/κ eff p,  with respect to the other dependent variables has an exact integral, 
then this equation has an analytical solution. If not, simple polynomials are 
chosen as 1
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where ϒ is a product of two summations resulting from integration.
The Galerkin-collocation (GC) type weighted-average method is used to 

solve for the constants. For example, each constant ζpi is obtained by min-
imizing the residue of the governing equation with a weighting function 
given by the coefficient of the particular constant as 
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where w1, w2, and w3 are the weight functions and Ge(Φ2) denotes governing 
equation for Φ2. Six of the constants in the polynomials are obtained from 
the boundary conditions at x = 0, x = lp, x = lp + ls, and x = L. At the electrode/
separator interfaces, both the electrolyte potential and its fluxes are continu-
ous. Similarly, polynomial representations are used for the other dependent 
variables arising from the solid-phase concentration equations and pore-
wall flux expression. The GC technique is more stable and provides accurate 
solutions with lesser number of terms in the polynomial representation com-
pared to the OC technique.

The dependent variable for the electrolyte in each region is approximated 
with polynomial expressions and substituted in the governing equation for 
electrolyte concentration to get separate equations in each region and the 
constants are found using the weighted residual:
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Both for the electrolyte potential and concentration, six of the constants in 
the polynomials are found from boundary conditions. In addition, volume 
averaging is performed to the original set of PDEs. The electrolyte concentra-
tion can be volume-averaged over the respective region as:
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This equation can be simplified and integrated to obtain
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This equation is true for any chemistry and can also be derived from the 
overall mass balance of the cell. This facilitates a quicker convergence of the 
concentration profiles in terms of polynomials. If this condition is not used, 
more number of terms may be needed in the polynomial representation to 
maintain numerical stability.

The discharge potential is the measured variable (see Fig. 3). The dis-
charge curves are shown for 1C (30 A/m2) and 0.5C rates of galvanostatic 
discharge. It can be seen that, for these rates of discharge, the reformulated 
model compares very well with the original numerical model. The merit of 
this approach is evident when comparing the number of governing equa-
tions that are solved. The reformulated model specifies 47 DAEs as opposed 
to 4800 DAEs for the original model. The reformulated model uses a maxi-
mum of 47 specified equations for a converged solution that compares very 
well even with the original finite difference code. The reformulated model 
predicts the intrinsic non-measurable (state) variables accurately as shown in 
Fig. 4, with the CPU time reduced by two orders of magnitude. The reformu-
lated model takes only 15–50 ms to predict a discharge curve in FORTRAN 
environment whereas the original model can take up to a few seconds to 
minutes depending on the solver, environment, and the computer.
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Figure 3 
Discharge curves for 1C and 0.5C rate.
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Parameter Estimation for Capacity Fade Prediction

The protocol that is commonly used in cycling a lithium-ion battery con-
sists of first charging at constant current then charging at constant potential  
until the potential reaches a uniform value across the intercalating parti-
cles, then the protocol follows discharging the battery at constant current or 
potential. The battery loses its capacity to hold and deliver the energy when 
the number of cycle increases. These losses are mainly due to the variations 
in the transport and kinetic parameters caused by the reduced pore volume 
in the porous electrodes.

In addition, researchers have observed a major loss in the discharge time 
period over which one can utilize the battery (Ramadass et al, 2004). This loss 
is an especially important prediction for batteries installed in remote appli-
cations like satellites, but is also important when using battery models to 
optimize operations. To enable such a level of model sophistication, a model 
that updates transport and kinetic parameters as a function of cycle number 
is developed. This information can be used to provide guidance to the devel-
opment of first-principles models for capacity fade that introduce additional 
reactions (Ramadass et al, 2004), models for SEI layer growth, etc.

Unknown parameters that were estimated are the solid-phase diffusion 
coefficient Dsn and the reaction rate constant kn in the negative electrode. 
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Solution phase concentration at different times for 1C rate at different interfaces.
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Bayesian estimation was used to estimate the model parameters from 
experimental data obtained using lithium-ion batteries from Quallion® 
LLC. Uncertainties in the model parameter estimates were quantified by 
three methods: (1) estimation of hyperellipsoidal regions using linearized 
statistics, (2) estimation of nonlinear uncertainty regions using F-statistics, 
and (3) estimation of probability distributions by application of Markov 
Chain Monte Carlo (MCMC) simulation (Hermanto et al, 2008; Tierney, 
1994). Methods 1 and 2, which are the most commonly applied, gave highly 
biased probability distributions in this application, whereas there is no sta-
tistical bias in method 3. Other advantages of method 3 include its explicit 
consideration of constraints and arbitrary non-Gaussian distributions for 
prior knowledge on the parameters, and that it exactly handles the full 
nonlinearity in the model equations. Method 3 requires many more simu-
lation runs than methods 1 and 2, which provides further motivation for 
the derivation of the low-order reformulated model. Figure 5 shows the 
probability density functions of two model parameters obtained by MCMC 
simulation, with statistically significant reductions in both the solid-phase 
diffusion coefficient Dsn and the reaction rate constant kn for the negative 
electrode. These model parameters reduced monotonically with cycle num-
ber, which is consistent with a monotonic decrease in the pore volume in 
the negative electrode.

3 4 5 6
0

2

4

6
× 1015

× 1011

Dsn (10–14 m2/s) Dsn (10–14 m2/s)

PD
F

Dsn at cycle 500

Kn at cycle 500 × 1012 Kn at cycle 1000

× 1015 Dsn at cycle 1000

2.5 3 3.5 4 4.5
0

5

10

PD
F

4 5 6 7 8
0

1

2

kn (10–11 mol/(mol/m3)1.5) kn (10–11 mol/(mol/m3)1.5)

PD
F

3.5 4 4.5
0

1

2

PD
F

Figure 5 
Bayesian estimation for the solid-phase diffusion coefficient Dsn and the reaction rate constant 
kn for the negative electrode at cycle 500 and 1000.
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The effect of the parameter uncertainties on the accuracy of the predictions 
of the lithium-ion battery model was then quantified by polynomial chaos 
expansions (Wiener, 1938). This approach avoids the high computational cost 
associated with applying the Monte Carlo method or parameter gridding to 
the simulation code by first computing a series expansion for the simulation 
model, followed by application of robustness analysis to the series expan-
sion. The very low computational cost of the series expansion enables the 
application of the Monte Carlo method, gridding the parameter space, or the 
application of norm-based analytical methods (Ma and Braatz, 2001; Nagy 
and Braatz, 2004; 2007). 95% prediction intervals computed for each cycle 
provided confidence that the model can be used for predictions and design 
(see Fig. 6).

A battery is no longer useful once its capacity becomes too low. Even 
for the same manufacturing line, the lifetime varies widely from battery 
to battery. It would be useful for a microprocessor to provide an estimate 
of the number of useful cycles remaining in the battery. We explored the 
use of the model to predict the remaining battery life based on voltage-
discharge curves measured in past cycles. To characterize the degradation 
in the model parameters, a power law was fit to the estimated parameter 
values from cycles 25 to 500 (see Figs. 7 and 8). Implicitly assuming that the 
changes in the parameter values are the result of the same mechanism in 
later cycles, the parameter values for the subsequent cycles were predicted 
using the power law expressions. The voltage-discharge curve predicted 
by this model was in very good agreement with the experimental data at 
cycle 1000 (see Fig. 9), indicating that the model was suitable for prediction 
of capacity fade.
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Figure 6 
Comparison of the experimental voltage-discharge curve with the model prediction with esti-
mated parameters for cycle 500. Each red dot is a data point, the blue line is the model predic-
tion, and the 95% predictive intervals were computed based on the parametric uncertainties 
reported in Fig. 5. Similar quality fits and prediction intervals occurred for the other cycles.
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Figure 7
Power law fit for the solid-phase diffusion coefficient in the negative electrode based on the 
estimated parameter value from the first 500 cycles.
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Figure 8 
Power law fit for the reaction rate constant for the negative electrode based on the estimated 
parameter value from the first 500 cycles.
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Figure 9 
Comparison of the experimental voltage-discharge curve with the model prediction using 
parameter values calculated from the power law fits in Figs. 7 and 8.
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The computation time required for parameter estimation using the refor-
mulated model was between 100 and 300 ms. Compare this to the minutes 
to hours required for the standard finite difference method directly applied 
to the battery model.

Optimal Design of Lithium-ion Batteries 

Prof. Newman and his group have applied macroscopic models to optimize 
the electrode thickness or porosity (Srinivasan and Newman, 2004). These 
studies have been performed by comparing the Ragone plots for different 
design parameters. A single curve in a Ragone plot may involve hundreds 
of simulations wherein the applied current is varied over a wide range of 
magnitude. Ragone plots for different configurations are obtained by chang-
ing the design parameters (e.g., thickness) one at a time, and by keeping the 
other parameters constant. This process of generating a Ragone plot is quite 
tedious and typically Ragone curves reported in the literature are not smooth 
because of computational constraints.

To our knowledge, the literature does not report the application of such first-
principles models to the global optimization of multiple battery design param-
eters. Also, batteries are typically designed only to optimize the performance 
at cycle one of the battery, whereas in practice most of the battery’s operation 
occurs under significantly degraded conditions. The reformulated model is suf-
ficiently computationally efficient to enable the simultaneous optimal design 
of multiple parameters over any number of cycles by including the model for 
capacity fade (Figs. 7 and 8). Further, the model can be used to quantify the 
effects of model uncertainties and variations in the design parameters on the 
battery performance. As an example of such robustness analysis, the utiliza-
tion averaged over 1000 cycles are reported in Fig. 10 for the battery design 
obtained by (1) simultaneous optimization of the applied current density (I) 
and thicknesses of the separator and the two electrodes (ls, ln, lp) for cycle 1, and 
(2) variations in these four design parameters. The battery design optimized 
for cycle 1 does not maximize the cycle-averaged utilization.

We are also investigating the optimal design of distributions of properties, 
which cannot be reasonably handled by one-at-a-time optimization. In par-
ticular, we are optimizing porosity distributions and particle size distribu-
tions across the electrode, in addition to the standard design parameters 
considered in Fig. 10. Figure 11 shows some sample results in which the linear 
porosity distribution is optimized across the cathode thickness to maximize 
the utilization of the electrodes. More than 3% improvement in utilization 
occurred by using spatially-varying porosity within the positive electrode. 
The oral presentation will include additional product design results.
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Figure 10 
Utilization averaged over cycle 25, 500, and 1000 for a 3-level 4-factor factorial design. The title 
of each plot indicates the deviation in the design variables I and ls from their values optimized 
for cycle 1. Circles, stars, and dots are for the ln value optimized for cycle 1 and ±20% of that 
value, respectively.
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Utilization of positive and negative electrodes with linearly varying porosity as
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K10451.indb   1002 5/5/09   3:55:58 PM

© 2010 by Taylor and Francis Group, LLC



Model Reformulation and Design of Lithium-ion Batteries 1003

Conclusions

This paper employs a systems engineering approach for the modeling and 
design of lithium-ion batteries. An efficient approach is presented to sim-
ulate the discharge behavior of lithium-ion battery models for galvanos-
tatic boundary conditions with improved computational efficiency using a 
polynomial representation. The approach is similar to Galerkin-collocation 
based on weighted residuals coupled with analytic solution of the alge-
braic equations and volume averaging for the variables of interest. The 
DAE nature and structure of the model is exploited to solve for some of 
the dependent variables analytically. The model reformulation method is 
demonstrated at low-to-moderate rates of discharge. The method should be 
valid and applicable to other engineering models with a DAE nature such 
as fuel cells and monolith reactors. Also, for the use of dynamic model in 
feedback control algorithms with microchips, computer memory (RAM) 
is likely to be a concern. The proposed reduction in the number of DAEs 
and states would also enable the implementation of more advanced robust 
controller algorithms.

The reformulated model was applied with robust Bayesian estimation to 
predict future capacity fade in lithium-ion batteries. Predictions were dem-
onstrated for the first 1000 cycles of a Quallion® LLC 250 mAh cell. The 
nonlinear nature of the models motivated the use of the MCMC approach 
to quantify the uncertainties in the parameter estimates. The reformulated 
model facilitates such a rigorous approach, as the MCMC approach requires 
many simulation runs to construct accurate distributions for the parameter 
estimates. The reformulated model should facilitate dynamic optimization 
for better operational strategies for improved energy efficiency and design 
for better electrode materials for improved performance.
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