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storage, military, mobile applications, and space. electrode (Cathode)
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secondary batteries and commercial batteries of up to Cu current g R M - Al current y .
75 Ah have been manufactured. Applications for collector a) PP | ({25 X g " cottector ~No need for Jacobian
_ : : PP : TN e »Uncertainty analysis — Markov Chain Monte Carlo method,
batteries range from Implantable cardiovascular Active Matertl AT i SAN b Active material nolynomial chaos expansions

defibrillators (ICDs) operating at 10 uA current to hybrid Lo 2 ) (LiMO,)
vehicles requiring pulses of 100 A.

Mathematical Modeling of Capacity Fade
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@ Loss during formation at the solid/electrolyte interface. @

Side reactions due. e 9vercharge in Cathode and Anode Reversible and irreversible Self Discharge due to
and Electrolyte oxidation. @

Side reactions and decomposition of additives added superfacial oxidation, etc. »Track the variations in kinetic and transport parameters with
for overcharge protection due to thermal runaway, etc. @ Interfacial film formation. cycC le number
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Nonlinear Estimation Results (Jacobian based)

Introduction

Lithium-ion battery, chemistry and reactions - . 2.503E-00 || k» = 1.207E-09

CYCLE 25 CYCLE 1 Capacity Fade, k, and D,,

D. = 3.455E-13 [ V. Ramadesigan+, ECST, 2009; ECS (2009, submitted)
D.,= 1.415E-13 sn— ©- -

[ V. Ramadesigan+, ECST, 2009; ECS (2009, submitted) ]

OCycle 0 abe

OCycle 25
OCycle 100 CYCLE 200
Cycle 200 D.,= 6.755E-14

“Cycle 300 k,=2.035E-10
©Cycle 400
OCycle 500 CYCLE 100

A Dsn
—Power Law Fit (Kn)

——Power Law Fit (Dsn)

Voltage (V)
Voltage, (V)

Nonaqueous Liquid Anode
Cathode Electrolyte (Lixhost)
(LisHost)

+ Experimental data for cycle 600
== MModel predicted discharge data with D_ and k,

Dyn = 4.0E-13 N=4E01 estimated from Capacity fade expression for cycle 600

Cyele 600 D, .= 8.267E-14
.;_:_:Cycle 700 kn =1.213E-09
OCycle 800
OCycle 900
OCycle 1000

[ V. Ramadesigan+, ECST, 2009; ECS (2009, submitted),| k, = 1.4E-07 N-1-2E+00

4000 6000 8000 10000
Time, (S)

400 600
Cycle Number, N

Jacobian based parameter estimation Capacity fade analysis for Quallion cells Capacity fade prediction for Quallion data

Bayesian Estimation Results
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» Guided by numerical and experimental experiences. kn (10-1 molimol/m3) %) kn (107 molimolim®) 18y T !
* Yields models that are accurate and efficient (CPU time < 100 milliseconds). | . s | . e : ' ' _ : : ' ' ' _ ' 1t
( ) Bayesian based parameter estimation Bayesian estimation-Capacity fade analysis Bayesian estimation-Capacity fade prediction

Transport Models Empirical-circuit Models Stochastic Models
10 PDEs (4800 DAESs). Real time prediction of process Behavior in nanoscale,
Predicts process and internal | variables. Fails ( or wrong microscale should be
variables accurately. prediction) at many operating coupled with transport
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