Identification of Dominant Mechanisms for Capacity Fade of Lithium-Ion Batteries Nancy A. Burns^{*}, Ruthvik Basavaraj^{**}, Venkatasailanathan Ramadesigan^{***}, Folarin Latinwo^{**}, Ravi N. Methekar^{***}, Richard D. Braatz**, and Venkat Subramanian*** *Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN Washington ILLINOIS ** Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL University in St.Louis *** Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO Motivation **Capacity Fade Mechanisms Gauss Newton Method** Mechanisms of Capacity Fade >Based on Jacobian calculation Composite negative Composite positive >Iterative procedure electrode (Cathode) electrode (Anode) Separator / >Good initial guess is needed

batteries range vehicles requiring pulses of 100 A.

National Science Foundation