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ABSTRACT 

Nonlinear differential-algebraic equations (DAE) are typically solved using implicit stiff solvers based on 

backward difference formula or RADAU formula, requiring a Newton-Raphson approach for the 

nonlinear equations or using Rosenbrock methods specifically designed for DAEs. Consistent initial 

conditions are essential for determining numeric solutions for systems of DAEs. Very few systems of 

DAEs can be solved using explicit ODE solvers. This paper applies a single-step approach to system 

initialization and simulation allowing for systems of DAEs to be solved using explicit (and linearly 

implicit) ODE solvers without a priori knowledge of the exact initial conditions for the algebraic 

variables. Along with using a combined process for initialization and simulation, many physical systems 

represented through large systems of DAEs can be solved in a more robust and efficient manner without 

the need for nonlinear solvers. The proposed approach extends the usability of explicit ODE solvers and 

removes the requirement of Newton-Raphson type iteration.  
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1. INTRODUCTION 

When modeling physical phenomena, the representative system of equations often includes a 

combination of ordinary differential equations (ODEs), partial differential equations (PDEs), and 

algebraic equations (AEs). These phenomena often use PDEs as governing equations of the system that 

vary in both space and time. When discretizing these PDEs spatially, the system becomes a set of ODEs 

and AEs. The resulting set of equations is known as a system of differential algebraic equations (DAEs).  

In physical systems, ODEs will typically represent most of the governing equations, while AEs act as 

constraints applied to the system ensuring that the solution accurately reflects the physical possibilities 

(e.g. conservation laws, boundary conditions, etc.). Systems of DAEs have been used to model real-world 

environments across a range of problems including large industrial processes (Pantelides et al., 1988, Li et 

al., 2012),  predator-prey eco-systems (Li and Petzold, 2000), electric power systems (Praprost and 

Loparo, 1996, Susuki et al., 2008), and electrochemical environments. Computing solutions for systems 

of DAEs is important across a variety of fields. These systems combine algebraic states that act as 

constraints (nonlinear) on a set of ODEs, making the system more difficult to solve (Shampine et al., 

1999). 

Many different solvers are available for computing systems of DAEs (Hindmarsh, 1980, Petzold, 

1982, Berzins et al., 1989, VanKeken et al., 1995, Hairer and Wanner, 1996, de Swart et al., 1998, 

Wolfram, 2014, Maplesoft, 2015, Mathworks, 2015). More information on the method and solution 

procedure of several ODE/DAE solvers, are provided elsewhere (Cash, 2003, Cellier and Kofman, 2006, 

Methekar et al., 2011). Solvers based on backward difference formula (DASKR/DASSL/GEAR) (Brown 

et al., 1994, Brown et al., 1998) or implicit Runge-Kutta methods (RADAU IIA) (Hairer and Wanner, 

1999) are efficient in solving nonlinear DAEs. Other approaches include semi-implicit methods (such as 

the BESIRK solver (Schwalbe et al., 1996) based on semi-implicit RK) and Rosenbrock methods 

(Michelsen, 1977, Taylor, 1999). However, semi-implicit methods still require consistent initial 

conditions (ICs) for algebraic variables. As of today, Maple
TM

, (Maplesoft, 2015) a symbolic 

programming language, solves nonlinear DAEs by either eliminating algebraic variables (when possible) 
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or by differentiating the algebraic constraints and inverting the overall system to arrive at an explicit ODE 

of the form ( )
d

dt


y
f y . In addition, many system solvers like DYMOLA (Dassault Systems, 2015) 

convert DAEs to ODEs by differentiation and then solve the resulting ODE system using DASSL 

(Petzold, 1982, Cellier and Kofman, 2006), a solver that uses Newton-Raphson type iteration at each time 

step. In this paper, we show how explicit ODE solvers (such as Maple’s rkf45 (Maplesoft, 2015), a 

fourth-fifth order Runge-Kutta solver) can be used to solve nonlinear DAEs starting from inconsistent 

algebraic states. In addition, for stiff DAE systems, the method proposed in this paper is applied to 

Rosenbrock stiff solver typically used for stiff ODEs. 

For a system of DAEs, a set of consistent ICs must be given in order to solve the system with 

standard solvers. Some solvers contain initialization routines that help to calculate consistent ICs from 

starting guesses. These routines add computational time and often require the additional use of solvers to 

obtain the ICs used by the primary DAE solver. By having a system that includes both ODEs and AEs, 

not all ICs offer a possible solution and inconsistent ICs will cause solvers to fail in many instances. 

Knowledge of the governing equation and the underlying physics of the system can help in choosing 

consistent ICs. 

In many cases though, consistent ICs for all of the variables are not known a priori and the effects of 

operating conditions and system parameters like rate constants or diffusion coefficients may also be 

unknown. Even small deviations from consistent ICs will cause the solver to fail (using standard solvers) 

(Methekar et al., 2011). Leimkuhler et al. (1991) outlines the problem of obtaining consistent initial 

conditions for DAEs and shows examples of different initialization techniques.  

The most basic IC estimates use non-physical approximations such as setting differential variable 

gradients to zero initially, creating solver inefficiencies for the few cases they may be able to solve 

(Leimkuhler et al., 1991). An approach where the ICs of differential and algebraic variables were 

calculated separately was proposed by Dew and Walsh (1981). Petzold (1982) outlined a method using an 

Euler backward step with a very small step size in order to obtain values very near the initial time. 
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Berzins et al. (1989) combined both methods and expanded the Euler steps to try to provide a more 

flexible method. Lamour and Mazzia (2009) outlined a method that approximates the system’s derivatives 

and can be used for systems of DAEs up to index-3. However, the method has some restrictions caused by 

the inner differentiations required for higher indexed systems. An optimization approach for finding ICs 

through successive linear programming has been proposed by Gopal and Biegler (1998). While studies on 

general DAE solution methods, especially for higher order systems, remains an active area of research, 

some methods have focused on obtaining solutions for more specific cases rather than general sets of 

DAEs. Campbell proposed a Taylor series approximation for linear time-varying cases (Leimkuhler et al., 

1991). Other methods have focused on higher order DAEs. A Laplace transform method approach has 

been used to find initial values by Reissig et al. (2002). A perturbation approach was applied over all 

variables by Garcia to solve index-3 DAE systems (Garcia, 2000). This approach was modified by 

Methekar et al. (2011) to use a perturbation only on the required algebraic variables allowing for faster 

initialization of index-1 DAEs.  

The approach outlined in this paper builds upon the two-step process of 1) Perturbation initialization 

as outlined in Methekar et al. (2011) and 2) DAE simulation based on the consistent ICs obtained from 

step 1 using explicit (or linearly implicit) ODE solvers. The proposed approach combines the two steps of 

initialization and by using a switch function (hyperbolic tangent function) to constrain the differential 

variables during the time when the perturbation approach finds consistent ICs for the algebraic variables. 

This approach allows the initialization and simulation to be done continuously with a single solver. The 

proposed single-step approach increases the robustness of the solution method by allowing for larger 

perturbation values to be applied and increases the computational speed of the solvers while enabling 

explicit ODE solvers to solve nonlinear DAEs. The proposed approach does not require the use of 

nonlinear solvers which are common for many initialization subroutines used to find consistent ICs for 

algebraic variables that arise from nonlinear AEs. The method for applying a perturbation to the algebraic 

variables and the switch function to the differential variables is shown in the next section and examples 

using the method are outlined in the following sections. Included are examples outlining stiff 
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electrochemical systems and an example is included of how the proposed approach can be used to solve 

implicit ODE systems after converting them into DAE form. Additionally, Appendix A includes the code 

for solving Example 1 for three different languages: Maple, MATLAB
®
, and FORTRAN. 

2. METHOD 

A general DAE system (shown in semi-explicit form) is considered 

 
( , , )

d
t

dt


y
f y z

 (2.1) 

 
0 ( , , )t g y z

 (2.2) 

where y are the differential variables and z are the algebraic variables. Function g is differentiable and 

dg/dt is non-singular as the model considered is an index-1 DAE. The system of DAEs shown above 

often arises from combining equations governing physical phenomena with constraints or discretizing a 

PDE’s spatial variables (while keeping time continuous as shown in Examples 4 and 5). In order to solve 

the system of DAEs, ICs for all the variables must be given as 

    0 0    (0) ;    (0)t = 0;  y y z z  (2.3) 

However, exact values for consistent z0 are not always readily available. Under normal DAE solvers 

(without initialization routines), ICs must be consistent with the system of DAEs or a solution cannot be 

obtained. Variables present in the AEs are limited to sets that directly satisfy the algebraic limits. A 

system of only ODEs will often offer a wider range of consistent ICs because the equations govern the 

derivatives (change) of the system rather than the variable values. Combining AEs to an ODE system 

increases the stiffness of the system and necessitates a priori knowledge of the exact ICs of the system. In 

order to loosen the restriction of consistency on the algebraic variables, a perturbation approach is used as 

outlined in Methekar et al. (2011) A perturbation parameter, ε, is introduced such that 

 
0

( ) lim ( ) 0t t





  g g   (2.4) 

and when t=t+ε, the AEs represented in g can be shown as 

  ( ) 0t  g  
(2.5)
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 Using a Taylor series expansion, we rearrange the AEs to the form 

 

2( )
( ) ( )

d t
t O

dt
   

g
g

 (2.6) 

More details on the perturbation approach can be found in Methekar et al. (2011) Once in perturbed form, 

the AEs can be solved first (without any ODEs, but using the given ICs for the differential variables) to 

find consistent initial values for all algebraic variables. The algebraic variable values found from the 

perturbation approach will be consistent with the given differential variable ICs and the values can be 

used with the initial system of DAEs as ICs. When solving the system of DAEs, the set is solved in its 

initial form (in the example above, semi-explicit form), and the consistent ICs from initialization are 

provided. Using this approach provides an initialization routine that produces consistent ICs to be fed into 

the solver along with the original system. The initialization routine allows for a wider range of initial 

guesses to be used for the algebraic variables of the system. The perturbation value applied to the system 

must be small enough so that the converged value of the algebraic variables will be consistent. Larger 

perturbation values may not converge to consistent ICs. In addition, Maple cannot as of today solve 

systems of DAEs without first converting the system to ODEs, so even having consistent ICs for 

algebraic variables won’t help in solving nonlinear DAEs. 

The above procedure involves two steps: 1) initialization using a solver for obtaining the consistent 

ICs of the algebraic variables, and 2) the solution of the DAE system calling an additional solver and 

using the consistent ICs obtained from step 1. Instead of taking a two-step approach to initialization of 

algebraic variables and solving the complete system, in the proposed approach, a switch function is 

proposed and used to hold the differential variables static (constant) while the algebraic variables find 

consistent values using a perturbation approach and then the differential variables are unmasked and the 

system simulation begins in a continuous manner using the same solver. This single-step approach 

combines the initialization of the algebraic variables into the solution of the system, offering more robust 

solutions while reducing system stiffness by relaxing the requirement of the perturbation value. Note that 

in the proposed approach, the algebraic equations are converted to a perturbed ODE system and therefore 

IN PRESS Computers and Chemical Engineering - Page 7 of 45.



many explicit solvers can be directly used (for example, Maple can handle the perturbed system as an 

ODE much better than the original DAE). In addition, Maple provides an option to call the ODE solver in 

compiled form which can be done in a single step minimizing the RAM requirement and the avoiding 

second calls to dsolve (Maple’s inbuilt ODE solver). When running optimal control based on control 

vector parameterization or estimating parameters from experimental data, it is convenient and efficient to 

call a single dsolve procedure as opposed to two separate functional calls. Same behavior is observed in 

MATLAB as well. 

The hyperbolic tangent (switch) function applied to the ODEs is formulated as 

   
1

1 tanh ( )
2

H jT q t t    
(2.7)

 

where q is a weighting factor determining the discreteness of the function, and tj is the time allowed for 

the perturbation approach to find consistent algebraic ICs. The value of tj will need to be scaled 

depending on the value of ε used for the perturbation. Subtracting tj from the total solution time provides 

the original (simulation) time variable. The switch function is applied to the ODEs as 

 
H

d
T

dt


y
f  

(2.8)
 

The switch function allows for the derivative of the differential variables to be set to zero for the 

duration of the initialization of the algebraic variables and be set to the function f for the simulation after 

the initialization period. The adaptive solvers used on the system will find time steps as needed from time 

t = 0 to time = tj and will find the consistent IC for z. The ability of the switch function to approximate a 

discrete jump with a continuous function makes this approach useful for standard solvers. The 

representation of discrete events as continuous functions has been shown to be effective in simulation and 

the switch function approach has even been used to approximate discontinuities as continuous functions 

(Boovaragavan et al., 2010). The continuous nature of the switch function also allows for minor 

corrections of the converged ICs at the end of the initialization time (beginning of the actual simulation 

time). This correction of the converged ICs allow for less restrictive perturbation values to be used in this 
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approach when compared to the two-step approach. In our experience, the proposed approach also saves a 

considerable amount of time taken in stopping the solver after initialization, substituting the consistent 

initial values, and starting the ODE solver again for simulating the entire system of DAEs. Additionally, 

this method can reduce the time required to properly format the set of equations for solving. With this 

method, the system of DAEs (Eqs. (2.1) & (2.2)) can be restructured as a single-step ODE system shown 

by: 

 
H

d
T

dt


y
f  (2.9) 

 
d

-
dt

 
g

g  

(2.10)

 

A schematic qualitatively describing the stages of the single-step approach is shown in Figure 1. 

Often the perturbed form of the AE (Eq. (2.10)) remains in implicit form because the left hand side will 

contain differential variables, y, or their derivatives, 
d

dt

y
. This form is acceptable for small systems, but 

may cause solvers to fail for large sets. In particular, Maple converts all the ODEs of the form 

d

dt


y
M f  to 

d

dt


y
f  for all of its solver options if the implicit=true option is not mentioned. Only 

when M is a constant, the stiff=true option in Maple can be used. The stiff=true option is available for 

both explicit and linearly implicit ODE solvers based on Rosenbrock methods in Maple for ODEs only 

when M is a constant.  In order to make the system explicit or linearly implicit, first the derivatives of the 

differential variable must be removed by substituting the original ODE equations (Eq. (2.1)). Then ICs are 

substituted for the differential variables that remain. By converting to this form, the single-step process 

will allow for explicit solvers to be used for both the initialization and solution of the system of DAEs.  

One can write an equation for the explicit form as  

 

0 0 0, , 

 
dy

y y z z f
dt

d

dt


  

 
g

g   (2.11) 

Where Eq. (2.11) can replace Eq. (2.10) for the single-step solution.  
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Note that Eqs. (2.9), (2.10), & (2.11) are purely ODEs and can be solved using explicit solvers in time 

or linearly implicit solvers in time. For example, in Maple, the linearly implicit Rosenbrock stiff ODE 

solver is very good at handling these systems. The proposed approach is shown to be effective in solving 

systems of DAEs through 5 examples in the next section. 

3. RESULTS AND DISCUSSION: THE SINGLE STEP APPROACH APPLIED 

 

Example 1: Index-1 DAE (1Algebraic and 1 Differential variable) 

Consider the system below where y is the differential variable and z is the algebraic variable: 

 

2( )
( ) ( )

dy t
y t z t

dt
  

 (3.1) 

  cos ( ) ( ) 0y t z t   (3.2) 

For the example here, we will set the differential variable IC at  

 
(0) 0.25y 

 (3.3) 

Standard DAE solvers would need the consistent IC for z,  

 
2(0) cos(0.25) 0.938791z  

 (3.4) 

Standard solver packages might fail when the exact algebraic IC is not given (if the solver did not 

include initialization routines). Application of the single-step proposed approach is illustrated below. 

A switch function is created shown as 

 
  

1
1 tanh 1000( 1)

2
HT t  

 (3.5) 

This function is applied to the right hand side of the differential equation so that 

 

   2( ) 1 1
( ) ( ) tanh 1000( 1)

2 2

dy t
y t z t t

dt

 
     

   (3.6) 

And a perturbation will be applied to the algebraic equation such that 

IN PRESS Computers and Chemical Engineering - Page 10 of 45.



    
1 ( )( ) ( )

sin ( ) cos ( ) ( )
2 ( )

z tdy t dz t
y t y t z t

dt z t dt

  

       

 (3.7) 

The system of Eqs. (3.6) & (3.7) can now be solved with an explicit (or linearly implicit) ODE solver. 

The IC of the algebraic variable does not have to be known a priori, but rather the combination of the 

switch function and perturbation will allow the IC for the algebraic variable to reach its consistent value 

during the first second of the solution because TH will be 0, holding the differential variable constant 

during this initialization. After one second, TH will switch to the value one (see Figure 2), and the solution 

of the complete system will begin based on the initialized conditions. A reasonable initial guess must still 

be provided for the starting value of z. The time of initialization must be removed from the solution time 

in order to achieve the real simulation time of the system. In the example cases, the initialization time is 

shown as negative time in the figures and the real simulation time of the problem is shown as positive. 

Smaller values of ε will increase the accuracy of the converged value ensuring that the converged 

value can be used as a consistent IC, but a smaller ε will also increase the stiffness of the system. 

Applying larger ε will reduce the stiffness, but will also decrease the accuracy of the converged value. 

When ε becomes large enough, the converged value will no longer work as a consistent IC for the system 

of DAEs. The single step approach allows for a correction to the converged value at the end of 

initialization because of the continuous nature of the switch function. As the ODE variables begin to be 

solved, the converged value of the algebraic variables (as well as the IC for the differential variables) can 

correct to consistent values. This correction will introduce a small amount of error, but allows for a much 

more robust approach to solving by increasing the allowable converged value for the algebraic variables 

which will still solve the system. 

For Example 1, the proposed approach with the switch function will solve the system with less than 

0.001 error for all points after 0.1s of simulation time for converged values between

0.9377018 (0) 0.9398806z  . Even though the range of allowable converged values is small it 

greatly increases the robustness of the solver and allows for a much wider range of ε. These ranges are 
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dependent on the discreteness of the switch function used (q=1000 for the range above). Also, these 

ranges are only the allowable range of converged solutions and the allowable range of initial guesses will 

be much larger (see Figure 4). 

For Example 1, if a starting guess of z(0)=0.8 was applied, the normal perturbation solution would 

require no larger than 
61.1 10    in order to obtain a solution for initialization that is consistent for 

the system of DAEs. However, the single-step approach can solve the same system with 0.1   (or 

larger). Figure 3 shows a plot for the original two-step perturbation and simulation approach and the 

single-step solution. In the example discussed here, q is taken as 1000. The value of q will affect the 

discreteness of the switch function and can have an effect on the increased robustness. The proposed 

approach can be solved for many different initial guesses of the algebraic variables. Figure 4 shows the 

initialization period for 8 different initial algebraic guesses where 0.1   and 1jt   for all cases. All of 

the guesses converge to the consistent IC of z(0)=0.938 and accurately solve the system of DAEs. 

The perturbation value does affect the accuracy and convergence of the initialization. Smaller values 

of ε will allow the initialization to converge over shorter simulation time and when holding tj constant, 

larger values of ε may obtain an initialization that is not accurate enough to satisfy the consistency 

condition. Figure 5 shows the initialization of Example 1 for several different perturbation values (ε=0.1, 

0.05, 0.01, 0.001). 

 

Example 2: Wu and White Problem  

An example of a two equation system representing a thin film nickel hydroxide electrode described in 

Wu and White (2001) is studied during the charging process. This system can cause difficultly in 

determining consistent ICs. The system is represented by the equations (Methekar et al., 2011) 

 

 

1( ) jV dy t

W dt F




 (3.8) 
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 1 2 0appj j i  
 (3.9) 

Where, 

 

1 1
1 ,1

( ( ) ) ( ( ) )
2(1 ( ))exp 2 ( )exp

2 2
o

z t F z t F
j i y t y t

RT RT

       
       

      (3.10) 

 

2 2
2 ,2

( ( ) ) ( ( ) )
exp expo

z t F z t F
j i

RT RT

       
      

      (3.11) 

The parameters of the system are given in Table 1. The differential variable y represents the nickel 

hydroxide mole fraction and the algebraic variable z represents the potential difference at the solid liquid 

interface. 

In a discharged state, the mole fraction of the nickel hydroxide is estimated to be 

 
(0) 0.05y 

 (3.12) 

Under the algebraic constraint, the consistent IC for the potential must be  

 
(0) 0.350236z 

 (3.13) 

(Several imaginary roots are solutions to the algebraic constraint, but these are non-physical solutions, so 

they are not useful for the electrode equations shown here). When deviating from the consistent ICs, 

many initialization routines and solvers fail to obtain a solution. Table 2 shows the range of possible ICs 

for the algebraic variable that provide a solution for different solvers and approaches including the 

proposed single-step approach. Under normal conditions (no initialization), these solvers require initial 

guesses that are very close to the consistent values. The proposed single-step approach greatly widens the 

possible range of ICs. The solution for a full charge of the electrode is shown in Figure 6 (with an initial 

guess z(0)=0.7). For systems where the ICs are not easily available or obvious from the physical system, 

the expanded range of possible initial guesses is important for obtaining a solution. As mentioned before a 

compiled single procedure can be obtained for a nonlinear DAE system with this approach just like a 

procedure for ODEs. This helps improve the efficiency and robustness for inverse optimization problems 

(optimal control and parameter/state estimation). 
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Example 3: Implicit ODE converted to DAE solved with Explicit Solver 

The proposed approach can also be used to solve implicit ODEs. Consider the implicit ODE: 

 

 
2

( ) ( ) ( )
( ) 1 ( ) cos

dy t dy t dy t
y t y t

dt dt dt

     
        

       (3.14) 

This problem cannot be directly solved using explicit solvers. When attempted, Maple states that IC for 

dy/dt is not known or the system cannot be converted to explicit ODE form. However, including a 

substitution 

 
( )

( )
dy t

z t
dt

  (3.15) 

converts Eq. (3.14) into: 

    2( ) ( ) ( ) 1 ( ) cos ( )z t z t y t y t z t     (3.16). 

This adds a variable z, allowing the proposed approach to be used. The proposed approach is applied to 

Eq. (3.15) and  (3.16) leading to: 

 

   

   2

( ) ( ) ( ) ( ) ( )
2 ( ) ( ) 1 ( ) sin ( )

( ) ( ) ( ) 1 ( ) cos ( )

dz t dz t dy t dy t dz t
z t y t z t z t

dt dt dt dt dt

z t z t y t y t z t


 

      
 

      (3.17) 

  
( ) 1 1

( ) tanh 1000( 1)
2 2

dy t
z t t

dt

 
   

 
 (3.18) 

where q=1000 and tj=1 for the switch function. The results for both initialization and simulation are 

shown in Figure 7 for the system solved using 0.1  with ICs of: 

 
(0) 0y  (0) 0z 

 (3.19)
 

The converged value for z(0) from the initialization portion of the solver is 0.550.  

 

Example 4: Partial Differential Equation Discretized to DAEs 
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When PDEs are discretized they can create a system of DAEs. Many of these systems consist of 

variables with explicit time derivatives (like concentration) and static variables (like potential which may 

not consist of time derivatives, but still changes with time because other variables in the system change 

with time). Consider the following set of PDEs: 

  
2

2
1

y y
y z

t x

 
  

   (3.20)
 

    
2

2

2
1 exp

z
y z

x


  

  (3.21)
 

With the boundary conditions: 

 
0

0
x

y

x 





   

1
1

x
y




 (3.22)
 

 0

0
x

z

x 





   

1
0

x
z




 (3.23)
 

Though ∂z/∂t is not present in the system, z changes with time as y changes with time. The model can be 

solved using numerical method of lines (White, 2010) which will discretize the spatial derivatives over a 

series of node points between the system’s boundaries. When discretizing for the spatial variable the 

system becomes:  

    1 12

1
2 1i

i i i i i

dy
y y y y z

dt h
       (3.24) 

      2

1 12

1
2 1 expi i i i iz z z y z

h
       (3.25) 

where h is the length between node points. And the boundary conditions become: 

  0 1 2

1
3 4 0

2
y y y

h
  

   1 1Ny  
 (3.26)
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  0 1 2

1
3 4 0

2
z z z

h
  

   1 0Nz  
 (3.27)

 

where N is the number of interior node points of the system. Converting to the proposed approach the 

system equations become: 

      1 12

1 1 1
2 1 tanh 1000( 1)

2 2

i
i i i i i

dy
y y y y z t

dt h
 

   
        
   

 (3.28) 

 

 

     

21 1

2

2

1 12

2 2 exp( ) 1 exp( )

1
1 exp 2

i i i i i
i i i i

i i i i i

dz dz dz dy dz
y z y z

h dt dt dt dt dt

y z z z z
h

  

 

  
       

 

     

 (3.29) 

And the boundary equations are: 

  0 1 2
0 1 2

1
3 4 3 4

2 2

dy dy dy
y y y

h dt dt dt h

  
     

 
   1

1 1N
N

dy
y

dt
 

    (3.30) 

  0 1 2
0 1 2

1
3 4 3 4

2 2

dz dz dz
z z z

h dt dt dt h

  
     

 
   1

1
N

N

dz
z

dt
 

   (3.31) 

For standard solvers the system cannot be solved for a large number N using explicit solvers (i.e., one 

cannot convert this system of DAEs to explicit ODEs of the form dy/dt = f. Maple’s dsolve, even with 

consistent ICs (yi(0)=1 and zi(0)=0), cannot solve the system for N greater than 5. Maple aims to convert 

the DAE system to an explicit ODE system of the form dy/dt =f and fails for larger values of N. However 

using the single step proposed approach loosens the restrictions on the number of interior node points and 

increases the solving speed in Maple without having to use solvers involving Newton type iterations. 

Larger values of N may be required for higher accuracy and better convergence. Figure 8 shows the value 

of y at x=0, 1/3, 2/3, and 1 for N=2 and N=11 with ε=1x10
-5

). The values at N=11 have converged to more 

accurate values, especially for values closer to x=0. Consistent ICs (yi(0)=1 and zi(0)=0) were used for 

Figure 8. The proposed approach can use the standard Maple dsolve approach to solve for more internal 

node points, without having to use direct DAE solvers that use Newton-Raphson type iterations. Even at 
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lower number of node points the proposed approach is faster than standard simulation techniques as it 

provides Maple with an approximate ODE that it can solve directly. At N=5 the proposed approach solves 

in 159ms using Maple dsolve, over an order of magnitude faster than the standard techniques inbuilt in 

Maple. 

 

Example 5: Finite Difference Single Particle Lithium-ion Battery Model 

Even when discretizing systems of PDEs that contain time derivatives in all the governing equations, 

the boundary conditions can yield algebraic equations. Our last example shows this case through a 

lithium-ion battery system. The single particle model (SPM) is used to describe the electrochemistry 

occurring in an intercalation based secondary battery (Santhanagopalan et al., 2006, Ramadesigan et al., 

2012). The SPM has been used to model battery cycling and is a good model for batteries with thin 

electrodes and low charge and discharge rates (Pinson and Bazant, 2013, Northrop et al., 2014). The 

model tracks the diffusion of lithium inside the electrode particles of lithium-ion batteries governed by 

Fick’s second law of diffusion: 

 

2

2

1
  ,i i

i

c c
r D i p n

t r r r

   
  

     (3.32) 

With boundary conditions: 

 
0

0
r

c

r 





    

i

i i

r R i

c j

r D


 


 (3.33) 

Where 

 
0.5 0.5 0.5
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i i e i i surf i surf

i i

i F U
j k c c c c

a l F RT

   
     

 
 (3.34) 

The parameters for the system are given in Table 3. The model can be solved using numerical method 

of lines which will discretize the spatial derivatives over a series of node points, N, within the particle, 

while the time derivative will remain. This discretization will create a DAE system with 2N differential 
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equations and 4 algebraic equations (the boundary conditions). The system can be solved for the 

concentration of lithium at every node point in the electrodes and then the electrode potentials, Φ, can be 

determined from the electrode surface concentrations. In a discharged state the initial concentration for 

lithium throughout the electrodes will be: 

 (0) 305.55pc  (0) 49503.11nc   
(3.35) 

 

with units of mol/m
3
.   

This model system written in finite difference form (using second order central difference approach) 

and applying the single-step approach becomes 

      , 2 2 2

, 1 , 1 ,2 2 2

1 1
2 tanh 1000( 1)

2 2

i j i
i j i j i j

i

dc D
c j j c j j j c t

dt j h R
 

            
 (3.36) 

With boundary conditions converted using second order 3 point forward and backward differences as  

 
,1 ,2 ,0

,1 ,2 ,04 3 4 3
2

i i i

i i i

dc dc dc
c c c

h dt dt dt

  
     

 
 (3.37) 

 
, , 1 , 1

, , 1 , 14 3 4 3
2

i N i N i N i
i N i N i N

i

dc dc dc j
c c c

h dt dt dt D

  

 

 
      

 
 (3.38) 

Results for the concentration values (five internal node points) are shown in Figure 9. Using the 

Rosenbrock stiff solver in Maple,  the system can be solved for a complete 1C rate charge with up to 58 

internal node points when not applying the proposed approach before the solver fails due to memory 

constraints. Note that Rosenbrock methods for DAE require additional constraints to satisfy the order 

requirement (Schneider, 1991, Hairer and Wanner, 1996). By using the proposed single-step approach, 

the same system under the same memory constraints can be solved for over 2,500 internal node points. 

The proposed approach reduces the computational burden on the solver and allows for larger systems to 

be solved thereby facilitating more accurate results. Table 4 shows the solving speed for simulating the 

lithium concentration throughout the electrode particles for a range of node points. The ICs for both cases 
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were given as shown in Eq. (3.35). The switch function was applied with tj=1 and q=1000 (same as 

previous examples) and the perturbation value was 
51 10   . The system was solved with a 

Rosenbrock solver under both the standard FD scheme and the proposed approach. The computational 

savings from the proposed approach allow larger systems to be solved. For a SPM with 50 internal node 

points (resulting in a system of 4 AEs and 100 ODEs) the proposed approach reduced computational time 

by two orders of magnitude. 

 

4. DISCUSSION 

The single step initialization and simulation approach has been tested on other electrochemically 

based battery models. The proposed approach was used on the porous electrode pseudo two dimensional 

model outlined in Northrop et al.(Northrop et al., 2011). For one complete constant power charge, a 

collocation of 15,6,15 (resulting in 123 AEs and 92 ODEs) was solved using 
41 10   . The porous 

electrode pseudo two dimensional model and single-step approach was also used to solve dynamic 

discharging of a battery occurring from electric vehicle driving (Lawder et al., 2014). The dynamic 

current increased system stiffness causing other solvers to fail, especially when solving over long times 

and multiple cycles, but the single-step approach was able to overcome the continuously changing input 

current values. 

Note that the method described should not be necessarily viewed as better or more robust compared 

to DASKR/IDA/DASSL/GEAR or RADAU. However, the proposed approach enables explicit solvers to 

handle nonlinear DAEs. As of today, Maple does not have a nonlinear DAE solver (all of its DAE solvers 

convert DAEs to explicit ODEs before solving). Similar situations are seen in large scale system 

simulators (DYMOLA). The proposed approach provides an iteration free alternative for solving 

nonlinear DAEs without knowing consistent initial conditions for the algebraic variable. 

Additionally, the proposed approach has been used to solve index-2 systems of DAEs in some cases. 

Index-2 systems of DAEs can be approached by differentiating the perturbed AEs twice in order to 
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provide a system in which the perturbed equation is a function of the algebraic variable. Future work will 

include assessing the strength of extending the proposed single-step approach to index-2 systems of 

DAEs generally. 

 The proposed approach was tested under different numerical schemes. Table 5 give a summary of 

different numerical methods built into Maple and MATLAB as well as a FORTRAN solver that were 

used to solve Example 1 under the proposed approach. RODAS, a Rosenbrock 4
th
 order L stable method, 

was used in the FORTRAN code and the driver file is provided in Appendix A. This version of the 

Rosenbrock method can handle M matrices more efficiently (there is no need to substitute the ODE 

derivatives in the lhs). Note that Table 5 provides solvers that perform Newton iterations for solving 

nonlinear ODEs as well (MEBDFI, LSODE, ode15s) for completion’s sake. 
 

 

5. CONCLUSIONS 

A new method is proposed to enable explicit (and linear implicit) ODE solvers to solve nonlinear 

DAEs. This method makes use of a switch function for the ODEs and combines both the initialization and 

simulation for systems of DAEs. The single-step approach decreases stiffness for initialization when 

compared to the two step perturbation initialization and system solving. In addition, the single-step 

method reduced the strict requirement on required initial guesses for algebraic ICs when compared to 

standard solvers, allowing consistency to be met under more cases. The continuous nature of the switch 

function allows for correction of inconsistent converged ICs that occurs under large perturbation values. 

This extension of allowable consistent converged ICs helps to expand the robustness of the single-step 

method. This single-step approach can be applied when a system of DAEs face difficulty with 

initialization under standard solvers without having to call a separate solver for initialization purposes 

only. Examples show the approach being applied in mathematical and physically representative situations. 

The approach has been tested for large, physically representative systems and has decreased the 

computational time required to study these systems. Importantly, the proposed approach provides an 

IN PRESS Computers and Chemical Engineering - Page 20 of 45.



iteration free alternative to stiff solvers like DASKR and RADAU for solving DAEs when consistent 

initial conditions are unknown. 
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CAPTIONS 

Table 1: Parameters for Nickel Hydroxide Electrode. 

Table 2: Comparison of working ranges of initial algebraic guess for Example 2 using different solvers. 

The Maple dsolve approach uses Maple’s rkf45 method. (Lawerence Berkeley National Lab, 

2014, Maplesoft, 2015, Mathworks, 2015, Mathworks, 2015).  

Table 3: Parameters for SPM. 

Table 4: Computational time for solving concentration profiles in Example 5 using Maple’s dsolve. 

Standard finite difference fails to solve SPM beyond N=50. 

Table 5: List of methods used to solve the proposed approach.  

Figure 1: Diagram of the proposed single-step approach. 

Figure 2: Comparison of different q values for the switch function. 

Figure 3: Comparison of Example 1 solution for two-step perturbation approach and proposed single-

step approach. 

Figure 4: Initialization portion of the single-step simulation showing different initial guesses for the 

algebraic variable (z) from Example 1. 

Figure 5: Initialization portion of the single-step simulation for different perturbation values for the 

algebraic variable (z) from Example 1. 

Figure 6: Solution to Example 2. 

Figure 7: Solution to Example 3. 

Figure 8: Solution to Example 4 for N=2 and N=11 at four different x-values. 

Figure 9: SPM concentration solutions for N=5. 
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Fig1
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Fig2
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Fig3
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Fig4
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Fig5
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Fig6
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Fig7
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Fig8
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Parameters 
Symbol Parameter Value Units 

F Faraday Constant 96487 C/mol 

R Gas Constant 8.3143 J/(mol K) 

T Temperature 303.15 K 

ϕ1 Equilibrium potential 0.420 V 

ϕ2 Equilibrium potential 0.303 V 

W Mass of active material 92.7 g 

V Volume 1x10
-5

 m
3
 

io1 Exchange current density 1x10
-4

 A/cm
2
 

io2  1x10
-10

 A/cm
2
 

iapp Applied current 1x10
-5

 A/cm
2
 

ρ Density 3.4 g/cm
3
 

Table 1 
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Solver Algebraic Range 

Maple dsolve z(0)=0.3502359, Exact conditions required 

MATLAB ode15i 0.342 <  z(0) < 0.365 

MATLAB ode15s 0.271 <  z(0) < 0.474 

SUNDIALS IDA -1.27 < z(0) < 1.87 

Proposed Approach Maple dsolve -9.13 < z(0) < 9.85 

Table 2 
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Parameters 
Symbol Parameter Value Units 

F Faraday Constant 96487 C/mol 

R Gas Constant 8.3143 J/(mol K) 

T Temperature 303.15 K 

ce Electrolyte concentration 1000 mol/m
3
 

iapp Applied current 1 C 

  Cathode (p) Anode (n)  

D Solid phase Diffusion Coefficient 1.0 x 10
-14

 3.9 x 10
-14

 m
2
/s 

a particle surface area to volume 8.85 x 10
5
 7.236 x 10

5
 m

2
/m

3
 

c
max

 Maximum lithium concentration 51555 30555 mol/m
3
 

l Cell thickness 80 x 10
-6

 88 x 10
-6

 m 

R Electrode particle radius 2 x 10
-6

 2 x 10
-6

 m 

ko Reaction rate 2.334 x 10
-11

 5.0307 x 10
-11

 m
2.5

/(mol
0.5 

s) 

U Overpotential is a function of state-of-charge 

(Northrop et al., 2011) 

 

Table 3 
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Internal Node points Standard FD Time (ms) Proposed Single-Step Time (ms) 

5 111 55 

25 3340 94 

50 23715 200 

100 N/A 404 

500 N/A 4377 

Table 4 
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Method Stiff 
solver 

Computational 
Time (ms) 

Reference 

Maple mebdfi Yes 169 (Cash, 2000) 

Maple rkf45 No 128 (Enright et al., 1986, Shampine and Corless, 2000) 

Maple ck45 No 128 (Enright et al., 1986, Cash and Karp, 1990) 

Maple gear Yes 125 (Gear, 1971) 

Maple dverk78 No 125 (Verner, 1978, Dormand and Prince, 1980) 

Maple lsode Yes 125 (Hindmarsh, 1980) 

Maple rosenbrock Yes 131 (Hairer and Wanner, 1996) 

MATLAB ode15i No 35.8 (Shampine, 2002) 

MATLAB ode15s Yes 62.4 (Dormand and Prince, 1980, Shampine, 1994) 

MATLAB ode23s Yes 119 (Dormand and Prince, 1980, Shampine and 
Reichelt, 1997) 

FORTRAN RODAS Yes 154 (Hairer and Wanner, 1996) 
Table 5 
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Appendix A 
 
Code from Maple, MATLAB, and Fortran for Example 1 from "Extending Explicit and Linearly Implicit 
ODE Solvers for Index-1 DAEs." 
 
1. Maple Code (using dsolve’s rkf45) 
Use y1, y2, etc. for all differential variables and z1, z2, etc. for all algebraic variables 
 
> restart; 

> with(plots): 

# Enter all ODEs in eqode 
> eqode:=[diff(y1(t),t)=-y1(t)^2+z1(t)]; 

 

# Enter all AEs in eqae 
> eqae:=[cos(y1(t))-z1(t)^0.5=0]; 

 

# Enter all initial conditions for differential variables in icodes 
> icodes:=[y1(0)=0.25]; 

 

# Enter all intial conditions for algebraic variables in icaes 
> icaes:=[z1(0)=0.8]; 

 

# Enter parameters for perturbation value (epsilon), switch function (q and tint), and runtime (tf) 
> pars:=[epsilon=0.1,q=1000,tint=1,tf=5]; 

 

# Choose solving method (1 for explicit, 0 for implicit) 
> Xexplicit:=1: 

# Standard solver requires IC z(0)=0.938791 or else it will fail 
> solx:=dsolve({eqode[1],eqae[1],icodes[1],icaes[1]},numeric); 
Error, (in dsolve/numeric/DAE/checkconstraints) the initial conditions do not satisfy the algebraic 

constraints error = .745e-1, tolerance = .559e-6, constraint = cos(y1(t))-z1(t)^.5000000000000000000000 

> ff:=subs(pars,1/2+1/2*tanh(q*(t-tint))); 

 

> NODE:=nops(eqode):NAE:=nops(eqae): 

> for XX from 1 to NODE do 

> EQODE||XX:=lhs(eqode[XX])=rhs(eqode[XX])*ff: 

> end do: 

> for XX from 1 to NAE do 

> EQAE||XX:=subs(pars,-epsilon*(diff(rhs(eqae[XX])-lhs(eqae[XX]),t))=rhs(eqae 

> [XX])-lhs(eqae[XX])): 

> end do: 

> Dvars1:={seq(diff(z||x(t),t)=D||x,x=1..NAE)}: 

> Dvars2:={seq(rhs(Dvars1[x])=lhs(Dvars1[x]),x=1..NAE)}: 

> icsn:=seq(subs(y||x(0)=y||x(t),icodes[x]),x=1..NODE),seq(subs(z||x(0)= 

> z||x(t),icaes[x]),x=1..NAE): 

> for j from 1 to NAE do 

 := eqode 









d

d

t
( )y1 t  ( )y1 t 2 ( )z1 t

 := eqae [ ]( )cos ( )y1 t ( )z1 t 0.5 0

 := icodes [ ]( )y1 0 0.25

 := icaes [ ]( )z1 0 0.8

 := pars [ ], , , 0.1 q 1000 tint 1 tf 5

 := ff 
1

2

1

2
( )tanh 1000 t 1000
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> EQAEX||j:=subs(Dvars1,eqode,icsn,Dvars2,lhs(EQAE||j))=rhs(EQAE||j): 

> end do: 

> Sys:={seq(EQODE||x,x=1..NODE),seq(EQAEX||x,x=1..NAE),seq(icodes[x],x=1 

> ..NODE),seq(icaes[x],x=1..NAE)}: 

> if Xexplicit=1 then 

> sol:=dsolve(Sys,numeric): 

> else 

> sol:=dsolve(Sys,numeric,stiff=true,implicit=true): 

> end if: 

# Plotting Results 
> for XX from 1 to NODE do 

> a||XX:=odeplot(sol,[t,y||XX(t)],0..subs(pars,tf),color=red): 

> end do: 

> for XX from NODE+1 to NODE+NAE do 

> a||XX:=odeplot(sol,[t,z||(XX-NODE)(t)],0..subs(pars,tf),color=blue): 

> end do: 

> display(seq(a||x,x=1..NODE+NAE),axes=boxed); 

 
End Maple Code 
  
2. MATLAB code (using ode15s) 
Example 1 has been converted into a useable form for ode15s 
 
function CCS3s 
clear 
clf 
clc 
hold off 
tsp = 4; 
tspan=[0 tsp]; 
%Extra dummy variable y(2)=dy/dt has been added so that y(1)=y; y(2)=dy/dt; 
%y(3)=z 
y0 = [0.25,0,0.8]; 
Nels = 3; 
M = [1 0 0;0 0 0;0 0 1;]; 
options=odeset('Mass',M); 
[T,Y]=ode15s(@MEQS,tspan,y0,options); 
hold on 
for i=1:2:Nels 
plot(T,Y(:,i)); 
end 
return 
  

function [res]=MEQS(t,y) 
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tj=1; 
q=1000; 
epsilon=0.01; 
ff=(1/2+1/2*tanh(q*(t-tj))); 
%Converting the variables from Example 1, y->y(1), z->y(3), and dy/dt->y(2) 
%y(2) must be used because ode15s must be of the form Mf(t,y')=f(t,y) 
%Based on the Mass Function, M, Eq1 will equal the derivative of y(1), Eq2 
%will equal zero, and Eq3 will equal the derivative of y(3) 
Eq1=y(2); 
Eq2=y(2)-(-y(1)^2+y(3))*ff; 
Eq3=-2*y(2)*(y(3)^0.5)*sin(y(1))+2*cos(y(1))*(y(3)^0.5)/epsilon-2*y(3)/epsilon; 
res = [Eq1;Eq2;Eq3;]; 
return 

 

  
End Matlab Code 
 
3. Fortran Code (using RODAS solver which is a Rosenbrock method solver) 
In order to run the Fortran driver, you will also need download the RODAS solver, DECSOL linear algebra 
routines, and DC_DECSOL subroutines which are available free at 
http://www.unige.ch/~hairer/software.html 
This code was compile using Compaq Visual Fortran 6 
 
C * * * * * * * * * * * * * * * * * * * * * * * * * 

C --- DRIVER FOR ROSENBROCK CODE RODAS  

C * * * * * * * * * * * * * * * * * * * * * * * * * 

c link dr_rodas rodas decsol dc_decsol 

c link dr_rodas rodas lapack lapackc dc_lapack 

        IMPLICIT REAL*8 (A-H,O-Z) 

C --- PARAMETERS FOR RODAS (FULL JACOBIAN) 

        PARAMETER (ND=2,LWORK=6*ND*ND+14*ND+20,LIWORK=3*ND+20) 

C --- DECLARATIONS 

        DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK) 

        EXTERNAL FEQN,JAC,SOLOUT,MAS,FIC 

C --- DIMENSION OF THE SYSTEM 

        N=2 

C --- PROBLEM IS AUTONOMOUS 

        IFCN=0 

C --- COMPUTE THE JACOBIAN ANALYTICALLY 

        IJAC=1 

C --- JACOBIAN IS A FULL MATRIX 

        MLJAC=N 

C --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM 

        IMAS=1 

   MLMAS=N 

C --- OUTPUT ROUTINE IS USED DURING INTEGRATION 
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        IOUT=1 

C --- INITIAL VALUES 

        X=0.0D0 

        CALL FIC(N,Y) 

C --- ENDPOINT OF INTEGRATION 

        XEND=5.0D0 

C --- REQUIRED TOLERANCE 

        RTOL=1.0D-6 

        ATOL=1.0D-6 

        ITOL=0 

C --- INITIAL STEP SIZE 

        H=1.0D-6  

C --- SET DEFAULT VALUES  

        DO 10 I=1,20 

        IWORK(I)=0 

  10    WORK(I)=0.D0 

C --- CALL OF THE SUBROUTINE RODAS 

        CALL RODAS(N,FEQN,IFCN,X,Y,XEND,H, 

     &                  RTOL,ATOL,ITOL, 

     &                  JAC,IJAC,MLJAC,MUJAC,FVPOL,IDFX, 

     &                  MAS,IMAS,MLMAS,MUMAS, 

     &                  SOLOUT,IOUT, 

     &                  WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID) 

C --- PRINT FINAL SOLUTION 

        WRITE (6,99) X,Y(1),Y(2) 

 99     FORMAT(1X,'X =',F5.2,'    Y =',2E18.10) 

C --- PRINT STATISTICS 

        WRITE (6,90) RTOL 

 90     FORMAT('       rtol=',D8.2) 

        WRITE (6,91) (IWORK(J),J=14,20) 

 91     FORMAT(' fcn=',I5,' jac=',I4,' step=',I4, 

     &        ' accpt=',I4,' rejct=',I3,' dec=',I4, 

     &        ' sol=',I5) 

        STOP 

        END 

C 

        SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN) 

C --- PRINTS SOLUTION 

        IMPLICIT REAL*8 (A-H,O-Z) 

        DIMENSION Y(N),CONT(LRC) 

        COMMON /INTERN/XOUT 

        IF (NR.EQ.1) THEN 

           WRITE (6,99) X,Y(1),Y(2),NR-1 

           XOUT=0.2D0 

        ELSE 

           IF (X.GE.XOUT) THEN 

              Y1=CONTRO(1,XOUT,CONT,LRC) 

              Y2=CONTRO(2,XOUT,CONT,LRC) 

              WRITE (6,99) XOUT,Y1,Y2,NR-1 

              XOUT=XOUT+0.2D0 

           END IF 

        END IF 

 99     FORMAT(1X,'X =',F5.2,'    Y =',2E18.10,'    NSTEP =',I4) 

        RETURN 

        END 

C 

 

 SUBROUTINE FEQN(N,X,Y,F,RPAR,IPAR) 

!=============================================================== 

 IMPLICIT REAL*8 (A-H,O-Z) 

 

 DIMENSION Y(N),F(N) 

  

      F(1) = (0.5D0+0.5D0*tanh(1000.D0*X-1000.D0))*(-1.D0*Y(1)**2+Y(2)) 
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      F(2) = cos(Y(1))-1.D0*Y(2)**0.5D0 

 

 RETURN 

 END 

 

 

 SUBROUTINE JAC(N,X,Y,DFY,LDFY,RPAR,IPAR) 

!=============================================================== 

 IMPLICIT REAL*8 (A-H,O-Z) 

 DIMENSION Y(N),DFY(LDFY,N) 

  

      DFY(1,1) = -2.D0*(0.5D0+0.5D0*tanh(1000.D0*X-1000.D0))*Y(1) 

      DFY(1,2) = 0.5D0+0.5D0*tanh(1000.D0*X-1000.D0) 

      DFY(2,1) = -sin(Y(1)) 

      DFY(2,2) = -0.5D0/Y(2)**0.5D0 

 

 RETURN 

 END 

 

 

 SUBROUTINE MAS(N,AM,LMAS,RPAR,IPAR) 

!=============================================================== 

 IMPLICIT REAL*8 (A-H,O-Z) 

 DOUBLE PRECISION AM(LMAS,N),Y(N) 

  

      AM(1,1) = 1 

      AM(1,2) = 0 

      AM(2,1) = 0.247403959254523D-5 

      AM(2,2) = 0.52704627669473D-5 

 

 RETURN 

 END 

 

 

 SUBROUTINE FIC(N,Y) 

!=============================================================== 

 IMPLICIT REAL*8 (A-H,O-Z) 

 DOUBLE PRECISION Y(N) 

  

      Y(1) = 0.25D0 

      Y(2) = 0.8D0 

 

 RETURN 

 END 

 
End Fortran Code 

 
End of Appendix A 
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