
EXTENDING EXPLICIT AND LINEARLY IMPLICIT ODE SOLVERS FOR INDEX-1

DAES

Matthew T. Lawder
1
, Venkatasailanathan Ramadesigan

2
, Bharatkumar Suthar

1
, and Venkat R.

Subramanian
3

1-Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130

mtlawder@wustl.edu

b.suthar@wustl.edu

2-Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra 400076, India

venkatr@iitb.ac.in

3-University of Washington, Seattle, 105 Benson Hall, Seattle, WA 98195

Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99354

vsubram@uw.edu, corresponding author

IN PRESS Computers and Chemical Engineering - Page 1 of 45.

ABSTRACT

Nonlinear differential-algebraic equations (DAE) are typically solved using implicit stiff solvers based on

backward difference formula or RADAU formula, requiring a Newton-Raphson approach for the

nonlinear equations or using Rosenbrock methods specifically designed for DAEs. Consistent initial

conditions are essential for determining numeric solutions for systems of DAEs. Very few systems of

DAEs can be solved using explicit ODE solvers. This paper applies a single-step approach to system

initialization and simulation allowing for systems of DAEs to be solved using explicit (and linearly

implicit) ODE solvers without a priori knowledge of the exact initial conditions for the algebraic

variables. Along with using a combined process for initialization and simulation, many physical systems

represented through large systems of DAEs can be solved in a more robust and efficient manner without

the need for nonlinear solvers. The proposed approach extends the usability of explicit ODE solvers and

removes the requirement of Newton-Raphson type iteration.

IN PRESS Computers and Chemical Engineering - Page 2 of 45.

1. INTRODUCTION

When modeling physical phenomena, the representative system of equations often includes a

combination of ordinary differential equations (ODEs), partial differential equations (PDEs), and

algebraic equations (AEs). These phenomena often use PDEs as governing equations of the system that

vary in both space and time. When discretizing these PDEs spatially, the system becomes a set of ODEs

and AEs. The resulting set of equations is known as a system of differential algebraic equations (DAEs).

In physical systems, ODEs will typically represent most of the governing equations, while AEs act as

constraints applied to the system ensuring that the solution accurately reflects the physical possibilities

(e.g. conservation laws, boundary conditions, etc.). Systems of DAEs have been used to model real-world

environments across a range of problems including large industrial processes (Pantelides et al., 1988, Li et

al., 2012), predator-prey eco-systems (Li and Petzold, 2000), electric power systems (Praprost and

Loparo, 1996, Susuki et al., 2008), and electrochemical environments. Computing solutions for systems

of DAEs is important across a variety of fields. These systems combine algebraic states that act as

constraints (nonlinear) on a set of ODEs, making the system more difficult to solve (Shampine et al.,

1999).

Many different solvers are available for computing systems of DAEs (Hindmarsh, 1980, Petzold,

1982, Berzins et al., 1989, VanKeken et al., 1995, Hairer and Wanner, 1996, de Swart et al., 1998,

Wolfram, 2014, Maplesoft, 2015, Mathworks, 2015). More information on the method and solution

procedure of several ODE/DAE solvers, are provided elsewhere (Cash, 2003, Cellier and Kofman, 2006,

Methekar et al., 2011). Solvers based on backward difference formula (DASKR/DASSL/GEAR) (Brown

et al., 1994, Brown et al., 1998) or implicit Runge-Kutta methods (RADAU IIA) (Hairer and Wanner,

1999) are efficient in solving nonlinear DAEs. Other approaches include semi-implicit methods (such as

the BESIRK solver (Schwalbe et al., 1996) based on semi-implicit RK) and Rosenbrock methods

(Michelsen, 1977, Taylor, 1999). However, semi-implicit methods still require consistent initial

conditions (ICs) for algebraic variables. As of today, Maple
TM

, (Maplesoft, 2015) a symbolic

programming language, solves nonlinear DAEs by either eliminating algebraic variables (when possible)

IN PRESS Computers and Chemical Engineering - Page 3 of 45.

or by differentiating the algebraic constraints and inverting the overall system to arrive at an explicit ODE

of the form ()
d

dt


y
f y . In addition, many system solvers like DYMOLA (Dassault Systems, 2015)

convert DAEs to ODEs by differentiation and then solve the resulting ODE system using DASSL

(Petzold, 1982, Cellier and Kofman, 2006), a solver that uses Newton-Raphson type iteration at each time

step. In this paper, we show how explicit ODE solvers (such as Maple’s rkf45 (Maplesoft, 2015), a

fourth-fifth order Runge-Kutta solver) can be used to solve nonlinear DAEs starting from inconsistent

algebraic states. In addition, for stiff DAE systems, the method proposed in this paper is applied to

Rosenbrock stiff solver typically used for stiff ODEs.

For a system of DAEs, a set of consistent ICs must be given in order to solve the system with

standard solvers. Some solvers contain initialization routines that help to calculate consistent ICs from

starting guesses. These routines add computational time and often require the additional use of solvers to

obtain the ICs used by the primary DAE solver. By having a system that includes both ODEs and AEs,

not all ICs offer a possible solution and inconsistent ICs will cause solvers to fail in many instances.

Knowledge of the governing equation and the underlying physics of the system can help in choosing

consistent ICs.

In many cases though, consistent ICs for all of the variables are not known a priori and the effects of

operating conditions and system parameters like rate constants or diffusion coefficients may also be

unknown. Even small deviations from consistent ICs will cause the solver to fail (using standard solvers)

(Methekar et al., 2011). Leimkuhler et al. (1991) outlines the problem of obtaining consistent initial

conditions for DAEs and shows examples of different initialization techniques.

The most basic IC estimates use non-physical approximations such as setting differential variable

gradients to zero initially, creating solver inefficiencies for the few cases they may be able to solve

(Leimkuhler et al., 1991). An approach where the ICs of differential and algebraic variables were

calculated separately was proposed by Dew and Walsh (1981). Petzold (1982) outlined a method using an

Euler backward step with a very small step size in order to obtain values very near the initial time.

IN PRESS Computers and Chemical Engineering - Page 4 of 45.

Berzins et al. (1989) combined both methods and expanded the Euler steps to try to provide a more

flexible method. Lamour and Mazzia (2009) outlined a method that approximates the system’s derivatives

and can be used for systems of DAEs up to index-3. However, the method has some restrictions caused by

the inner differentiations required for higher indexed systems. An optimization approach for finding ICs

through successive linear programming has been proposed by Gopal and Biegler (1998). While studies on

general DAE solution methods, especially for higher order systems, remains an active area of research,

some methods have focused on obtaining solutions for more specific cases rather than general sets of

DAEs. Campbell proposed a Taylor series approximation for linear time-varying cases (Leimkuhler et al.,

1991). Other methods have focused on higher order DAEs. A Laplace transform method approach has

been used to find initial values by Reissig et al. (2002). A perturbation approach was applied over all

variables by Garcia to solve index-3 DAE systems (Garcia, 2000). This approach was modified by

Methekar et al. (2011) to use a perturbation only on the required algebraic variables allowing for faster

initialization of index-1 DAEs.

The approach outlined in this paper builds upon the two-step process of 1) Perturbation initialization

as outlined in Methekar et al. (2011) and 2) DAE simulation based on the consistent ICs obtained from

step 1 using explicit (or linearly implicit) ODE solvers. The proposed approach combines the two steps of

initialization and by using a switch function (hyperbolic tangent function) to constrain the differential

variables during the time when the perturbation approach finds consistent ICs for the algebraic variables.

This approach allows the initialization and simulation to be done continuously with a single solver. The

proposed single-step approach increases the robustness of the solution method by allowing for larger

perturbation values to be applied and increases the computational speed of the solvers while enabling

explicit ODE solvers to solve nonlinear DAEs. The proposed approach does not require the use of

nonlinear solvers which are common for many initialization subroutines used to find consistent ICs for

algebraic variables that arise from nonlinear AEs. The method for applying a perturbation to the algebraic

variables and the switch function to the differential variables is shown in the next section and examples

using the method are outlined in the following sections. Included are examples outlining stiff

IN PRESS Computers and Chemical Engineering - Page 5 of 45.

electrochemical systems and an example is included of how the proposed approach can be used to solve

implicit ODE systems after converting them into DAE form. Additionally, Appendix A includes the code

for solving Example 1 for three different languages: Maple, MATLAB
®
, and FORTRAN.

2. METHOD

A general DAE system (shown in semi-explicit form) is considered

(, ,)

d
t

dt


y
f y z

 (2.1)

0 (, ,)t g y z

 (2.2)

where y are the differential variables and z are the algebraic variables. Function g is differentiable and

dg/dt is non-singular as the model considered is an index-1 DAE. The system of DAEs shown above

often arises from combining equations governing physical phenomena with constraints or discretizing a

PDE’s spatial variables (while keeping time continuous as shown in Examples 4 and 5). In order to solve

the system of DAEs, ICs for all the variables must be given as

 0 0 (0) ; (0)t = 0;  y y z z (2.3)

However, exact values for consistent z0 are not always readily available. Under normal DAE solvers

(without initialization routines), ICs must be consistent with the system of DAEs or a solution cannot be

obtained. Variables present in the AEs are limited to sets that directly satisfy the algebraic limits. A

system of only ODEs will often offer a wider range of consistent ICs because the equations govern the

derivatives (change) of the system rather than the variable values. Combining AEs to an ODE system

increases the stiffness of the system and necessitates a priori knowledge of the exact ICs of the system. In

order to loosen the restriction of consistency on the algebraic variables, a perturbation approach is used as

outlined in Methekar et al. (2011) A perturbation parameter, ε, is introduced such that

0

() lim () 0t t





  g g (2.4)

and when t=t+ε, the AEs represented in g can be shown as

 () 0t  g
(2.5)

IN PRESS Computers and Chemical Engineering - Page 6 of 45.

 Using a Taylor series expansion, we rearrange the AEs to the form

2()
() ()

d t
t O

dt
   

g
g

 (2.6)

More details on the perturbation approach can be found in Methekar et al. (2011) Once in perturbed form,

the AEs can be solved first (without any ODEs, but using the given ICs for the differential variables) to

find consistent initial values for all algebraic variables. The algebraic variable values found from the

perturbation approach will be consistent with the given differential variable ICs and the values can be

used with the initial system of DAEs as ICs. When solving the system of DAEs, the set is solved in its

initial form (in the example above, semi-explicit form), and the consistent ICs from initialization are

provided. Using this approach provides an initialization routine that produces consistent ICs to be fed into

the solver along with the original system. The initialization routine allows for a wider range of initial

guesses to be used for the algebraic variables of the system. The perturbation value applied to the system

must be small enough so that the converged value of the algebraic variables will be consistent. Larger

perturbation values may not converge to consistent ICs. In addition, Maple cannot as of today solve

systems of DAEs without first converting the system to ODEs, so even having consistent ICs for

algebraic variables won’t help in solving nonlinear DAEs.

The above procedure involves two steps: 1) initialization using a solver for obtaining the consistent

ICs of the algebraic variables, and 2) the solution of the DAE system calling an additional solver and

using the consistent ICs obtained from step 1. Instead of taking a two-step approach to initialization of

algebraic variables and solving the complete system, in the proposed approach, a switch function is

proposed and used to hold the differential variables static (constant) while the algebraic variables find

consistent values using a perturbation approach and then the differential variables are unmasked and the

system simulation begins in a continuous manner using the same solver. This single-step approach

combines the initialization of the algebraic variables into the solution of the system, offering more robust

solutions while reducing system stiffness by relaxing the requirement of the perturbation value. Note that

in the proposed approach, the algebraic equations are converted to a perturbed ODE system and therefore

IN PRESS Computers and Chemical Engineering - Page 7 of 45.

many explicit solvers can be directly used (for example, Maple can handle the perturbed system as an

ODE much better than the original DAE). In addition, Maple provides an option to call the ODE solver in

compiled form which can be done in a single step minimizing the RAM requirement and the avoiding

second calls to dsolve (Maple’s inbuilt ODE solver). When running optimal control based on control

vector parameterization or estimating parameters from experimental data, it is convenient and efficient to

call a single dsolve procedure as opposed to two separate functional calls. Same behavior is observed in

MATLAB as well.

The hyperbolic tangent (switch) function applied to the ODEs is formulated as

   
1

1 tanh ()
2

H jT q t t  
(2.7)

where q is a weighting factor determining the discreteness of the function, and tj is the time allowed for

the perturbation approach to find consistent algebraic ICs. The value of tj will need to be scaled

depending on the value of ε used for the perturbation. Subtracting tj from the total solution time provides

the original (simulation) time variable. The switch function is applied to the ODEs as

H

d
T

dt


y
f

(2.8)

The switch function allows for the derivative of the differential variables to be set to zero for the

duration of the initialization of the algebraic variables and be set to the function f for the simulation after

the initialization period. The adaptive solvers used on the system will find time steps as needed from time

t = 0 to time = tj and will find the consistent IC for z. The ability of the switch function to approximate a

discrete jump with a continuous function makes this approach useful for standard solvers. The

representation of discrete events as continuous functions has been shown to be effective in simulation and

the switch function approach has even been used to approximate discontinuities as continuous functions

(Boovaragavan et al., 2010). The continuous nature of the switch function also allows for minor

corrections of the converged ICs at the end of the initialization time (beginning of the actual simulation

time). This correction of the converged ICs allow for less restrictive perturbation values to be used in this

IN PRESS Computers and Chemical Engineering - Page 8 of 45.

approach when compared to the two-step approach. In our experience, the proposed approach also saves a

considerable amount of time taken in stopping the solver after initialization, substituting the consistent

initial values, and starting the ODE solver again for simulating the entire system of DAEs. Additionally,

this method can reduce the time required to properly format the set of equations for solving. With this

method, the system of DAEs (Eqs. (2.1) & (2.2)) can be restructured as a single-step ODE system shown

by:

H

d
T

dt


y
f (2.9)

d

-
dt

 
g

g

(2.10)

A schematic qualitatively describing the stages of the single-step approach is shown in Figure 1.

Often the perturbed form of the AE (Eq. (2.10)) remains in implicit form because the left hand side will

contain differential variables, y, or their derivatives,
d

dt

y
. This form is acceptable for small systems, but

may cause solvers to fail for large sets. In particular, Maple converts all the ODEs of the form

d

dt


y
M f to

d

dt


y
f for all of its solver options if the implicit=true option is not mentioned. Only

when M is a constant, the stiff=true option in Maple can be used. The stiff=true option is available for

both explicit and linearly implicit ODE solvers based on Rosenbrock methods in Maple for ODEs only

when M is a constant. In order to make the system explicit or linearly implicit, first the derivatives of the

differential variable must be removed by substituting the original ODE equations (Eq. (2.1)). Then ICs are

substituted for the differential variables that remain. By converting to this form, the single-step process

will allow for explicit solvers to be used for both the initialization and solution of the system of DAEs.

One can write an equation for the explicit form as

0 0 0, ,

dy

y y z z f
dt

d

dt


  

 
g

g (2.11)

Where Eq. (2.11) can replace Eq. (2.10) for the single-step solution.

IN PRESS Computers and Chemical Engineering - Page 9 of 45.

Note that Eqs. (2.9), (2.10), & (2.11) are purely ODEs and can be solved using explicit solvers in time

or linearly implicit solvers in time. For example, in Maple, the linearly implicit Rosenbrock stiff ODE

solver is very good at handling these systems. The proposed approach is shown to be effective in solving

systems of DAEs through 5 examples in the next section.

3. RESULTS AND DISCUSSION: THE SINGLE STEP APPROACH APPLIED

Example 1: Index-1 DAE (1Algebraic and 1 Differential variable)

Consider the system below where y is the differential variable and z is the algebraic variable:

2()
() ()

dy t
y t z t

dt
  

 (3.1)

  cos () () 0y t z t  (3.2)

For the example here, we will set the differential variable IC at

(0) 0.25y 

 (3.3)

Standard DAE solvers would need the consistent IC for z,

2(0) cos(0.25) 0.938791z  

 (3.4)

Standard solver packages might fail when the exact algebraic IC is not given (if the solver did not

include initialization routines). Application of the single-step proposed approach is illustrated below.

A switch function is created shown as

  

1
1 tanh 1000(1)

2
HT t  

 (3.5)

This function is applied to the right hand side of the differential equation so that

   2() 1 1
() () tanh 1000(1)

2 2

dy t
y t z t t

dt

 
     

  (3.6)

And a perturbation will be applied to the algebraic equation such that

IN PRESS Computers and Chemical Engineering - Page 10 of 45.

    
1 ()() ()

sin () cos () ()
2 ()

z tdy t dz t
y t y t z t

dt z t dt

  

       

 (3.7)

The system of Eqs. (3.6) & (3.7) can now be solved with an explicit (or linearly implicit) ODE solver.

The IC of the algebraic variable does not have to be known a priori, but rather the combination of the

switch function and perturbation will allow the IC for the algebraic variable to reach its consistent value

during the first second of the solution because TH will be 0, holding the differential variable constant

during this initialization. After one second, TH will switch to the value one (see Figure 2), and the solution

of the complete system will begin based on the initialized conditions. A reasonable initial guess must still

be provided for the starting value of z. The time of initialization must be removed from the solution time

in order to achieve the real simulation time of the system. In the example cases, the initialization time is

shown as negative time in the figures and the real simulation time of the problem is shown as positive.

Smaller values of ε will increase the accuracy of the converged value ensuring that the converged

value can be used as a consistent IC, but a smaller ε will also increase the stiffness of the system.

Applying larger ε will reduce the stiffness, but will also decrease the accuracy of the converged value.

When ε becomes large enough, the converged value will no longer work as a consistent IC for the system

of DAEs. The single step approach allows for a correction to the converged value at the end of

initialization because of the continuous nature of the switch function. As the ODE variables begin to be

solved, the converged value of the algebraic variables (as well as the IC for the differential variables) can

correct to consistent values. This correction will introduce a small amount of error, but allows for a much

more robust approach to solving by increasing the allowable converged value for the algebraic variables

which will still solve the system.

For Example 1, the proposed approach with the switch function will solve the system with less than

0.001 error for all points after 0.1s of simulation time for converged values between

0.9377018 (0) 0.9398806z  . Even though the range of allowable converged values is small it

greatly increases the robustness of the solver and allows for a much wider range of ε. These ranges are

IN PRESS Computers and Chemical Engineering - Page 11 of 45.

dependent on the discreteness of the switch function used (q=1000 for the range above). Also, these

ranges are only the allowable range of converged solutions and the allowable range of initial guesses will

be much larger (see Figure 4).

For Example 1, if a starting guess of z(0)=0.8 was applied, the normal perturbation solution would

require no larger than
61.1 10   in order to obtain a solution for initialization that is consistent for

the system of DAEs. However, the single-step approach can solve the same system with 0.1  (or

larger). Figure 3 shows a plot for the original two-step perturbation and simulation approach and the

single-step solution. In the example discussed here, q is taken as 1000. The value of q will affect the

discreteness of the switch function and can have an effect on the increased robustness. The proposed

approach can be solved for many different initial guesses of the algebraic variables. Figure 4 shows the

initialization period for 8 different initial algebraic guesses where 0.1  and 1jt  for all cases. All of

the guesses converge to the consistent IC of z(0)=0.938 and accurately solve the system of DAEs.

The perturbation value does affect the accuracy and convergence of the initialization. Smaller values

of ε will allow the initialization to converge over shorter simulation time and when holding tj constant,

larger values of ε may obtain an initialization that is not accurate enough to satisfy the consistency

condition. Figure 5 shows the initialization of Example 1 for several different perturbation values (ε=0.1,

0.05, 0.01, 0.001).

Example 2: Wu and White Problem

An example of a two equation system representing a thin film nickel hydroxide electrode described in

Wu and White (2001) is studied during the charging process. This system can cause difficultly in

determining consistent ICs. The system is represented by the equations (Methekar et al., 2011)

1() jV dy t

W dt F




 (3.8)

IN PRESS Computers and Chemical Engineering - Page 12 of 45.

 1 2 0appj j i  
 (3.9)

Where,

1 1
1 ,1

(()) (())
2(1 ())exp 2 ()exp

2 2
o

z t F z t F
j i y t y t

RT RT

       
       

     (3.10)

2 2
2 ,2

(()) (())
exp expo

z t F z t F
j i

RT RT

       
      

     (3.11)

The parameters of the system are given in Table 1. The differential variable y represents the nickel

hydroxide mole fraction and the algebraic variable z represents the potential difference at the solid liquid

interface.

In a discharged state, the mole fraction of the nickel hydroxide is estimated to be

(0) 0.05y 

 (3.12)

Under the algebraic constraint, the consistent IC for the potential must be

(0) 0.350236z 

 (3.13)

(Several imaginary roots are solutions to the algebraic constraint, but these are non-physical solutions, so

they are not useful for the electrode equations shown here). When deviating from the consistent ICs,

many initialization routines and solvers fail to obtain a solution. Table 2 shows the range of possible ICs

for the algebraic variable that provide a solution for different solvers and approaches including the

proposed single-step approach. Under normal conditions (no initialization), these solvers require initial

guesses that are very close to the consistent values. The proposed single-step approach greatly widens the

possible range of ICs. The solution for a full charge of the electrode is shown in Figure 6 (with an initial

guess z(0)=0.7). For systems where the ICs are not easily available or obvious from the physical system,

the expanded range of possible initial guesses is important for obtaining a solution. As mentioned before a

compiled single procedure can be obtained for a nonlinear DAE system with this approach just like a

procedure for ODEs. This helps improve the efficiency and robustness for inverse optimization problems

(optimal control and parameter/state estimation).

IN PRESS Computers and Chemical Engineering - Page 13 of 45.

Example 3: Implicit ODE converted to DAE solved with Explicit Solver

The proposed approach can also be used to solve implicit ODEs. Consider the implicit ODE:

 
2

() () ()
() 1 () cos

dy t dy t dy t
y t y t

dt dt dt

     
        

      (3.14)

This problem cannot be directly solved using explicit solvers. When attempted, Maple states that IC for

dy/dt is not known or the system cannot be converted to explicit ODE form. However, including a

substitution

()

()
dy t

z t
dt

 (3.15)

converts Eq. (3.14) into:

    2() () () 1 () cos ()z t z t y t y t z t    (3.16).

This adds a variable z, allowing the proposed approach to be used. The proposed approach is applied to

Eq. (3.15) and (3.16) leading to:

   

   2

() () () () ()
2 () () 1 () sin ()

() () () 1 () cos ()

dz t dz t dy t dy t dz t
z t y t z t z t

dt dt dt dt dt

z t z t y t y t z t


 

      
 

    (3.17)

  
() 1 1

() tanh 1000(1)
2 2

dy t
z t t

dt

 
   

 
 (3.18)

where q=1000 and tj=1 for the switch function. The results for both initialization and simulation are

shown in Figure 7 for the system solved using 0.1  with ICs of:

(0) 0y  (0) 0z 

 (3.19)

The converged value for z(0) from the initialization portion of the solver is 0.550.

Example 4: Partial Differential Equation Discretized to DAEs

IN PRESS Computers and Chemical Engineering - Page 14 of 45.

When PDEs are discretized they can create a system of DAEs. Many of these systems consist of

variables with explicit time derivatives (like concentration) and static variables (like potential which may

not consist of time derivatives, but still changes with time because other variables in the system change

with time). Consider the following set of PDEs:

  
2

2
1

y y
y z

t x

 
  

  (3.20)

    
2

2

2
1 exp

z
y z

x


  

 (3.21)

With the boundary conditions:

0

0
x

y

x 






1
1

x
y




 (3.22)

 0

0
x

z

x 






1
0

x
z




 (3.23)

Though ∂z/∂t is not present in the system, z changes with time as y changes with time. The model can be

solved using numerical method of lines (White, 2010) which will discretize the spatial derivatives over a

series of node points between the system’s boundaries. When discretizing for the spatial variable the

system becomes:

    1 12

1
2 1i

i i i i i

dy
y y y y z

dt h
      (3.24)

      2

1 12

1
2 1 expi i i i iz z z y z

h
      (3.25)

where h is the length between node points. And the boundary conditions become:

  0 1 2

1
3 4 0

2
y y y

h
  

 1 1Ny  
 (3.26)

IN PRESS Computers and Chemical Engineering - Page 15 of 45.

  0 1 2

1
3 4 0

2
z z z

h
  

 1 0Nz  
 (3.27)

where N is the number of interior node points of the system. Converting to the proposed approach the

system equations become:

      1 12

1 1 1
2 1 tanh 1000(1)

2 2

i
i i i i i

dy
y y y y z t

dt h
 

   
        
   

 (3.28)

 

     

21 1

2

2

1 12

2 2 exp() 1 exp()

1
1 exp 2

i i i i i
i i i i

i i i i i

dz dz dz dy dz
y z y z

h dt dt dt dt dt

y z z z z
h

  

 

  
       

 

     

 (3.29)

And the boundary equations are:

  0 1 2
0 1 2

1
3 4 3 4

2 2

dy dy dy
y y y

h dt dt dt h

  
     

 
 1

1 1N
N

dy
y

dt
 

   (3.30)

  0 1 2
0 1 2

1
3 4 3 4

2 2

dz dz dz
z z z

h dt dt dt h

  
     

 
 1

1
N

N

dz
z

dt
 

  (3.31)

For standard solvers the system cannot be solved for a large number N using explicit solvers (i.e., one

cannot convert this system of DAEs to explicit ODEs of the form dy/dt = f. Maple’s dsolve, even with

consistent ICs (yi(0)=1 and zi(0)=0), cannot solve the system for N greater than 5. Maple aims to convert

the DAE system to an explicit ODE system of the form dy/dt =f and fails for larger values of N. However

using the single step proposed approach loosens the restrictions on the number of interior node points and

increases the solving speed in Maple without having to use solvers involving Newton type iterations.

Larger values of N may be required for higher accuracy and better convergence. Figure 8 shows the value

of y at x=0, 1/3, 2/3, and 1 for N=2 and N=11 with ε=1x10
-5

). The values at N=11 have converged to more

accurate values, especially for values closer to x=0. Consistent ICs (yi(0)=1 and zi(0)=0) were used for

Figure 8. The proposed approach can use the standard Maple dsolve approach to solve for more internal

node points, without having to use direct DAE solvers that use Newton-Raphson type iterations. Even at

IN PRESS Computers and Chemical Engineering - Page 16 of 45.

lower number of node points the proposed approach is faster than standard simulation techniques as it

provides Maple with an approximate ODE that it can solve directly. At N=5 the proposed approach solves

in 159ms using Maple dsolve, over an order of magnitude faster than the standard techniques inbuilt in

Maple.

Example 5: Finite Difference Single Particle Lithium-ion Battery Model

Even when discretizing systems of PDEs that contain time derivatives in all the governing equations,

the boundary conditions can yield algebraic equations. Our last example shows this case through a

lithium-ion battery system. The single particle model (SPM) is used to describe the electrochemistry

occurring in an intercalation based secondary battery (Santhanagopalan et al., 2006, Ramadesigan et al.,

2012). The SPM has been used to model battery cycling and is a good model for batteries with thin

electrodes and low charge and discharge rates (Pinson and Bazant, 2013, Northrop et al., 2014). The

model tracks the diffusion of lithium inside the electrode particles of lithium-ion batteries governed by

Fick’s second law of diffusion:

2

2

1
 ,i i

i

c c
r D i p n

t r r r

   
  

    (3.32)

With boundary conditions:

0

0
r

c

r 






i

i i

r R i

c j

r D


 


 (3.33)

Where

0.5 0.5 0.5

,max , ,

(
2 () sinh

2

app i i
i i e i i surf i surf

i i

i F U
j k c c c c

a l F RT

   
     

 
 (3.34)

The parameters for the system are given in Table 3. The model can be solved using numerical method

of lines which will discretize the spatial derivatives over a series of node points, N, within the particle,

while the time derivative will remain. This discretization will create a DAE system with 2N differential

IN PRESS Computers and Chemical Engineering - Page 17 of 45.

equations and 4 algebraic equations (the boundary conditions). The system can be solved for the

concentration of lithium at every node point in the electrodes and then the electrode potentials, Φ, can be

determined from the electrode surface concentrations. In a discharged state the initial concentration for

lithium throughout the electrodes will be:

 (0) 305.55pc  (0) 49503.11nc 
(3.35)

with units of mol/m
3
.

This model system written in finite difference form (using second order central difference approach)

and applying the single-step approach becomes

      , 2 2 2

, 1 , 1 ,2 2 2

1 1
2 tanh 1000(1)

2 2

i j i
i j i j i j

i

dc D
c j j c j j j c t

dt j h R
 

            
 (3.36)

With boundary conditions converted using second order 3 point forward and backward differences as

,1 ,2 ,0

,1 ,2 ,04 3 4 3
2

i i i

i i i

dc dc dc
c c c

h dt dt dt

  
     

 
 (3.37)

, , 1 , 1

, , 1 , 14 3 4 3
2

i N i N i N i
i N i N i N

i

dc dc dc j
c c c

h dt dt dt D

  

 

 
      

 
 (3.38)

Results for the concentration values (five internal node points) are shown in Figure 9. Using the

Rosenbrock stiff solver in Maple, the system can be solved for a complete 1C rate charge with up to 58

internal node points when not applying the proposed approach before the solver fails due to memory

constraints. Note that Rosenbrock methods for DAE require additional constraints to satisfy the order

requirement (Schneider, 1991, Hairer and Wanner, 1996). By using the proposed single-step approach,

the same system under the same memory constraints can be solved for over 2,500 internal node points.

The proposed approach reduces the computational burden on the solver and allows for larger systems to

be solved thereby facilitating more accurate results. Table 4 shows the solving speed for simulating the

lithium concentration throughout the electrode particles for a range of node points. The ICs for both cases

IN PRESS Computers and Chemical Engineering - Page 18 of 45.

were given as shown in Eq. (3.35). The switch function was applied with tj=1 and q=1000 (same as

previous examples) and the perturbation value was
51 10   . The system was solved with a

Rosenbrock solver under both the standard FD scheme and the proposed approach. The computational

savings from the proposed approach allow larger systems to be solved. For a SPM with 50 internal node

points (resulting in a system of 4 AEs and 100 ODEs) the proposed approach reduced computational time

by two orders of magnitude.

4. DISCUSSION

The single step initialization and simulation approach has been tested on other electrochemically

based battery models. The proposed approach was used on the porous electrode pseudo two dimensional

model outlined in Northrop et al.(Northrop et al., 2011). For one complete constant power charge, a

collocation of 15,6,15 (resulting in 123 AEs and 92 ODEs) was solved using
41 10   . The porous

electrode pseudo two dimensional model and single-step approach was also used to solve dynamic

discharging of a battery occurring from electric vehicle driving (Lawder et al., 2014). The dynamic

current increased system stiffness causing other solvers to fail, especially when solving over long times

and multiple cycles, but the single-step approach was able to overcome the continuously changing input

current values.

Note that the method described should not be necessarily viewed as better or more robust compared

to DASKR/IDA/DASSL/GEAR or RADAU. However, the proposed approach enables explicit solvers to

handle nonlinear DAEs. As of today, Maple does not have a nonlinear DAE solver (all of its DAE solvers

convert DAEs to explicit ODEs before solving). Similar situations are seen in large scale system

simulators (DYMOLA). The proposed approach provides an iteration free alternative for solving

nonlinear DAEs without knowing consistent initial conditions for the algebraic variable.

Additionally, the proposed approach has been used to solve index-2 systems of DAEs in some cases.

Index-2 systems of DAEs can be approached by differentiating the perturbed AEs twice in order to

IN PRESS Computers and Chemical Engineering - Page 19 of 45.

provide a system in which the perturbed equation is a function of the algebraic variable. Future work will

include assessing the strength of extending the proposed single-step approach to index-2 systems of

DAEs generally.

 The proposed approach was tested under different numerical schemes. Table 5 give a summary of

different numerical methods built into Maple and MATLAB as well as a FORTRAN solver that were

used to solve Example 1 under the proposed approach. RODAS, a Rosenbrock 4
th
 order L stable method,

was used in the FORTRAN code and the driver file is provided in Appendix A. This version of the

Rosenbrock method can handle M matrices more efficiently (there is no need to substitute the ODE

derivatives in the lhs). Note that Table 5 provides solvers that perform Newton iterations for solving

nonlinear ODEs as well (MEBDFI, LSODE, ode15s) for completion’s sake.

5. CONCLUSIONS

A new method is proposed to enable explicit (and linear implicit) ODE solvers to solve nonlinear

DAEs. This method makes use of a switch function for the ODEs and combines both the initialization and

simulation for systems of DAEs. The single-step approach decreases stiffness for initialization when

compared to the two step perturbation initialization and system solving. In addition, the single-step

method reduced the strict requirement on required initial guesses for algebraic ICs when compared to

standard solvers, allowing consistency to be met under more cases. The continuous nature of the switch

function allows for correction of inconsistent converged ICs that occurs under large perturbation values.

This extension of allowable consistent converged ICs helps to expand the robustness of the single-step

method. This single-step approach can be applied when a system of DAEs face difficulty with

initialization under standard solvers without having to call a separate solver for initialization purposes

only. Examples show the approach being applied in mathematical and physically representative situations.

The approach has been tested for large, physically representative systems and has decreased the

computational time required to study these systems. Importantly, the proposed approach provides an

IN PRESS Computers and Chemical Engineering - Page 20 of 45.

iteration free alternative to stiff solvers like DASKR and RADAU for solving DAEs when consistent

initial conditions are unknown.

6. ACKNOWLEDGEMENTS

The authors thank the United States Department of Energy (DOE) for the financial support for this

work though the Advanced Research Projects Agency – Energy (ARPA-E) award #DE-AR0000275.

IN PRESS Computers and Chemical Engineering - Page 21 of 45.

CAPTIONS

Table 1: Parameters for Nickel Hydroxide Electrode.

Table 2: Comparison of working ranges of initial algebraic guess for Example 2 using different solvers.

The Maple dsolve approach uses Maple’s rkf45 method. (Lawerence Berkeley National Lab,

2014, Maplesoft, 2015, Mathworks, 2015, Mathworks, 2015).

Table 3: Parameters for SPM.

Table 4: Computational time for solving concentration profiles in Example 5 using Maple’s dsolve.

Standard finite difference fails to solve SPM beyond N=50.

Table 5: List of methods used to solve the proposed approach.

Figure 1: Diagram of the proposed single-step approach.

Figure 2: Comparison of different q values for the switch function.

Figure 3: Comparison of Example 1 solution for two-step perturbation approach and proposed single-

step approach.

Figure 4: Initialization portion of the single-step simulation showing different initial guesses for the

algebraic variable (z) from Example 1.

Figure 5: Initialization portion of the single-step simulation for different perturbation values for the

algebraic variable (z) from Example 1.

Figure 6: Solution to Example 2.

Figure 7: Solution to Example 3.

Figure 8: Solution to Example 4 for N=2 and N=11 at four different x-values.

Figure 9: SPM concentration solutions for N=5.

IN PRESS Computers and Chemical Engineering - Page 22 of 45.

REFERENCES

Berzins, M., Dew, P. M. and Furzeland, R. M. Developing Software for Time-Dependent Problems Using
the Method of Lines and Differential-Algebraic Integrators. Appl Numer Math 1989; 5(5): 375-397.

Boovaragavan, V., Ramadesigan, V., Panchagnula, M. V. and Subramanian, V. R. Continuum
Representation for Simulating Discrete Events of Battery Operation. J Electrochem Soc 2010; 157(1):
A98-A104.

Brown, P. N., Hindmarsh, A. C. and Petzold, L. R. Using Krylov Methods in the Solution of Large-Scale
Differential-Algebraic Systems. Siam J Sci Comput 1994; 15(6): 1467-1488.

Brown, P. N., Hindmarsh, A. C. and Petzold, L. R. Consistent initial condition calculation for differential-
algebraic systems. Siam J Sci Comput 1998; 19(5): 1495-1512.

Cash, J. R. Modified extended backward differentiation formulae for the numerical solution of stiff initial
value problems in ODEs and DAEs. J Comput Appl Math 2000; 125(1-2): 117-130.

Cash, J. R. Efficient numerical methods for the solution of stiff initial-value problems and differential
algebraic equations. P Roy Soc a-Math Phy 2003; 459(2032): 797-815.

Cash, J. R. and Karp, A. H. A Variable Order Runge-Kutta Method for Initial Valu Problems with Rapidly
Varying Right-Hand Sides. Acm T Math Software 1990; 16(3): 21.

Cellier, F. E. and Kofman, E. Continuous System Simulation, Springer US 2006.
Dassault Systems. (2015). "DYMOLA." Retrieved Jan. 2015, 2015, from http://www.3ds.com/products-

services/catia/capabilities/modelica-systems-simulation-info/dymola.
de Swart, J. J. B., Lioen, W. M. and van der Veen, W. A. (1998). Specification of PSIDE. Amsterdam, NL,

National Research Insititute for Mathematicas and Computer Science (CWI) (The Netherlands): 15.
Dew, P. M. and Walsh, J. E. A Set of Library Routines for Solving Parabolic Equations in One Space

Variable. Acm T Math Software 1981; 7(3): 295-314.
Dormand, J. R. and Prince, P. J. A family of embedded Runge-Kutta formulae. J Comput Appl Math 1980;

6(1): 7.
Enright, W. H., Jackson, K. R., Norsett, S. P. and Thomsen, P. G. Interpolants for Runge-Kutta Formulas.

Acm T Math Software 1986; 12(3): 193-218.
Garcia, J. A. G. A singlar Perturbation Approach to Modeling Closed Kinematic Chains. Rice University

2000.
Gear, C. W. Simultaneous Numerical Solution of Differential-Algebraic Equations. Ieee T Circuits Syst

1971; Ct18(1): 89-&.
Gopal, V. and Biegler, L. T. A successive linear programming approach for initialization and

reinitialization after discontinuities of differential-algebraic equations. Siam J Sci Comput 1998; 20(2):
447-467.

Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic
Problems, Springer 1996.

Hairer, E. and Wanner, G. Stiff differential equations solved by Radau methods. J Comput Appl Math
1999; 111(1-2): 93-111.

Hindmarsh, A. C. LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM
SIGNUM Newletters 1980; 15: 2.

Lamour, R. and Mazzia, F. Computation of consistent initial values for properly stated index 3 DAEs. Bit
2009; 49(1): 161-175.

Lawder, M. T., Northrop, P. W. C. and Subramanian, V. R. Model-based SEI Layer Growth and Capacity
Fade Analysis for EV and PHEV Batteries and Drive Cycles. J Electrochem Soc 2014; 161(14): A2099-
A2108.

Lawerence Berkeley National Lab. (2014). "Sundials IDA." Retrieved Novemeber, 2014, 2014, from
https://computation.llnl.gov/casc/sundials/description/description.html#descr_ida.

IN PRESS Computers and Chemical Engineering - Page 23 of 45.

http://www.3ds.com/products-services/catia/capabilities/modelica-systems-simulation-info/dymola
http://www.3ds.com/products-services/catia/capabilities/modelica-systems-simulation-info/dymola

Leimkuhler, B., Petzold, L. R. and Gear, C. W. Approximation Methods for the Consistent Initialization of
Differential-Algebraic Equations. Siam J Numer Anal 1991; 28(1): 205-226.

Li, P. F., Li, Y. Y. and Seem, J. E. Consistent initialization of system of differential-algebraic equations for
dynamic simulation of centrifugal chillers. J Build Perform Simu 2012; 5(2): 115-139.

Li, S. T. and Petzold, L. Software and algorithms for sensitivity analysis of large-scale differential
algebraic systems. J Comput Appl Math 2000; 125(1-2): 131-145.

Maplesoft. (2015). "Maple." Retrieved Jan. 2015, 2015, from
http://www.maplesoft.com/products/maple/.

Maplesoft. (2015). "Maple dsolve." Retrieved June, 2015, 2015, from
http://www.maplesoft.com/support/help/maple/view.aspx?path=dsolve.

Mathworks. (2015). "Matlab ODE15i." Retrieved June, 2015, 2015, from
http://www.mathworks.com/help/matlab/ref/ode15i.html.

Mathworks. (2015). "Matlab ODE15s." Retrieved June, 2015, 2015, from
http://www.mathworks.com/help/matlab/ref/ode15s.html.

Methekar, R. N., Ramadesigan, V., Pirkle, J. C. and Subramanian, V. R. A perturbation approach for
consistent initialization of index-1 explicit differential-algebraic equations arising from battery model
simulations. Computers & Chemical Engineering 2011; 35(11): 2227-2234.

Michelsen, M. L. Application of Semi-Implicit Runge-Kutta Methods for Integration of Ordinary and
Partial-Differential Equations. Chem Eng J Bioch Eng 1977; 14(2): 107-112.

Northrop, P. W. C., Ramadesigan, V., De, S. and Subramanian, V. R. Coordinate Transformation,
Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of
Lithium-Ion Battery Stacks. J Electrochem Soc 2011; 158(12): A1461-A1477.

Northrop, P. W. C., Suthar, B., Ramadesigan, V., Santhanagopalan, S., Braatz, R. D. and Subramanian, V.
R. Efficient Simulation and reformulation of Lithium-Ion Battery Models for enabling electric
transportation. J Electrochem Soc 2014; 161(8): 9.

Pantelides, C. C., Gritsis, D., Morison, K. R. and Sargent, R. W. H. The Mathematical-Modeling of
Transient Systems Using Differential Algebraic Equations. Computers & Chemical Engineering 1988;
12(5): 449-454.

Petzold, L. Differential-Algebraic Equations Are Not Odes. Siam J Sci Stat Comp 1982; 3(3): 367-384.
Petzold, L. R. (1982). A Description of DASSL: A Differential/Algebraic System Solver, Sandia National Lab.
Pinson, M. B. and Bazant, M. Z. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade,

Accelerated Aging and Lifetime Prediction. J Electrochem Soc 2013; 160(2): A243-A250.
Praprost, K. L. and Loparo, K. A. A stability theory for constrained dynamic systems with applications to

electric power systems. Ieee T Automat Contr 1996; 41(11): 1605-1617.
Ramadesigan, V., Northrop, P. W. C., De, S., Santhanagopalan, S., Braatz, R. D. and Subramanian, V. R.

Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective. J
Electrochem Soc 2012; 159(3): R31-R45.

Reissig, G., Boche, H. and Barton, P. I. On inconsistent initial conditions for linear time-invariant
differential-algebraic equations. Ieee Transactions on Circuits and Systems I-Fundamental Theory and
Applications 2002; 49(11): 1646-1648.

Santhanagopalan, S., Guo, Q. Z., Ramadass, P. and White, R. E. Review of models for predicting the
cycling performance of lithium ion batteries. J Power Sources 2006; 156(2): 620-628.

Schneider, C. Rosenbrock-Type Methods Adapted to Differential-Algebraic Systems. Math Comput 1991;
56(193): 201-213.

Schwalbe, D., Kooijman, H. and Taylor, R. Solving stiff differential equations and differential algebraic
systems with Maple V. Mapletech 1996; 3(2): 47-53.

Shampine, L. F. Numerical Solution of Ordinary Differential Equations. New York, Chapman & Hall 1994.
Shampine, L. F. Solving 0=F(t, y(t), y'(t)) in Matlab. Journal of Numerical Mathematics 2002; 10(4): 19.

IN PRESS Computers and Chemical Engineering - Page 24 of 45.

http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/support/help/maple/view.aspx?path=dsolve
http://www.mathworks.com/help/matlab/ref/ode15i.html
http://www.mathworks.com/help/matlab/ref/ode15s.html

Shampine, L. F. and Corless, R. M. Initial value problems for ODEs in problem solving environments. J
Comput Appl Math 2000; 125(1-2): 31-40.

Shampine, L. F. and Reichelt, M. W. The MATLAB ODE suite. Siam J Sci Comput 1997; 18(1): 1-22.
Shampine, L. F., Reichelt, M. W. and Kierzenka, J. A. Solving index-I DAEs in MATLAB and Simulink. Siam

Rev 1999; 41(3): 538-552.
Susuki, Y., Hikiliara, T. and Chiang, H. D. Discontinuous dynamics of electric power system with dc

transmission: A study on DAE system. Ieee T Circuits-I 2008; 55(2): 697-707.
Taylor, R. Engineering Computing with Maple: Solution of PDEs via the Method of Lines. CACHE News

1999; 49: 5-8.
VanKeken, P. E., Yuen, D. A. and Petzold, L. R. DASPK: A new high order and adaptive time-integration

technique with applications to mantle convection with strongly temperature- and pressure-dependent
rheology. Geophys Astro Fluid 1995; 80(1-2): 57-74.

Verner, J. H. Explicit Runge-Kutta Methods with Estimates of Local Truncation Error. Siam J Numer Anal
1978; 15(4): 772-790.

White, R. E. S., Venkat R. Computational Methods in Chemical Engineering with Maple. Berlin, Springer-
Verlag 2010.

Wolfram. (2014). "NDsolve." Retrieved November, 2014, 2014, from
http://reference.wolfram.com/language/ref/NDSolve.html.

Wu, B. and White, R. E. An initialization subroutine for DAEs solvers: DAEIS. Computers & Chemical
Engineering 2001; 25(2-3): 301-311.

IN PRESS Computers and Chemical Engineering - Page 25 of 45.

http://reference.wolfram.com/language/ref/NDSolve.html

IN PRESS Computers and Chemical Engineering - Page 26 of 45.

Fig1

IN PRESS Computers and Chemical Engineering - Page 27 of 45.

Fig2

IN PRESS Computers and Chemical Engineering - Page 28 of 45.

Fig3

IN PRESS Computers and Chemical Engineering - Page 29 of 45.

Fig4

IN PRESS Computers and Chemical Engineering - Page 30 of 45.

Fig5

IN PRESS Computers and Chemical Engineering - Page 31 of 45.

Fig6

IN PRESS Computers and Chemical Engineering - Page 32 of 45.

Fig7

IN PRESS Computers and Chemical Engineering - Page 33 of 45.

Fig8

IN PRESS Computers and Chemical Engineering - Page 34 of 45.

Fig9

IN PRESS Computers and Chemical Engineering - Page 35 of 45.

Parameters
Symbol Parameter Value Units

F Faraday Constant 96487 C/mol

R Gas Constant 8.3143 J/(mol K)

T Temperature 303.15 K

ϕ1 Equilibrium potential 0.420 V

ϕ2 Equilibrium potential 0.303 V

W Mass of active material 92.7 g

V Volume 1x10
-5

 m
3

io1 Exchange current density 1x10
-4

 A/cm
2

io2 1x10
-10

 A/cm
2

iapp Applied current 1x10
-5

 A/cm
2

ρ Density 3.4 g/cm
3

Table 1

IN PRESS Computers and Chemical Engineering - Page 36 of 45.

Solver Algebraic Range

Maple dsolve z(0)=0.3502359, Exact conditions required

MATLAB ode15i 0.342 < z(0) < 0.365

MATLAB ode15s 0.271 < z(0) < 0.474

SUNDIALS IDA -1.27 < z(0) < 1.87

Proposed Approach Maple dsolve -9.13 < z(0) < 9.85

Table 2

IN PRESS Computers and Chemical Engineering - Page 37 of 45.

Parameters
Symbol Parameter Value Units

F Faraday Constant 96487 C/mol

R Gas Constant 8.3143 J/(mol K)

T Temperature 303.15 K

ce Electrolyte concentration 1000 mol/m
3

iapp Applied current 1 C

 Cathode (p) Anode (n)

D Solid phase Diffusion Coefficient 1.0 x 10
-14

 3.9 x 10
-14

 m
2
/s

a particle surface area to volume 8.85 x 10
5
 7.236 x 10

5
 m

2
/m

3

c
max

 Maximum lithium concentration 51555 30555 mol/m
3

l Cell thickness 80 x 10
-6

 88 x 10
-6

 m

R Electrode particle radius 2 x 10
-6

 2 x 10
-6

 m

ko Reaction rate 2.334 x 10
-11

 5.0307 x 10
-11

 m
2.5

/(mol
0.5

s)

U Overpotential is a function of state-of-charge

(Northrop et al., 2011)

Table 3

IN PRESS Computers and Chemical Engineering - Page 38 of 45.

Internal Node points Standard FD Time (ms) Proposed Single-Step Time (ms)

5 111 55

25 3340 94

50 23715 200

100 N/A 404

500 N/A 4377

Table 4

IN PRESS Computers and Chemical Engineering - Page 39 of 45.

Method Stiff
solver

Computational
Time (ms)

Reference

Maple mebdfi Yes 169 (Cash, 2000)

Maple rkf45 No 128 (Enright et al., 1986, Shampine and Corless, 2000)

Maple ck45 No 128 (Enright et al., 1986, Cash and Karp, 1990)

Maple gear Yes 125 (Gear, 1971)

Maple dverk78 No 125 (Verner, 1978, Dormand and Prince, 1980)

Maple lsode Yes 125 (Hindmarsh, 1980)

Maple rosenbrock Yes 131 (Hairer and Wanner, 1996)

MATLAB ode15i No 35.8 (Shampine, 2002)

MATLAB ode15s Yes 62.4 (Dormand and Prince, 1980, Shampine, 1994)

MATLAB ode23s Yes 119 (Dormand and Prince, 1980, Shampine and
Reichelt, 1997)

FORTRAN RODAS Yes 154 (Hairer and Wanner, 1996)
Table 5

IN PRESS Computers and Chemical Engineering - Page 40 of 45.

Appendix A

Code from Maple, MATLAB, and Fortran for Example 1 from "Extending Explicit and Linearly Implicit
ODE Solvers for Index-1 DAEs."

1. Maple Code (using dsolve’s rkf45)
Use y1, y2, etc. for all differential variables and z1, z2, etc. for all algebraic variables

> restart;

> with(plots):

Enter all ODEs in eqode
> eqode:=[diff(y1(t),t)=-y1(t)^2+z1(t)];

Enter all AEs in eqae
> eqae:=[cos(y1(t))-z1(t)^0.5=0];

Enter all initial conditions for differential variables in icodes
> icodes:=[y1(0)=0.25];

Enter all intial conditions for algebraic variables in icaes
> icaes:=[z1(0)=0.8];

Enter parameters for perturbation value (epsilon), switch function (q and tint), and runtime (tf)
> pars:=[epsilon=0.1,q=1000,tint=1,tf=5];

Choose solving method (1 for explicit, 0 for implicit)
> Xexplicit:=1:

Standard solver requires IC z(0)=0.938791 or else it will fail
> solx:=dsolve({eqode[1],eqae[1],icodes[1],icaes[1]},numeric);
Error, (in dsolve/numeric/DAE/checkconstraints) the initial conditions do not satisfy the algebraic

constraints error = .745e-1, tolerance = .559e-6, constraint = cos(y1(t))-z1(t)^.5000000000000000000000

> ff:=subs(pars,1/2+1/2*tanh(q*(t-tint)));

> NODE:=nops(eqode):NAE:=nops(eqae):

> for XX from 1 to NODE do

> EQODE||XX:=lhs(eqode[XX])=rhs(eqode[XX])*ff:

> end do:

> for XX from 1 to NAE do

> EQAE||XX:=subs(pars,-epsilon*(diff(rhs(eqae[XX])-lhs(eqae[XX]),t))=rhs(eqae

> [XX])-lhs(eqae[XX])):

> end do:

> Dvars1:={seq(diff(z||x(t),t)=D||x,x=1..NAE)}:

> Dvars2:={seq(rhs(Dvars1[x])=lhs(Dvars1[x]),x=1..NAE)}:

> icsn:=seq(subs(y||x(0)=y||x(t),icodes[x]),x=1..NODE),seq(subs(z||x(0)=

> z||x(t),icaes[x]),x=1..NAE):

> for j from 1 to NAE do

 := eqode 









d

d

t
()y1 t  ()y1 t 2 ()z1 t

 := eqae []()cos ()y1 t ()z1 t 0.5 0

 := icodes []()y1 0 0.25

 := icaes []()z1 0 0.8

 := pars [], , , 0.1 q 1000 tint 1 tf 5

 := ff 
1

2

1

2
()tanh 1000 t 1000

IN PRESS Computers and Chemical Engineering - Page 41 of 45.

> EQAEX||j:=subs(Dvars1,eqode,icsn,Dvars2,lhs(EQAE||j))=rhs(EQAE||j):

> end do:

> Sys:={seq(EQODE||x,x=1..NODE),seq(EQAEX||x,x=1..NAE),seq(icodes[x],x=1

> ..NODE),seq(icaes[x],x=1..NAE)}:

> if Xexplicit=1 then

> sol:=dsolve(Sys,numeric):

> else

> sol:=dsolve(Sys,numeric,stiff=true,implicit=true):

> end if:

Plotting Results
> for XX from 1 to NODE do

> a||XX:=odeplot(sol,[t,y||XX(t)],0..subs(pars,tf),color=red):

> end do:

> for XX from NODE+1 to NODE+NAE do

> a||XX:=odeplot(sol,[t,z||(XX-NODE)(t)],0..subs(pars,tf),color=blue):

> end do:

> display(seq(a||x,x=1..NODE+NAE),axes=boxed);

End Maple Code

2. MATLAB code (using ode15s)
Example 1 has been converted into a useable form for ode15s

function CCS3s
clear
clf
clc
hold off
tsp = 4;
tspan=[0 tsp];
%Extra dummy variable y(2)=dy/dt has been added so that y(1)=y; y(2)=dy/dt;
%y(3)=z
y0 = [0.25,0,0.8];
Nels = 3;
M = [1 0 0;0 0 0;0 0 1;];
options=odeset('Mass',M);
[T,Y]=ode15s(@MEQS,tspan,y0,options);
hold on
for i=1:2:Nels
plot(T,Y(:,i));
end
return

function [res]=MEQS(t,y)

IN PRESS Computers and Chemical Engineering - Page 42 of 45.

tj=1;
q=1000;
epsilon=0.01;
ff=(1/2+1/2*tanh(q*(t-tj)));
%Converting the variables from Example 1, y->y(1), z->y(3), and dy/dt->y(2)
%y(2) must be used because ode15s must be of the form Mf(t,y')=f(t,y)
%Based on the Mass Function, M, Eq1 will equal the derivative of y(1), Eq2
%will equal zero, and Eq3 will equal the derivative of y(3)
Eq1=y(2);
Eq2=y(2)-(-y(1)^2+y(3))*ff;
Eq3=-2*y(2)*(y(3)^0.5)*sin(y(1))+2*cos(y(1))*(y(3)^0.5)/epsilon-2*y(3)/epsilon;
res = [Eq1;Eq2;Eq3;];
return

End Matlab Code

3. Fortran Code (using RODAS solver which is a Rosenbrock method solver)
In order to run the Fortran driver, you will also need download the RODAS solver, DECSOL linear algebra
routines, and DC_DECSOL subroutines which are available free at
http://www.unige.ch/~hairer/software.html
This code was compile using Compaq Visual Fortran 6

C *

C --- DRIVER FOR ROSENBROCK CODE RODAS

C *

c link dr_rodas rodas decsol dc_decsol

c link dr_rodas rodas lapack lapackc dc_lapack

 IMPLICIT REAL*8 (A-H,O-Z)

C --- PARAMETERS FOR RODAS (FULL JACOBIAN)

 PARAMETER (ND=2,LWORK=6*ND*ND+14*ND+20,LIWORK=3*ND+20)

C --- DECLARATIONS

 DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK)

 EXTERNAL FEQN,JAC,SOLOUT,MAS,FIC

C --- DIMENSION OF THE SYSTEM

 N=2

C --- PROBLEM IS AUTONOMOUS

 IFCN=0

C --- COMPUTE THE JACOBIAN ANALYTICALLY

 IJAC=1

C --- JACOBIAN IS A FULL MATRIX

 MLJAC=N

C --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM

 IMAS=1

 MLMAS=N

C --- OUTPUT ROUTINE IS USED DURING INTEGRATION

IN PRESS Computers and Chemical Engineering - Page 43 of 45.

 IOUT=1

C --- INITIAL VALUES

 X=0.0D0

 CALL FIC(N,Y)

C --- ENDPOINT OF INTEGRATION

 XEND=5.0D0

C --- REQUIRED TOLERANCE

 RTOL=1.0D-6

 ATOL=1.0D-6

 ITOL=0

C --- INITIAL STEP SIZE

 H=1.0D-6

C --- SET DEFAULT VALUES

 DO 10 I=1,20

 IWORK(I)=0

 10 WORK(I)=0.D0

C --- CALL OF THE SUBROUTINE RODAS

 CALL RODAS(N,FEQN,IFCN,X,Y,XEND,H,

 & RTOL,ATOL,ITOL,

 & JAC,IJAC,MLJAC,MUJAC,FVPOL,IDFX,

 & MAS,IMAS,MLMAS,MUMAS,

 & SOLOUT,IOUT,

 & WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID)

C --- PRINT FINAL SOLUTION

 WRITE (6,99) X,Y(1),Y(2)

 99 FORMAT(1X,'X =',F5.2,' Y =',2E18.10)

C --- PRINT STATISTICS

 WRITE (6,90) RTOL

 90 FORMAT(' rtol=',D8.2)

 WRITE (6,91) (IWORK(J),J=14,20)

 91 FORMAT(' fcn=',I5,' jac=',I4,' step=',I4,

 & ' accpt=',I4,' rejct=',I3,' dec=',I4,

 & ' sol=',I5)

 STOP

 END

C

 SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN)

C --- PRINTS SOLUTION

 IMPLICIT REAL*8 (A-H,O-Z)

 DIMENSION Y(N),CONT(LRC)

 COMMON /INTERN/XOUT

 IF (NR.EQ.1) THEN

 WRITE (6,99) X,Y(1),Y(2),NR-1

 XOUT=0.2D0

 ELSE

 IF (X.GE.XOUT) THEN

 Y1=CONTRO(1,XOUT,CONT,LRC)

 Y2=CONTRO(2,XOUT,CONT,LRC)

 WRITE (6,99) XOUT,Y1,Y2,NR-1

 XOUT=XOUT+0.2D0

 END IF

 END IF

 99 FORMAT(1X,'X =',F5.2,' Y =',2E18.10,' NSTEP =',I4)

 RETURN

 END

C

 SUBROUTINE FEQN(N,X,Y,F,RPAR,IPAR)

!===

 IMPLICIT REAL*8 (A-H,O-Z)

 DIMENSION Y(N),F(N)

 F(1) = (0.5D0+0.5D0*tanh(1000.D0*X-1000.D0))*(-1.D0*Y(1)**2+Y(2))

IN PRESS Computers and Chemical Engineering - Page 44 of 45.

 F(2) = cos(Y(1))-1.D0*Y(2)**0.5D0

 RETURN

 END

 SUBROUTINE JAC(N,X,Y,DFY,LDFY,RPAR,IPAR)

!===

 IMPLICIT REAL*8 (A-H,O-Z)

 DIMENSION Y(N),DFY(LDFY,N)

 DFY(1,1) = -2.D0*(0.5D0+0.5D0*tanh(1000.D0*X-1000.D0))*Y(1)

 DFY(1,2) = 0.5D0+0.5D0*tanh(1000.D0*X-1000.D0)

 DFY(2,1) = -sin(Y(1))

 DFY(2,2) = -0.5D0/Y(2)**0.5D0

 RETURN

 END

 SUBROUTINE MAS(N,AM,LMAS,RPAR,IPAR)

!===

 IMPLICIT REAL*8 (A-H,O-Z)

 DOUBLE PRECISION AM(LMAS,N),Y(N)

 AM(1,1) = 1

 AM(1,2) = 0

 AM(2,1) = 0.247403959254523D-5

 AM(2,2) = 0.52704627669473D-5

 RETURN

 END

 SUBROUTINE FIC(N,Y)

!===

 IMPLICIT REAL*8 (A-H,O-Z)

 DOUBLE PRECISION Y(N)

 Y(1) = 0.25D0

 Y(2) = 0.8D0

 RETURN

 END

End Fortran Code

End of Appendix A

IN PRESS Computers and Chemical Engineering - Page 45 of 45.

