Beavo, Joseph

Faculty Profile

First Name: 
Joseph
Last Name: 
Beavo
[field_fname-formatted] [field_lname-formatted]
Title: 
Professor
Primary Institution: 
UW
Department/Division: 
other
Department/Division: 
Pharmacology
Office Location: 

F 404A

Office Phone: 
(206) 543-4006
Research

Research Summary: 

Many hormones, drugs and other agents modify physiological processes by causing changes in cAMP and cGMP. The amplitude and duration of these second messenger signals are controlled in large part by the activity of the specific cyclic nucleotide phosphodiesterases (PDEs) that control their degradation. The signaling pathways regulated by PDEs include such well known processes as visual transduction and male erectile function. They also include less well known pathways such as regulation of aldosterone by atrial natriuretic peptide and regulation of platelet aggregation by endothelial relaxation factor. Drugs that selectively inhibit individual PDE isozymes have a wide variety of different effects on an animals suggesting specific roles for most of the different PDEs.  Most recently we find that one must inhibit a combination of PDEs in order to regulate function.

Current evidence indicates that there are eleven related but unique gene families that code for different PDEs and that most of these families contain more than one gene. Furthermore, each gene product is differentially spliced in different tissues to yield different isozymes. A major focus of this laboratory has been to determine the molecular nature for the normal control of these isoenzymes. Many of the current projects involve approaches to determine which cell types contain what isozyme, and how that particular isozyme contributes to the phenotype of the cell. Finally, several of these isozymes are regulated by covalent modification. Studies are underway to determine how and to what extent these types of regulation are important to the physiological functions of the cells in which the PDEs are expressed.

A wide variety of experimental approaches are employed. They vary from basic in vitro enzymological to phosphoproteomic studies. Similarly, in vivo approaches utilizing transgenic animals allow function at the whole animal level to be investigated. In all cases, emphasis is placed on how and why each isozyme functions as it does in a tissue. Currently projects on the roles of the PDEs in such diverse processes as monocyte, macrophage and  T-cell function to regulation of steroidogenesis by PDEs. We are particularly excited about the application of phosphoproteomics to these questions..

Short Research Description: 
cyclic nucleotide phosphodiesterases
Areas of Interest: 
Cell Signaling & Cell/Environment Interactions
Neuroscience
Keywords: 
<p> hormones, neurotransmitters, pharmacology, receptors, cardiac biology, cardiac disease, cardiovascular biology, coronary vessels, endocrinology, gene, gene expression, gene regulation, immunobiology, immunology, nervous system, retina, vascularbiology, vision research, phosphodiesterase, signaltransduction, T cells, immunology, leptin, insulin, taste research</p>
Publications

Taking Students
Year: 
2013 - 2014

Related content

Student Profile
Course