roblaw

Student Profile

First Name: 
Robert
Last Name: 
Lawrence
[field_fname-formatted] [field_lname-formatted]
Primary Institution: 
UW
Department/Division: 
other
Department/Division: 
Genome Sciences
MCB Entry Quarter: 
Autumn
MCB Entry Year: 
2011
E-Mail: 
Mail/Box #: 

357275

Phone: 
(206) 543-0253
Lab Information
Advisor: 
Research
Research Summary: 

“Measure what can be measured, and make measurable what cannot be measured.”- Galileo

The rationing of nutrients throughout the body is highly organized and efficient. By some amazing feat of logistics, each one of the trillions of cells in our body is rationed an appropriate amount of the food we consume. Once inside the cell, nutrients are further metabolized and compartmentalized according to the cellular energy needs. Under the hood, the human genome is estimated to encode about ~5,000 metabolic enzymes. Additionally there are a large cohort of protein kinases, transcription factors, and other modifiers who sense the cellular environment and regulate the level and activity of these proteins in real time. 

This system often breaks down at the cellular level. When it does, it can cause disease such as cancer (uncontrolled nutrient uptake and cell proliferation), or type 2 diabetes (insulin resistance and inability to store more nutrients) that significantly reduce the lifespan of the organism. We can reverse-engineer cellular metabolism by using traditional molecular biology to characterize the parts list, and use new technologies such as proteomics and network inference to understand how these parts work together in health and disease. I hope to harness the power of mass spectrometry in the Villen laboratory to make precise measurements of thousands of protein phosphorylation events as cells and organisms interact with their environment. This fundamental knowledge will lay the groundwork for medical advances such as personalized cancer diagnosis.

Running total of unique mammalian PTMs detected by Rob:

Acetylation: 3,611

Phosphorylation: 37,191

Areas of Interest: 
Cancer Biology
Cell Signaling & Cell/Environment Interactions
Academic Information
TA/Out Reach
Class/Activity: 
BIOC 442
Quarter: 
Spring
Year: 
2013
Class/Activity: 
Science Communication Fellowship
Year: 
2013