Scott, John

Faculty Profile

First Name: 
John
Last Name: 
Scott
[field_fname-formatted] [field_lname-formatted]
Title: 
Professor
Primary Institution: 
UW
Department/Division: 
other
Department/Division: 
Pharmacology
E-Mail: 
Mail/Box #: 

357750

Office Location: 

Room K-336B, Magnuson Health Sciences Center

Office Phone: 
(206) 616-3340
Alternate Phone: 
(206) 221-0515
Research

Research Summary: 

Hormones mediate their effects by changing biochemical events in the cell's interior. In one common scenario, a hormone elevates an intracellular second messenger called cyclic AMP (cAMP) in a particular cell compartment. Cyclic AMP then binds to an enzyme called protein kinase A (PKA). Protein kinases that are dependent on cAMP govern many biochemical events by phosphorylating target proteins. The changes in the activity of these newly phosphorylated proteins are what alters the cell's physiology. My lab uses recombinant DNA techniques, protein chemistry, and enzymology to study the actions of PKA within cells.

The biochemical effects of many peptide hormones proceed through pathways that lead to activation of PKA. However, individual hormones may promote PKA-mediated phosphorylation of distinct sets of proteins. This may be because different hormones activate different subtypes of the PKA enzyme. Alternatively, individual hormones may activate specific pools of PKA. A potential mechanism to explain this phenomenon is that individual PKA pools might be compartmentalized inside the cell at their site of action, close to the proteins that they will ultimately phosphorylate. A specific pool could be activated only when the appropriate hormone elevates cAMP in a particular microenvironment.Our laboratory has shown that Type II PKA is tethered at particular subcellular locations by specific A-kinase anchoring proteins (AKAPs).

Our group has demonstrated that the AKAPs are a diverse family of functionally related proteins. So far, more than 75 AKAP genes have been isolated by interaction cloning techniques. Each AKAP contains a conserved amphipathic helix motif of 20 or so residues that is responsible for high affinity interaction with the regulatory subunit of PKA. Peptides corresponding to this region are antagonists of PKA/AKAP interaction and disrupt the localization of the kinase when introduced into cells. These anchoring inhibitor peptides have been used by us and others to uncouple certain cAMP-responsive events, such as the activation of glutamate receptors, and to suppress hormone-mediated insulin secretion from islet beta cells.

Short Research Description: 
Protein kinases
Areas of Interest: 
Cell Signaling & Cell/Environment Interactions
Keywords: 
<p> Signal transduction, Spatiotemporal organization of protein kinases, Scaffolding proteins, A-Kinase Anchoring proteins (AKAPs)</p>
Publications

Taking Students
Year: 
2013 - 2014

Related content

Student Profile